首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane dynamics,cholesterol homeostasis,and Alzheimer's disease   总被引:4,自引:0,他引:4  
Alzheimer's disease (AD) is characterized by the deposition of beta-amyloid (A beta) plaques derived from the amyloidogenic processing; of a transmembrane protein called beta-amyloid precursor protein (APP). In addition to the known genetic/sporadic factors that promote the formation of A beta, the composition and structural dynamics of the membrane are also thought to play a significant role in the amyloidogenic processing of APP that promotes seeding of A beta. This minireview reinforces the roles played by membrane dynamics, membrane microdomains, and cholesterol homeostasis in relation to amyloidogenesis, and reviews current strategies of lowering cholesterol in treating AD.  相似文献   

2.
《Journal of lipid research》2017,58(12):2239-2254
Alzheimer's disease (AD) is the most common form of dementia in older adults. Currently, there is no cure for AD. The hallmark of AD is the accumulation of extracellular amyloid plaques composed of amyloid-β (Aβ) peptides (especially Aβ1-42) and neurofibrillary tangles, composed of hyperphosphorylated tau and accompanied by chronic neuroinflammation. Aβ peptides are derived from the amyloid precursor protein (APP). The oligomeric form of Aβ peptides is probably the most neurotoxic species; its accumulation eventually forms the insoluble and aggregated amyloid plaques. ApoE is the major apolipoprotein of the lipoprotein(s) present in the CNS. ApoE has three alleles, of which the Apoe4 allele constitutes the major risk factor for late-onset AD. Here we describe the complex relationship between ApoE4, oligomeric Aβ peptides, and cholesterol homeostasis. The review consists of four parts: 1) key elements involved in cellular cholesterol metabolism and regulation; 2) key elements involved in intracellular cholesterol trafficking; 3) links between ApoE4, Aβ peptides, and disturbance of cholesterol homeostasis in the CNS; 4) potential lipid-based therapeutic targets to treat AD. At the end, we recommend several research topics that we believe would help in better understanding the connection between cholesterol and AD for further investigations.  相似文献   

3.
4.
5.
Oxysterols, cholesterol homeostasis, and Alzheimer disease   总被引:3,自引:2,他引:3  
Aberrant cholesterol metabolism has been implicated in Alzheimer disease (AD) and other neurological disorders. Oxysterols and other cholesterol oxidation products are effective ligands of liver X activated receptor (LXR) nuclear receptors, major regulators of genes subserving cholesterol homeostasis. LXR receptors act as molecular sensors of cellular cholesterol concentrations and effectors of tissue cholesterol reduction. Following their interaction with oxysterols, activation of LXRs induces the expression of ATP-binding cassette, sub-family A member 1, a pivotal modulator of cholesterol efflux. The relative solubility of oxysterols facilitates lipid flux among brain compartments and egress across the blood-brain barrier. Oxysterol-mediated LXR activation induces local apoE biosynthesis (predominantly in astrocytes) further enhancing cholesterol re-distribution and removal. Activated LXRs invoke additional neuroprotective mechanisms, including induction of genes governing bile acid synthesis (sterol elimination pathway), apolipoprotein elaboration, and amyloid precursor protein processing. The latter translates into attenuated beta-amyloid production that may ameliorate amyloidogenic neurotoxicity in AD brain. Stress-induced up-regulation of the heme-degrading enzyme, heme oxygenase-1 in AD-affected astroglia may impact central lipid homeostasis by promoting the oxidation of cholesterol to a host of oxysterol intermediates. Synthetic oxysterol-mimetic drugs that activate LXR receptors within the CNS may provide novel therapeutics for management of AD and other neurological afflictions characterized by deranged tissue cholesterol homeostasis.  相似文献   

6.
7.
8.
Cerebral and extracerebral cholesterol metabolism are altered in Alzheimer's disease (AD) as indicated by reduced plasma levels of the cholesterol elimination products 24S-hydroxycholesterol, which is of cerebral origin, and of 27-hydroxycholesterol, which is formed extracerebrally. However, it has to be evaluated, if changes of cholesterol metabolism in the whole body or in the CNS are exclusively due to the altered elimination of cholesterol or are also due to altered de novo synthesis in AD. We investigated CSF and plasma levels of cholesterol and of its precursors lanosterol, lathosterol and desmosterol in AD patients and non-demented controls. We found CSF levels of cholesterol (p = 0.011), absolute levels of all investigated cholesterol precursors (each p < 0.001) and ratios of cholesterol precursors/cholesterol (each < 0.01) to be lower in AD patients as compared to controls. In plasma, the absolute levels of lanosterol (p = 0.026) and lathosterol (p < 0.001) and the ratio of lathosterol/cholesterol (p = 0.002) but none of the other investigated parameters were reduced in AD patients (p > 0.1). Furthermore, ratios of desmosterol/lathosterol in CSF (p = 0.023) and plasma (p = 0.009) were higher in AD patients as compared to controls. Our data support the hypothesis that cholesterol metabolism is altered in AD and further suggest that especially cholesterol de novo synthesis within the CNS of AD patients might be reduced. These findings raise doubt on a beneficial effect of cholesterol lowering treatment in manifest AD.  相似文献   

9.
Differential expression of cholesterol hydroxylases in Alzheimer's disease   总被引:7,自引:0,他引:7  
Cholesterol is eliminated from neurons by oxidization, which generates oxysterols. Cholesterol oxidation is mediated by the enzymes cholesterol 24-hydroxylase (CYP46A1) and cholesterol 27-hydroxylase (CYP27A1). Immunocytochemical studies show that CYP46A1 and CYP27A1 are expressed in neurons and some astrocytes in the normal brain, and CYP27A1 is present in oligodendrocytes. In Alzheimer's disease (AD), CYP46A1 shows prominent expression in astrocytes and around amyloid plaques, whereas CYP27A1 expression decreases in neurons and is not apparent around amyloid plaques but increases in oligodendrocytes. Although previous studies have examined the effects of synthetic oxysterols on the processing of amyloid precursor protein (APP), the actions of the naturally occurring oxysterols have yet to be examined. To understand the role of cholesterol oxidation in AD, we compared the effects of 24(S)- and 27-hydroxycholesterol on the processing of APP and analyzed the cell-specific expression patterns of the two cholesterol hydroxylases in the human brain. Both oxysterols inhibited production of Abeta in neurons, but 24(S)-hydroxycholesterol was approximately 1000-fold more potent than 27-hydroxycholesterol. The IC(50) of 24(S)-hydroxycholesterol for inhibiting Abeta secretion was approximately 1 nm. Both oxysterols induced ABCA1 expression with IC(50) values similar to that for inhibition of A beta secretion, suggesting the involvement of liver X receptor. Oxysterols also inhibited protein kinase C activity and APP secretion following stimulation of protein kinase C. The selective expression of CYP46A1 around neuritic plaques and the potent inhibition of APP processing in neurons by 24(S)-hydroxycholesterol suggests that CYP46A1 affects the pathophysiology of AD and provides insight into how polymorphisms in the CYP46A1 gene might influence the pathophysiology of this prevalent disease.  相似文献   

10.
11.
Allele epsilon4 of the nuclear APOE gene is a leading genetic risk factor for sporadic Alzheimer's disease (AD). Moreover, an allele-specific effect of APOE isoforms on neuronal cell oxidative death is known. Because of the role of the mitochondrial genome (mtDNA) in oxidative phosphorylation and oxidative stress, an interaction between APOE polymorphism and mtDNA inherited variability in the genetic susceptibility to sporadic AD can be hypothesized. We have explored this hypothesis by analyzing mtDNA germline variants (mtDNA haplogroups) in a sample of AD patients (213 subjects) genotyped for APOE and classified as APOE epsilon4 carriers and non-carriers. We found that the frequency distribution of mtDNA haplogroups is different between epsilon4 carriers and non-carriers (P=0.018), thus showing non-random association between APOE and mtDNA polymorphisms. The same analysis, carried out in two samples of healthy subjects (179 age-matched and 210 individuals aged more than 100 years), showed independence between epsilon4 allele and mtDNA haplogroups. Therefore, the APOE/mtDNA interaction is restricted to AD and may affect susceptibility to the disease. In particular, some mtDNA haplogroups (K and U) seem to neutralize the harmful effect of the APOE epsilon4 allele, lowering the epsilon4 odds ratio from statistically significant to non-significant values.  相似文献   

12.
Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder. To date four genes have been established to either cause early-onset autosomal-dominant AD (APP, PSEN1, and PSEN2(1-4)) or to increase susceptibility for late-onset AD (APOE5). However, the heritability of late-onset AD is as high as 80%, (6) and much of the phenotypic variance remains unexplained to date. We performed a genome-wide association (GWA) analysis using 484,522 single-nucleotide polymorphisms (SNPs) on a large (1,376 samples from 410 families) sample of AD families of self-reported European descent. We identified five SNPs showing either significant or marginally significant genome-wide association with a multivariate phenotype combining affection status and onset age. One of these signals (p = 5.7 x 10(-14)) was elicited by SNP rs4420638 and probably reflects APOE-epsilon4, which maps 11 kb proximal (r2 = 0.78). The other four signals were tested in three additional independent AD family samples composed of nearly 2700 individuals from almost 900 families. Two of these SNPs showed significant association in the replication samples (combined p values 0.007 and 0.00002). The SNP (rs11159647, on chromosome 14q31) with the strongest association signal also showed evidence of association with the same allele in GWA data generated in an independent sample of approximately 1,400 AD cases and controls (p = 0.04). Although the precise identity of the underlying locus(i) remains elusive, our study provides compelling evidence for the existence of at least one previously undescribed AD gene that, like APOE-epsilon4, primarily acts as a modifier of onset age.  相似文献   

13.
Lipid-mediated signalling regulates a plethora of physiological processes, including crucial aspects of brain function. In addition, dysregulation of lipid pathways has been implicated in a growing number of neurodegenerative disorders, such as Alzheimer's disease (AD). Although much attention has been given to the link between cholesterol and AD pathogenesis, growing evidence suggests that other lipids, such as phosphoinositides and phosphatidic acid, have an important role. Regulators of lipid metabolism (for example, statins) are a highly successful class of marketed drugs, and exploration of lipid dysregulation in AD and identification of novel therapeutic agents acting through relevant lipid pathways offers new and effective options for the treatment of this devastating disorder.  相似文献   

14.
15.
Extracellular amyloid plaques, intracellular neurofibrillary tangles, and loss of basal forebrain cholinergic neurons in the brains of Alzheimer's disease (AD) patients may be the end result of abnormalities in lipid metabolism and peroxidation that may be caused, or exacerbated, by beta-amyloid peptide (Abeta). Apolipoprotein E (apoE) is a major apolipoprotein in the brain, mediating the transport and clearance of lipids and Abeta. ApoE-dependent dendritic and synaptic regeneration may be less efficient with apoE4, and this may result in, or unmask, age-related neurodegenerative changes. The increased risk of AD associated with apoE4 may be modulated by diet, vascular risk factors, and genetic polymorphisms that affect the function of other transporter proteins and enzymes involved in brain lipid homeostasis. Diet and apoE lipoproteins influence membrane lipid raft composition and the properties of enzymes, transporter proteins, and receptors mediating Abeta production and degradation, tau phosphorylation, glutamate and glucose uptake, and neuronal signal transduction. The level and isoform of apoE may influence whether Abeta is likely to be metabolized or deposited. This review examines the current evidence for diet, lipid homeostasis, and apoE in the pathogenesis of AD. Effects on the cholinergic system and response to cholinesterase inhibitors by APOE allele carrier status are discussed briefly.  相似文献   

16.
Lipoprotein receptors and cholesterol homeostasis   总被引:67,自引:0,他引:67  
  相似文献   

17.
18.
There is much evidence suggesting that there is a strong relationship between the deterioration of brain lipid homeostasis, vascular changes and the pathogenesis of Alzheimer's disease (AD). These associations include: (1). recognition that a key cholesterol transporter, apolipoprotein E type 4, acts a major genetic risk factor for both familial and sporadic AD; (2). epidemiological studies linking cardiovascular risk factors, such as hypertension and high plasma cholesterol, to dementia; (3). the discovery that small strokes can precipitate clinical dementia in cognitively normal elderly subjects; (4). the modulation of degradation of the amyloid precursor protein by cholesterol administration in cell culture and in animal models of beta-amyloid overproduction; and (5). the beneficial effect of cholesterol-lowering drugs, such as Probucol and statins, in combating common AD. The recent finding that there is a genetic association between the HMGR gene locus and sporadic AD further suggests that brain cholesterol metabolism is central to AD pathophysiology, and a potential therapeutic target for disease stabilization and primary disease prevention.  相似文献   

19.
The role of intracellular cholesterol transport in cholesterol homeostasis   总被引:8,自引:0,他引:8  
How cholesterol is transported among the membranes of the cell is obscure. Similarly, the mechanisms governing the abundance of cell cholesterol are not entirely understood. It may be, however, that a link exists between the intracellular transport of cholesterol and its homeostasis. We propose that cholesterol circulates between the plasma membrane, which contains the bulk of the sterol, and organelle membranes, which contain only traces. A putative sensor translates small fluctuations in plasma membrane cholesterol into relatively large changes in this flux, thereby setting the magnitude of the intracellular pools. The cholesterol concentration in the endoplasmic reticulum and mitochondrial membranes then governs the activities of proteins embedded therein that mediate cholesterol transformations. This arrangement creates a feedback loop through which the intracellular effectors regulate the abundance of plasma membrane cholesterol.  相似文献   

20.
The lipid compositions of various regions of the human brain were investigated during aging and in Alzheimer's disease. The phospholipid amounts and compositions remained unchanged during aging. There were, however, considerable differences both in phospholipid composition and amount when the various regions were compared. The level of dolichol increased severalfold in all regions up to the age of 70, but there was no further elevation thereafter. The ubiquinone level decreased significantly in all parts of the brain upon aging. In Alzheimer's disease, the dolichol level was decreased in all regions, and particularly, in those affected by the disease. In contrast, the dolichyl-P concentration increased in those regions that exhibited morphological changes. There was no modification in cholesterol distribution, but a significant elevation in ubiquinone content was observed in most regions. The only phospholipid whose level was elevated was phosphatidylinositol, and only in those parts of the brain that were affected. The content of polyunsaturated fatty acids in phosphatidylethanolamine was greatly decreased in connection with the disease, with a parallel increase in the saturated portion. The results indicate that Alzheimer's disease results in specific and significant changes in the levels of lipid products of the mevalonate pathway in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号