首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[18O]Adenosine 5'-O-phosphorothioate-O-p-nitrophenyl ester was prepared by saponification of the bis (-O,O-p-nitrophenyl ester) with K18OH. Only the diastereoisomer with the Rp configuration si a substrate for snake venom phosphodiesterase. The asymmetrically labeled [18O]adenosine 5'-O-phosphorothioate formed in this reaction was converted enzymatically to [18O]adenosine 5'-(1-thiodiphosphate) with the Sp configuration. The position of the 18O label, either bridging [1,2-mu-18O] or nonbridging [1-18O] was then determined. The results show that the reaction catalyzed by snake venom phosphodiesterase takes place with retention of configuration at phosphorus. This indicates that the hydrolysis proceeds via a covalent nucleotide enzyme intermediate.  相似文献   

2.
Mung-bean (Phaseolus aureus) nuclease has been found to cleave the Sp diastereoisomer of 5'-O-thymidyl 3'-O-(2'-deoxyadenosyl)phosphorothioate, (Sp)-d[Ap(S)T], in 18O-labelled water with inversion of configuration at phosphorus to give (Sp)-thymidine 5'-[16O, 18O]phosphorothioate, the stereochemistry of which was deduced by methylation to (Rp,Sp)-thymidine 5'-S-methyl-O-methyl-[16O,18O]phosphorothioate and 31P-n.m.r. analysis. This result is consistent with a mechanism involving a direct 'in-line' attack of water on DNA for the nuclease-catalysed reaction without the involvement of a covalent nucleotidylated-enzyme intermediate.  相似文献   

3.
Fully protected diastereoisomers of deoxyguanylyl (3' leads to 5') deoxyadenosine stereospecifically labelled on phosphorus with oxygen-18 have been synthesized by oxidation of phosphite triester intermediates in the presence of 18O-labelled water. The diastereoisomers have been chromatographically separated and their absolute configuration at phosphorus determined. (Rp)-[18O]deoxyguanylyl (3' leads to 5')deoxyadenosine has been prepared by complete deprotection of the parent diastereoisomer of the Sp configuration. Methylation of the former compound permits assignment of the absolute configurations of the methyl esters of N1-methyldeoxyguanylyl (3' leads to 5') N1-methyldeoxyadenosine.  相似文献   

4.
5.
The stereochemical course of the phosphoryl transfer reaction catalyzed by T4 polynucleotide kinase has been determined using the chiral ATP analog, (Sp)-adenosine-5'-(3-thio-3-[18O]triphosphate). T4 polynucleotide kinase catalyzes the transfer of the gamma-thiophosphoryl group of (Sp)-adenosine-5'-(3-thio-3-[18O]triphosphate) to the 5'-hydroxyl group of ApA to give the thiophosphorylated dinucleotide adenyl-5'-[18O]phosphorothioate-(3'-5')adenosine. A sample of adenyl-5'-[18O]phosphorothioate-(3'-5')adenosine was subjected to venom phosphodiesterase digestion. The resulting adenosine-5'-[18O]phosphorothioate was shown to have the Rp configuration, thus indicating that the thiophosphoryl transfer reaction occurs with overall inversion of configuration of phosphorus.  相似文献   

6.
Stereochemical course of DNA hydrolysis by nuclease S1   总被引:9,自引:0,他引:9  
Nuclease S1 hydrolyzes the Sp-diastereomer of 5'-O-(2'-deoxyadenosyl)-3'-O-thymidyl phosphorothioate in H2(18)O to [18O]deoxyadenosine 5'-O-phosphorothioate which can be phosphorylated enzymatically to the Sp-diastereomer of [alpha-18O]deoxyadenosine 5'-O-(1-thiotriphosphate). 31P nmr spectroscopy shows the oxygen-18 in this compound to be in a nonbridging position at the alpha-phosphorus, indicating that the hydrolysis reaction catalyzed by nuclease S1 proceeds with inversion of configuration at phosphorus. This result is compatible with a direct nucleophilic attack of H2O at phosphorus without the involvement of a covalent enzyme intermediate.  相似文献   

7.
The purified alpha-thiophosphate diastereoisomers of adenosine 5'-(1-thio)-triphosphate were used to study the stereochemical course of the reaction catalyzed by yeast acetyl-CoA synthetase. Asymmetrically labeled adenosine 5'-thiophosphate was formed from the "B" diastereoisomer of adenosine 5'-(1-thio)-triphosphate and [18O]acetate. The label was found to be in the opposite orientation from the leaving pyrophosphate group showing that the acetate activation step occurred with inversion of configuration at the alpha-phosphorus.  相似文献   

8.
Bovine heart cyclic AMP phosphodiesterase, which has a requirement for Mg2+, hydrolyses cyclic AMP with inversion of configuration at the phosphorus atom, but only the (Sp)-diastereoisomer of adenosine cyclic 3':5'-phosphorothioate is hydrolysed by this enzyme. By contrast, the low-affinity yeast cyclic AMP phosphodiesterase, which contains tightly bound Zn2+, hydrolyses both the (Sp)- and the (Rp)-diastereoisomers of adenosine cyclic 3':5'-phosphorothioate, the (Rp)-diastereoisomer being the preferred substrate under V max. conditions. Both of the diastereoisomers of adenosine cyclic 3':5'-phosphorothioate, as well as cyclic AMP, are hydrolysed with inversion of configuration at the phosphorus atom by the yeast enzyme. It is proposed that, with both enzymes, the bivalent metal ion co-ordinates with the phosphate residue of the substrate, and that hydrolysis is catalysed by a direct "in-line' mechanism.  相似文献   

9.
M D Tsai 《Biochemistry》1980,19(23):5310-5316
The stereochemical problem involving a pro-pro-prochiral phosphorus center, the hydrolysis of adenosine 5'-monophosphate to adenosine and inorganic phosphate catalyzed by the venom 5'-nucleotidase, has been studied by use of chiral [16O, 17O, 18O]thiophosphates (Psi). (Rp)- and (Sp)-[alpha-18O1]Adenosine 5'-thiophosphates (AMPS) were synthesized by a combined chemical and biochemical procedure. Hydrolysis of (Rp)- and (Sp)-[alpha-18O1]AMPS in H217O by 5'-nucleotidase gave two enantiomers of chiral Psi of unknown configuration. A 31P NMR method based on the combination of the quadrupolar effect of 17O [Tsai, M.-D. (1979) Biochemistry 18, 1468-1472] and the 18O isotope shift [Cohn, M., & Hu. A. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 200-203] has been developed to analyze the configuration of chiral Pso. The results indicate that hydrolysis of (Rp)- and (Sp)-[alpha-18O1]AMPS in H217O gave (R)- and (S)- [16O, 17O, 18O]Psi, respectively. Therefore the hydrolysis of AMPS catalyze by the venom 5'-nucleotidase must proceed with inversion of configuration at phosphorus, which suggests that the reaction is most likely an "in line" single displacement without involving a phosphoryl-enzyme intermediate and without pseudorotation.  相似文献   

10.
(Rp)-Adenosine 3',5'-monophosphorothioate ((Rp)-cAMPS) is a highly specific antagonist of the cAMP-dependent protein kinase from eukaryotic cells and is a very poor substrate for phosphodiesterases. It is therefore a useful tool for investigating the role of cAMP as a second messenger in a variety of biological systems. Taking advantage of stereospecific inversion of configuration around the alpha-phosphate during the adenylate cyclase reaction, we have developed a method for the preparative enzymatic synthesis of the Rp diastereomer of adenosine 3',5'-monophosphorothioate ((Rp)-cAMPS) from the Sp diastereomer of adenosine 5'-O-(1-thiotriphosphate) ((Sp)-ATP alpha S). The adenylate cyclase from Bordetella pertussis, partially purified by calmodulin affinity chromatography, cyclizes (Sp)-ATP alpha S approximately 40-fold more slowly than ATP, but binds (Sp)-ATP alpha S with about 10-fold higher affinity than ATP. The triethylammonium salt of the reaction product can be purified by elution from a gravity flow reversed-phase C18 column with a linear gradient of increasing concentrations of methanol. Yields of the pure (Rp)-cAMPS product of a synthesis with 2 mg of substrate are about 75%.  相似文献   

11.
31P NMR studies with Cd(II) and Zn(II) chelates of adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS) and the Cd(II) chelate of adenosine 5'-O-(2-thiotriphosphate) (ATPbetaS) indicate that these metal ions chelate to the sulfur atom of the thiophosphate group. Since Mg(II) chelates to oxygen of the thiophosphate group of diastereoisomer is equivalent to the configuration of the Cd(II) chelate of the opposite diastereoisomer. As a consequence, an inversion of the stereospecificity is observed when Cd(II) is substituted for Mg(II) in the phosphoryl transfer reactions catalyzed by yeast hexokinase and rabbit muscle pyruvate kinase. When Co(II) is the activating ion for yeast hexokinase with ATPbetaS as substrate, no stereospecificity is observed. Since the absolute configuration for the diastereoisomer of Co(III)(NH3)4ATP which is the active substrate for yeast hexokinase has been established by Cornelius and Cleland (Cornelius, R. D., and Cleland, W. W. (1978) Biochemistry, in press), the absolute stereochemistry of the Mg(II) complex of the B isomer of ATPbetaS is now established by its stereospecificity in the hexokinase reaction.  相似文献   

12.
S P Harnett  G Lowe  G Tansley 《Biochemistry》1985,24(12):2908-2915
The activation of L-phenylalanine by yeast phenylalanyl-tRNA synthetase using adenosine 5'-[(S)-alpha-17O,alpha,alpha-18O2]triphosphate is shown to proceed with inversion of configuration at P alpha of ATP. This observation taken together with the lack of positional isotope exchange when adenosine 5'-[beta,beta-18O2]triphosphate is incubated with the enzyme in the absence of phenylalanine and in the presence of the competitive inhibitor phenylalaninol indicates that activation of phenylalanine occurs by a direct "in-line" adenylyl-transfer reaction. In the presence of Zn2+, yeast phenylalanyl-tRNA synthetase also catalyzes the phenylalanine-dependent hydrolysis of ATP to AMP and the synthesis of P1,P4-bis(5'-adenosyl) tetraphosphate (Ap4A). With adenosine 5'-[(S)-alpha-17O,alpha,alpha-18O2]triphosphate, the formation of AMP and Ap4A is shown to occur with inversion and retention of configuration, respectively. It is concluded that phenylalanyl adenylate is an intermediate in both processes, Zn2+ promoting AMP formation by hydrolytic cleavage of the C-O bond and Ap4A formation by displacement at phosphorus of phenylalanine by ATP.  相似文献   

13.
(Rp)- and (Sp)-5'-O-thymidyl 3'-O-thymidyl [18O]phosphates have been synthesized by reaction of the respective (Sp)- and (Rp)-phosphorothioate precursors with N-bromosuccinimide in dioxane and H218O. Stereochemical analysis of the product derived from the (Rp)-phosphorothioate by digestion with snake venom phosphodiesterase in H217O and examination of the isotopic chirality of the resulting thymidine 5'-[16O,17O,18O]phosphate demonstrate that the replacement reaction has proceeded with inversion of configuration at phosphorus. Inspection of the 31P NMR spectrum of the methyl esters prepared from (Sp)-5'-O-thymidyl 3'-O-thymidyl [18O]phosphate confirms that the replacement reaction has proceeded with very little if any racemization. This spectrum also allows the assignment of the absolute configuration of these methyl triesters. (Rp)-5'-O-Thymidyl 3'-O-thymidyl [18O]phosphate has been used to demonstrate that the stereochemical course of the hydrolytic reaction catalyzed by nuclease P1 from Penicillium citrum proceeds with inversion of configuration at phosphorus and therefore probably does not involve the participation of a covalent enzyme intermediate.  相似文献   

14.
The catalytic subunit of the Ser/Thr protein phosphatase 1 (PP1cat) hydrolyses N-acetyl Arg-Arg-Ala-phosphoThr-Val-Ala (K(M) = 3.7 mM) in a reaction that is inhibited competitively by inorganic phosphate (Pi, Ki = 1.6 mM) but unaffected by the product peptide alcohol at concentrations up to 3 mM. The enzyme does not catalyse the incorporation of 18O-label from 18O-labelled water into Pi whether, or not, the product alcohol is present. The dephosphorylated product alcohol of phosphorylated histone. an alternative substrate for the enzyme, serves as a competitive inhibitor for phosphopeptide hydrolysis (Ki = 60 microM) and co-mediates 18O-label exchange into Pi in a concentration-dependent manner (K(M) = 64 microM). These results indicate that hydrolysis occurs through the direct attack of an activated water molecule on the phosphate ester moiety of the substrate in a ternary complex mechanism.  相似文献   

15.
Herpes simplex virus type I (HSV-I)-induced thymidine kinase has been shown to catalyze phosphoryl transfer from adenosine 5'-[gamma-(S)-16O,17O,18O]triphosphate to thymidine with inversion of configuration at phosphorus. The simplest interpretation of this result is that phosphoryl transfer occurs by a single in-line group transfer between ATP and thymidine within the ternary enzyme complex.  相似文献   

16.
Polynucleotide phosphorylase catalyzes the formation of polynucleotides from the Sp diastereomer of adenosine 5'-O-(l-thiodiphosphate) ADPalphaS), whereas the Rp diastereomer is a competitive inhibitor. The absolute configuration of the phosphorothioate diester bond in the polymer was determined by copolymerizing ADPalpha S, Sp isomer with UDP and degrading the resulting copolymer with R Nase A and spleen phosphodiesterase to give, inter alia, uridine 2',-3'-cyclic phosphorothioate. The latter product was shown to be the endo isomer by high-performance liquid chromatography. No evidence for the presence of the exo isomer was obtained. It can thus be concluded that the Sp diastereomer of ADPalphaS polymerizes with inversion of configuration at phosphorus without racemization to give a phosphorothioate diester bond with the Rp configuration.  相似文献   

17.
Gentamicin nucleotidyltransferase-catalyzed reaction of (Sp)-[alpha-17O]dATP with tobramycin produced 2"-(2'-deoxyadenosine 5'-[17O]phosphoryl)tobramycin. The configuration at phosphorus in this product was shown to be Rp by chemical degradation to chiral [17O, 18O]dAMP using a stereochemically defined procedure, and determination of the configuration at phosphorus in this product. Periodate-base treatment of 2"-(2'-deoxyadenosine 5'-[17O]phosphoryl)tobramycin followed by NaBH4 reduction produced (2-glyceryl)-[17O]dAMP, which upon snake venom phosphodiesterase-catalyzed hydrolysis in H(2)18O produced [17O,18O] dAMP. The configuration at phosphorus in this product was shown to be S by enzymatic phosphorylation to [17O,18O]dATP, adenylylcyclase (Bordetella pertussis)-catalyzed cyclization to 3',5'-cyclic [17O,18O]dAMP, and 31P NMR analysis of the ethyl esters. Since snake venom phosphodiesterase-catalyzed hydrolyses proceed with retention of configuration at phosphorus, (Sp)-[17O,18O]dAMP must have been produced from (Rp)-(2-glyceryl)-[17O]dAMP; and since the chemical degradation to the latter compound did not involve cleavage of any bonds to phosphorus, the initial enzymatic product must have been (Rp)-2"-(2'-deoxyadenosine 5'-[17O]phosphoryl)tobramycin. Therefore, nucleotidyl transfer catalyzed by gentamicin nucleotidyl-transferase proceeds with inversion of configuration at phosphorus, and the reaction mechanism involves an uneven number of phosphotransfer steps. Inasmuch as this is an uncomplicated two-substrate group transfer reaction, the mechanism probably involves direct nucleotidyl transfer from the nucleoside triphosphate to the aminoglycoside. The B. pertussis adenylylcyclase reaction was shown to proceed with inversion at phosphorus, as has been established for other adenylylcyclases.  相似文献   

18.
Two adenosine molecules are connected via their ribose moieties by transacetalation with 2,2,5,5-tetraethoxyhexane, yielding diastereoisomeric bis(isopropylidene adenosine) compounds with S,S- (1a) or R,S-configurated (1b) acetal carbons. The S,S isomer shows high hypochromicity and a pronounced positive Cotton effect, which implies strong stacking interactions. The stacking of 1b is less pronounced. Both isomers are substrates for mammalian adenosine deaminase (EC 3.5.4.4.). Whereas compound 1a is slowly deaminated due to steric hindrance and stacking interactions, the diastereoisomer 1b is a much better substrate for the enzyme. Because of the difference in configuration in 1b the adenosine moieties are processed stepwise. Moreover, isomer 1b is a strong competitive inhibitor for the deamination of adenosine by the enzyme.  相似文献   

19.
The three stereoisomers of P1,P4-bis(5'-adenosyl)-1,4-dithiotetraphosphate have been synthesized and their 31P NMR spectra investigated. The effect of temperature on the circular dichroic spectrum of the (Sp,Sp)-stereoisomer shows that unstacking of the molecule occurs as the temperature is raised. Treatment of the (Sp,Sp)-stereoisomer with cyanogen bromide in [18O]water leads to substitution of sulfur by 18O with predominant retention of configuration at P1 and P4. (Sp,Sp)-P1,P4-Bis(5'-adenosyl)-1[thio-18O2],4[thio-18O2]tetraphosphate was synthesized and on treatment with cyanogen bromide in [17O]water gave (Rp,Rp)-P1,P4-bis(5'-adenosyl)-1[17O,18O2],4[17O,18O2]tetraphosphate. Hydrolysis by unsymmetrical Ap4A phosphodiesterase from lupin seeds gave (Rp)-5'-[16O,17O,18O]AMP. The reaction therefore proceeds with inversion of configuration at phosphorus, indicating that the enzyme-catalyzed displacement by water occurs by a direct "in-line" mechanism.  相似文献   

20.
The stereochemical course of the argininosuccinate synthetase reaction has been determined. The SP isomer of [alpha-17O,alpha-18O,alpha beta-18O]ATP is cleaved to (SP)-[16O,17O,18O]AMP by the action of argininosuccinate synthetase in the presence of citrulline and aspartate. The overall stereochemical transformation is therefore net inversion, and thus the enzyme does not catalyze the formation of an adenylylated enzyme intermediate prior to the synthesis of citrulline adenylate. The RP isomer of adenosine 5'-O-(2-thiotriphosphate) (ATP beta S) is a substrate in the presence of Mg2+, but the SP isomer is a substrate when Cd2+ is used as the activating divalent cation. Therefore, the lambda screw sense configuration of the beta,gamma-bidentate metal--ATP complex is preferred by the enzyme as the actual substrate. No significant discrimination could be detected between the RP and SP isomers of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S) when Mg2+ or Mn2+ are used as the divalent cation. Argininosuccinate synthetase has been shown to require a free divalent cation for full activity in addition to the metal ion needed to complex the ATP used in the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号