首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
CH Chiu  CW Chou  S Takada  YW Liu 《PloS one》2012,7(8):e43040

Background

The early morphogenetic steps of zebrafish interrenal tissue, the teleostean counterpart of the mammalian adrenal gland, are modulated by the peri-interrenal angioblasts and blood vessels. While an organized distribution of intra-adrenal vessels and extracellular matrix is essential for the fetal adrenal cortex remodeling, whether and how an intra-interrenal buildup of vasculature and extracellular matrix forms and functions during interrenal organogenesis in teleosts remains unclear.

Methodology and Principal Findings

We characterized the process of interrenal gland vascularization by identifying the interrenal vessel (IRV); which develops from the axial artery through angiogenesis and is associated with highly enriched Fibronectin (Fn) accumulation at its microenvironment. The loss of Fn1 by either antisense morpholino (MO) knockdown or genetic mutation inhibited endothelial invasion and migration of the steroidogenic tissue. The accumulation of peri-IRV Fn requires Integrin α5 (Itga5), with its knockdown leading to interrenal and IRV morphologies phenocopying those in the fn1 morphant and mutant. fn1b, another known fn gene in zebrafish, is however not involved in the IRV formation. The distribution pattern of peri-IRV Fn could be modulated by the blood flow, while a lack of which altered angiogenic direction of the IRV as well as its ability to integrate with the steroidogenic tissue. The administration of Fn antagonist through microangiography exerted reducing effects on both interrenal vessel angiogenesis and steroidogenic cell migration.

Conclusions and Significance

This work is the first to identify the zebrafish IRV and to characterize how its integration into the developing interrenal gland requires the Fn-enriched microenvironment, which leads to the possibility of using the IRV formation as a platform for exploring organ-specific angiogenesis. In the context of other developmental endocrinology studies, our results indicate a highly dynamic interrenal-vessel interaction immediately before the onset of stress response in the zebrafish embryo.  相似文献   

5.

Background

The choroid plexus (CP) is an epithelial and vascular structure in the ventricular system of the brain that is a critical part of the blood-brain barrier. The CP has two primary functions, 1) to produce and regulate components of the cerebral spinal fluid, and 2) to inhibit entry into the brain of exogenous substances. Despite its importance in neurobiology, little is known about how this structure forms.

Methodology and Principal Findings

Here we show that the transposon-mediated enhancer trap zebrafish line EtMn16 expresses green fluorescent protein within a population of cells that migrate toward the midline and coalesce to form the definitive CP. We further demonstrate the development of the integral vascular network of the definitive CP. Utilizing pharmacologic pan-notch inhibition and specific morpholino-mediated knockdown, we demonstrate a requirement for Notch signaling in choroid plexus development. We identify three Notch signaling pathway members as mediating this effect, notch1b, deltaA, and deltaD.

Conclusions and Significance

This work is the first to identify the zebrafish choroid plexus and to characterize its epithelial and vasculature integration. This study, in the context of other comparative anatomical studies, strongly indicates a conserved mechanism for development of the CP. Finally, we characterize a requirement for Notch signaling in the developing CP. This establishes the zebrafish CP as an important new system for the determination of key signaling pathways in the formation of this essential component of the vertebrate brain.  相似文献   

6.
Live imaging of lymphatic development in the zebrafish   总被引:8,自引:0,他引:8  
The lymphatic system has become the subject of great interest in recent years because of its important role in normal and pathological processes. Progress in understanding the origins and early development of this system, however, has been hampered by difficulties in observing lymphatic cells in vivo and in performing defined genetic and experimental manipulation of the lymphatic system in currently available model organisms. Here, we show that the optically clear developing zebrafish provides a useful model for imaging and studying lymphatic development, with a lymphatic system that shares many of the morphological, molecular and functional characteristics of the lymphatic vessels found in other vertebrates. Using two-photon time-lapse imaging of transgenic zebrafish, we trace the migration and lineage of individual cells incorporating into the lymphatic endothelium. Our results show lymphatic endothelial cells of the thoracic duct arise from primitive veins through a novel and unexpected pathway.  相似文献   

7.
8.
9.
Development of axon pathways in the zebrafish central nervous system   总被引:1,自引:0,他引:1  
The zebrafish has a number of distinct advantages as an experimental model in developmental biology. For example, large numbers of embryos can be generated in each lay, development proceeds rapidly through a very precise temporal staging which exhibits minimal batch-to-batch variability, embryos are transparent and imaging of wholemounts negates the need for tedious histological preparation while preserving three-dimensional spatial relationships. The zebrafish nervous system is proving a convenient model for studies of axon guidance because of its small size and highly stereotypical trajectory of axons. Moreover, a simple scaffold of axon tracts and nerves is established early and provides a template for subsequent development. The ease with which this template can be visualized as well as the ability to spatially resolve individual pioneer axons enables the role of specific cell-cell and molecular interactions to be clearly deciphered. We describe here the morphology and development of the earliest axon pathways in the embryonic zebrafish central nervous system and highlight the major questions that remain to be addressed with regard to axon guidance.  相似文献   

10.
Recent studies from our laboratory have begun to elucidate the role of agrin in zebrafish development. One agrin morphant phenotype that results from agrin knockdown is microphthalmia (reduced eye size). To begin to understand the mechanisms underlying the role of agrin in eye development, we have analyzed retina development in agrin morphants. Retinal differentiation is impaired in agrin morphants, with retinal lamination being disrupted following agrin morpholino treatment. Pax 6.1 and Mbx1 gene expression, markers of eye development, are markedly reduced in agrin morphants. Formation of the optic fiber layer of the zebrafish retina is also impaired, exhibited as both reduced size of the optic fiber layer, and disruption of retinal ganglion cell axon growth to the optic tectum. The retinotectal topographic projection to the optic tectum is perturbed in agrin morphants in association with a marked loss of heparan sulfate expression in the retinotectal pathway, with this phenotype resembling retinotectal phenotypes observed in mutant zebrafish lacking enzymes for heparan sulfate synthesis. Treatment of agrin morphants with a fibroblast growth factor (Fgf) receptor inhibitor, rescue of the retinal lamination phenotype by transplantation of Fgf8-coated beads, and disruption of both the expression of Fgf-dependent genes and activation of ERK in agrin morphants provides evidence that agrin modulation of Fgf function contributes to retina development. Collectively, these agrin morphant phenotypes provide support for a crucial role of agrin in retina development and formation of an ordered retinotectal topographic map in the optic tectum of zebrafish.  相似文献   

11.
Mice deficient for fibroblast growth factor (Fgf)R2-IIIb show a block in thymic growth after embryonic day 12.5, a stage that just precedes its detection in thymic epithelial cells. Fgf7 and Fgf10, the main ligands for FgfR2-IIIb, are expressed in the mesenchyme surrounding the thymic epithelial primordium, and Fgf10-deficient mice also exhibit impaired thymic growth. Hence, Fgf signaling is essential for thymic epithelial proliferation. In addition to the proliferative block, most thymic epithelial cells fail to progress from an immature cytokeratin 5-positive to a cytokeratin 5-negative phenotype. Nevertheless, sufficient epithelial cell differentiation occurs in the severely hypoplastic thymus to allow the development of CD4/CD8-double-positive thymocytes and a very small number of single-positive thymocytes expressing TCRs.  相似文献   

12.
The dorsal habenular nuclei (Dh) of the zebrafish are characterized by significant left–right differences in gene expression, anatomy, and connectivity. Notably, the lateral subnucleus of the Dh (LsDh) is larger on the left side of the brain than on the right, while the medial subnucleus (MsDh) is larger on the right compared to the left. A screen for mutations that affect habenular laterality led to the identification of the sec61a-like 1(sec61al1) gene. In sec61al1c163 mutants, more neurons in the LsDh and fewer in the MsDh develop on both sides of the brain. Generation of neurons in the LsDh occurs more rapidly and continues for a longer time period in mutants than in WT. Expression of Nodal pathway genes on the left side of the embryos is unaffected in mutants, as is the left sided placement of the parapineal organ, which promotes neurogenesis in the LsDh of WT embryos. Ultrastructural analysis of the epithalamus indicates that ventricular precursor cells, which form an epithelium in WT embryos, lose apical-basal polarity in sec61al1c163 mutants. Our results show that in the absence of sec61al1, an excess of precursor cells for the LsDh exit the ventricular region and differentiate, resulting in formation of bilaterally symmetric habenular nuclei.  相似文献   

13.
The midbrain-hindbrain boundary (MHB) is a highly conserved fold in the vertebrate embryonic brain. We have termed the deepest point of this fold the MHB constriction (MHBC) and have begun to define the mechanisms by which it develops. In the zebrafish, the MHBC is formed soon after neural tube closure, concomitant with inflation of the brain ventricles. The MHBC is unusual, as it forms by bending the basal side of the neuroepithelium. At single cell resolution, we show that zebrafish MHBC formation involves two steps. The first is a shortening of MHB cells to approximately 75% of the length of surrounding cells. The second is basal constriction, and apical expansion, of a small group of cells that contribute to the MHBC. In the absence of inflated brain ventricles, basal constriction still occurs, indicating that the MHBC is not formed as a passive consequence of ventricle inflation. In laminin mutants, basal constriction does not occur, indicating an active role for the basement membrane in this process. Apical expansion also fails to occur in laminin mutants, suggesting that apical expansion may be dependent on basal constriction. This study demonstrates laminin-dependent basal constriction as a previously undescribed molecular mechanism for brain morphogenesis.  相似文献   

14.
15.
16.
17.
Fertilization involves an initial, highly localized signal delivered by the sperm, which becomes amplified by a signal transduction cascade to impact the entire oocyte cytoplasm. The zebrafish oocyte presents a unique opportunity to study this process since fertilization always occurs at the micropyle, allowing the investigator to image the earliest steps in the oocyte activation process. The objective of the present study was to characterize the amplification of the sperm-induced calcium transient in the zebrafish oocyte and test the role of Fyn kinase in this process. Confocal fluorescence microscopy revealed that the sperm-induced calcium transient was composed of two elements, one of which was unique to the oocyte cortex and a second, slower transient that occurred in the central cytoplasm of the oocyte. The cortical transient was initiated immediately deep to the micropyle, became amplified at the animal pole, and progressed peripherally through the oocyte cortex. This was followed by a slower transient that occurred in the central cytoplasm of the oocyte. Several lines of evidence indicate that calcium release in these two compartments may be regulated differently. The calcium transient in the oocyte cortex is highly sensitive to inhibition by Fyn-SH2 domain containing fusion proteins, while the central cytoplasmic transient is relatively resistant to this treatment. Oocytes stimulated by injection of a soluble extract prepared from zebrafish sperm respond only with a cortical calcium transient initiated at the micropyle, while oocytes stimulated parthenogenetically by hypotonic shock exhibit a defective cortical transient but a normal transient in the central cytoplasm. Analysis of the subcellular distribution of Fyn kinase and the IP3 receptor reveal that these important signaling components are highly enriched in the oocyte cortex, a factor which may facilitate a faster propagation of the calcium transient in this compartment. In summary, analysis of calcium signaling in the zebrafish oocyte requires attention to morphologically distinct compartments of the oocyte and it is likely that these compartments are controlled by different biochemical events.  相似文献   

18.
Endogenous phosphotyrosine signaling in zebrafish embryos   总被引:1,自引:0,他引:1  
In the developing embryo, cell growth, differentiation, and migration are strictly regulated by complex signaling pathways. One of the most important cell signaling mechanisms is protein phosphorylation on tyrosine residues, which is tightly controlled by protein-tyrosine kinases and protein-tyrosine phosphatases. Here we investigated endogenous phosphotyrosine signaling in developing zebrafish embryos. Tyrosine phosphorylated proteins were immunoaffinity-purified from zebrafish embryos at 3 and 5 days postfertilization and identified by multidimensional LC-MS. Among the identified proteins were tyrosine kinases, including Src family kinases, Eph receptor kinases, and focal adhesion kinases, as well as the adaptor proteins paxillin, p130Cas, and Crk. We identified several known and some unknown in vivo tyrosine phosphorylation sites in these proteins. Whereas most immunoaffinity-purified proteins were detected at both developmental stages, significant differences in abundance and/or phosphorylation state were also observed. In addition, multiplex in vitro kinase assays were performed by incubating a microarray of peptide substrates with the lysates of the two developmental stages. Many of the in vivo observations were confirmed by this on-chip in vitro kinase assay. Our experiments are the first to show that global tyrosine phosphorylation-mediated signaling can be studied at endogenous levels in complex multicellular organisms.  相似文献   

19.
We have generated novel transgenic lines that brightly mark the lymphatic system of zebrafish using the lyve1 promoter. Facilitated by these new transgenic lines, we generated a map of zebrafish lymphatic development up to 15 days post-fertilisation and discovered three previously uncharacterised lymphatic vessel networks: the facial lymphatics, the lateral lymphatics and the intestinal lymphatics. We show that a facial lymphatic vessel, termed the lateral facial lymphatic, develops through a novel developmental mechanism, which initially involves vessel growth through a single vascular sprout followed by the recruitment of lymphangioblasts to the vascular tip. Unlike the lymphangioblasts that form the thoracic duct, the lymphangioblasts that contribute to the lateral facial lymphatic vessel originate from a number of different blood vessels. Our work highlights the additional complexity of lymphatic vessel development in the zebrafish that may increase its versatility as a model of lymphangiogenesis.  相似文献   

20.
The intestinal lymphatic system comprises two noncommunicating lymphatic networks: one containing the lacteals draining the villi and the connecting submucosal lymphatic network and one containing the lymphatics that drain the intestine muscular layer. These systems deliver lymph into a common network of collecting lymphatics originating near the mesenteric border. The intestinal lymphatic system serves vital functions in the regulation of tissue fluid homeostasis, immune surveillance, and the transport of nutrients; conversely, this system is affected by, and directly contributes to, disease processes within the intestine. Recent discoveries of specific lymphatic markers, factors promoting lymphangiogenesis, and factors selectively affecting the development of intestinal lymphatics, hold promise for unlocking the role of lymphatics in the pathogenesis of diseases affecting the intestine and for intestinal lymphatic selective therapies. Vital to progress in understanding how the intestinal lymphatic system functions is the integration of recent advances identifying molecular pathways for lymphatic growth and remodeling with advanced imaging modalities to observe lymphatic function and dysfunction in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号