首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundOsteosarcoma (OS) is the most common malignant bone cancer with more metastasis and increased occurrence in children and teen-agers and being responsible for more number of morbidity and mortality worldwide.ObjectiveThe current exploration was planned study the in vitro anticancer actions of dieckol against human OS MG-63 cells via PI3K/AKT/mTOR signaling inhibition.MethodologyThe cytotoxicity of dieckol was scrutinized by MTT assay. Effects of dieckol on the ROS accumulation, apoptotic cell death, and MMP level in the MG-63 cells were studied by respective fluorescence staining assays. The levels of proliferative, inflammatory, and apoptotic markers in the dieckol treated MG-63 cells were scrutinized by marker specific kits. The expressions of PI3K, AKT, and mTOR was assayed by RT-PCR.ResultsThe MTT assay revealed that the dieckol dose dependently prevented MG-63 cells viability and the IC50 was found at 15 µM. Dieckol treatment effectively reduced the MMP level and improved the ROS generation and apoptosis in MG-63 cells. Dieckol also regulated the proliferative (cyclin D1), inflammatory (COX-2, IL-6, TNF-α, and NF-κB), and apoptotic (caspase-3, Bax, Bcl-2) markers in the MG-63 cells. The PI3K/AKT/mTOR signaling in the MG-63 cells were effectively inhibited by the dieckol treatment.ConclusionIn conclusion, our findings from this study recommends that the dieckol could be a talented anticancer candidate for the OS management in the future.  相似文献   

2.
BackgroundCopper is a micronutrient vital to several cellular energy metabolic processes and drives erythropoiesis. However, it disrupts cellular biological activities and causes oxidative damage when in excess of cellular needs. This study investigated the effects of copper toxicity on erythrocyte energy metabolism in male Wistar rats.MethodsTen Wistar rats (150–170 g) were randomly divided into 2 groups: control (given 0.1 ml distilled water) and copper toxic (given 100 mg/kg copper sulphate). Rats were orally treated for 30 days. Blood, collected retro-orbitally after sodium thiopentone anaesthesia (50 mg/kg i.p.) into fluoride oxalate and EDTA bottles, was subjected to blood lactate assay and extraction of red blood cell respectively. Red blood cell nitric oxide (RBC NO), glutathione (RBC GSH), adenosine triphosphate (RBC ATP) levels, RBC hexokinase, glucose-6-phosphate (RBC G6P), glucose-6-phosphate dehydrogenase (RBC G6PDH), and lactate dehydrogenase (RBC LDH) activity was estimated spectrophotometrically. Values (Mean±SEM, n = 5) were compared by Student’s unpaired T-test at p < 0.05.Results and conclusionCopper toxicity significantly increased RBC hexokinase (23.41 ± 2.80 µM), G6P (0.48 ± 0.03 µM), G6PDH (71.03 ± 4.76nmol/min/ml) activities, ATP (624.70 ± 57.36 µmol/gHb) and GSH (3.08 ± 0.37 µM) level compared to control (15.28 ± 1.37 µM, 0.35 ± 0.02 µM, 330.30 ± 49.58 µmol/gHb, 54.41 ± 3.01nmol/min/ml and 2.05 ± 0.14 µM respectively, p < 0.05). Also, RBC LDH activity (145.00 ± 19.88mU/ml), NO (3.45 ± 0.25 µM) and blood lactate (31.64 ± 0.91 mg/dl) level were lowered significantly compared to control (467.90 ± 94.23mU/ml, 4.48 ± 0.18 µM and 36.12 ± 1.06 mg/dl respectively). This study shows that copper toxicity increases erythrocyte glycolytic rate and glutathione production. This increase could be connected to a compensatory mechanism for cellular hypoxia and increased free radical generation.  相似文献   

3.
《Cytotherapy》2014,16(10):1431-1440
Background aimsThere is a critical need to prevent and/or treat hematological relapse after allogeneic hematopoietic stem cell transplantation. The activating NKG2D receptor expressed on natural killer (NK) cells, when engaged by its corresponding ligands (MIC A/B), activates NK cells to become cytotoxic against malignant cells.MethodsWe incubated acute lymphoblastic leukemia and non-Hodgkin lymphoma cells for 24 h with 10 ng/mL of romidepsin. Flow cytometry was performed to demonstrate changes in surface expression of NKG2D ligands MIC A/B. In vitro and in vivo cytotoxicity was measured by means of modified Europium assay, and non-obese diabetic/severe combined immunodeficiency mice were xenografted with RS 4:11 cells.ResultsWe demonstrated an approximately 50, 200, 1300 and 180-fold increase in the number of cells positive for the surface expression of MIC A/B in RS 4:11 (P < 0.001), REH (P < 0.001), Ramos (P < 0.001) and Jurkat cells (P < 0.001), respectively. We further demonstrated a significant increase in NK cell–mediated in vitro cytotoxicity against RS 4:11 (P < 0.004), Ramos (P < 0.05), Jurkat (P < 0.001) and REH cells (P < 0.01), respectively. Romidepsin-mediated NK cytotoxicity was blocked by pre-incubating NK cells with anti-NKG2D-Fc in RS 4:11 (P < 0.03) and Ramos cells (P < 0.01), respectively. Finally, non-obese diabetic/severe combined immunodeficiency mice xenografted with RS 4:11 cells had a significant increase in survival (P < 0.02) in mice treated with romidepsin and interleukin-2–activated NK cells compared with each of these other treatment groups.ConclusionsRomidepsin significantly enhanced in vitro and in vivo NK cell cytotoxicity mediated in part by increased MIC A/B expression on malignant cells. This translational approach of the use of romidepsin and interleukin-2–activated NK cells should be considered in patients with relapsed/refractory leukemia or lymphoma.  相似文献   

4.
ObjectiveTo explore the mechanism by which the family with sequence similarity 83, member D (FAM83D)-mediated AKT/mTOR signaling pathway activation affects the proliferation and metastasis of glioma cells.MethodsFAM83D protein expression in glioma cells and tissues was detected by western blotting. Glioma U87 and U251 cells were selected and divided into the Mock, siNC, siFAM83D, FAM83D, MK2206 and FAM83D + MK2206 groups. Cell proliferation was assessed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) and clone formation assays, while invasion and migration were evaluated by Transwell assays and wound healing tests. The protein expression of members of the AKT/mTOR pathway was determined via western blotting. Xenograft models were also established in nude mice to observe the in vivo effect of FAM83D on the growth of glioma.ResultsFAM83D was upregulated in glioma patients, especially in those with Stage III-IV. In addition, cells treated with siFAM83D had significant downregulation of p-AKT/AKT and p-mTOR/mTOR, with decreased proliferation and colony numbers, as well as decreased invasion and migration compared to the Mock group. However, FAM83D overexpression could activate the Akt/mTOR pathway and promote the proliferation, invasion and migration of glioma cells. Moreover, treatment with MK2206, an inhibitor of AKT, reversed the promoting effect of FAM83D on the growth of glioma cells. The in vivo experiments demonstrated that silencing FAM83D could inhibit the in vivo growth of glioma cellsConclusionFAM83D was upregulated in glioma and silencing FAM83D suppressed the proliferation, invasion and migration of glioma cells via inhibition of the AKT/mTOR pathway.  相似文献   

5.
The choroid plexuses secrete, and maintain the composition of, the cerebrospinal fluid. K+ channels play an important role in these processes. In this study the molecular identity and properties of the delayed-rectifying K+ (Kv) conductance in rat choroid plexus epithelial cells were investigated. Whole cell K+ currents were significantly reduced by 10 nM dendrotoxin-K and 1 nM margatoxin, which are specific inhibitors of Kv1.1 and Kv1.3 channels, respectively. A combination of dendrotoxin-K and margatoxin caused a depolarization of the membrane potential in current-clamp experiments. Western blot analysis indicated the presence of Kv1.1 and Kv1.3 proteins in the choroid plexus. Furthermore, the Kv1.3 and Kv1.1 proteins appear to be expressed in the apical membrane of the epithelial cells in immunocytochemical studies. The Kv conductance was inhibited by 1 µM serotonin (5-HT), with maximum inhibition to 48% of control occurring in 8 min (P < 0.05 by Student's t-test for paired data). Channel inhibition by 5-HT was prevented by the 5-HT2C antagonist mesulergine (300 nM). It was also attenuated in the presence of calphostin C (a protein kinase C inhibitor). The conductance was partially inhibited by 1,2-dioctanoyl-sn-glycerol and phorbol 12-myristate 13-acetate, both of which activate protein kinase C. These data suggest that 5-HT acts at 5-HT2C receptors to activate protein kinase C, which inhibits the Kv channels. In conclusion, Kv1.1 and Kv1.3 channels make a significant contribution to K+ efflux at the apical membrane of the choroid plexus. delayed-rectifying potassium channel; serotonin  相似文献   

6.
《Phytomedicine》2015,22(10):946-951
IntroductionChemotherapy is one of the preferred mode of treatment of malignancies, but is complicated by the expression of diverse resistance mechanisms of cancer cells.MethodsIn the present study, we investigated the cytotoxicity of five alkaloids including a furoquinoline montrofoline (1) and four acridones namely 1-hydroxy-4-methoxy-10-methylacridone (2), norevoxanthine (3), evoxanthine (4), 1,3-dimethoxy-10-methylacridone (5) against 9 drug-sensitive and multidrug-resistant (MDR) cancer cell lines. The resazurin reduction assay was used to evaluate the cytotoxicity of these compounds, whilst caspase-Glo assay was used to detect caspase activation. Cell cycle, mitochondrial membrane potential (MMP) and levels of reactive oxygen species (ROS) were all analyzed via flow cytometry.ResultsFuroquinoline 1 as well as the acridone alkaloids 25 displayed cytotoxic effects with IC50 values below 138 µM on all the 9 tested cancer cell lines. The IC50 values ranged from 41.56 µM (towards hepatocarinoma HepG2 cells) to 90.66 µM [towards colon carcinoma HCT116 (p53−/−) cells] for 1, from 6.78 µM [towards HCT116 (p53−/−) cells) to 106.47 µM [towards breast adenocarcinoma MDA-MB-231-pcDNA cells] for 2, from 5.72 µM (towards gliobastoma U87MG.ΔEGFR cells) to 137.62 µM (towards leukemia CCRF-CEM cells] for 3, from 6.11 µM [towards HCT116 (p53+/+) cells] to 80.99 µM (towards HepG2 cells] for 4, from 3.38 µM (towards MDA-MB-231-BCRP cells) to 58.10 µM (towards leukemia CEM/ADR5000 cells] for 5 and from 0.20 µM (against CCRF-CEM cells) to 195.12 µM (against CEM/ADR5000 cells) for doxorubicin. Acridone alkaloid 5 induced apoptosis in CCRF-CEM leukemia cells, mediated by increased ROS production.ConclusionsThe five tested alkaloids and mostly acridone 5 are potential cytotoxic natural products that deserve more investigations to develop novel cytotoxic compounds against multifactorial drug-resistant cancers.  相似文献   

7.
《Phytomedicine》2015,22(12):1096-1102
IntroductionCancer remains an aggressive deadly disease, if drug resistance develops. This problem is aggravated by the fact that multiple rather than single mechanisms are involved in resistance and that multidrug resistance (MDR) phenomena cause inefficacy of many clinical established anticancer drugs. We are seeking for novel cytotoxic phytochemicals to combat drug-resistant tumour cells.MethodsIn the present study, we investigated the cytotoxicity of three naturally occurring flavonoids including two flavones artocarpesin (1) and cycloartocarpesin (2) and one chalcone, isobavachalcone (3) against 9 drug-sensitive and MDR cancer cell lines. The resazurin reduction assay was used to evaluate the cytotoxicity of these compounds, whilst caspase-Glo assay was used to detect caspase activation. Cell cycle, mitochondrial membrane potential (MMP) and levels of reactive oxygen species (ROS) were all analysed via flow cytometry.ResultsFlavones 1 and 2 as well as chalcone 3 displayed cytotoxic effects at various extent on all the 9 tested cancer cell lines with IC50 values respectively below 106 µM, 50 µM and 25 µM. The IC50 values for the three investigational flavonoids ranged from 23.95 µM (towards hepatocarcinoma HepG2 cells) to 105 µM [towards colon carcinoma HCT116 (p53−/−) cells] for 1, from 15.51 µM (towards leukemia CCRF-CEM cells) to 49.83 µM [towards glioblastoma U87MG.ΔEGFR cells] for 2 and from 2.30 µM (towards CCRF-CEM cells) to 23.80 µM [towards colon carcinoma HCT116 (p53+/+) cells] for 3 and from 0.20 µM (towards CCRF-CEM cells) to 195.12 µM (towards leukemia CEM/ADR5000 cells) for doxorubicin. Compounds 2 and 3 induced apoptosis in CCRF-CEM leukemia cells, mediated by caspase activation and the disruption of MMP.ConclusionsThe three tested flavonoids and mostly chalcone 3 are potential cytotoxic natural products that deserve more investigations to develop novel antineoplastic drugs against multifactorial drug-resistant cancers.  相似文献   

8.
BackgroundThimerosal (Merthiolate) is a well-known preservative used in pharmaceutical products, the safety of which was a matter of controversy for decades. Thimerosal is a mercury compound, and there is a debate as to whether Thimerosal exposure from vaccination can contribute to the incidence of mercury-driven disorders. To date, there is no consensus on Thimerosal safety in Vaccines. In 1977, a maximum safe dose of 200 μg/ml (0.5 mM) was recommended for Thimerosal by the WHO experts committee on biological standardization. Up-to-date guidelines, however, urge national control authorities to establish their own standards for the concentration of vaccine preservatives. We believe such safety limits must be studied at the cellular level first. The present study seeks a safe yet efficient dose of Thimerosal exposure for human and animal cells and control microorganism strains.MethodsThe safety of Thimerosal exposure on cells was analyzed through an MTT cell toxicity assay. The viability of four cell types, including HepG2, C2C12, Vero Cells, and Peripheral blood mononuclear cells (PBMCs), was examined in the presence of different Thimerosal concentrations and the maximum tolerable dose (MTD) and the half maximal inhibitory concentration (IC50) values for each cell line were determined. The antimicrobial effectiveness of Thimerosal was evaluated on four control strains, including Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Aspergillus brasiliensis, to obtain the minimum inhibitory concentration (MIC) of Thimerosal. The MIC test was performed in culture media and under optimal growth conditions of microorganisms in the presence of different Thimerosal concentrations.ResultsThe viability of all examined cell lines was suppressed entirely in the presence of 4.6 μg/ml (12.5 μM) of Thimerosal. The MTD for HepG2, C2C12, PBMC, and Vero cells was 2, 1.6, 1, and 0.29 μg/ml (5.5, 4.3, 2.7 and 0.8 μM), respectively. The IC50 of Thimerosal exposure for HepG2, C2C12, PBMC, and Vero cells was 2.62, 3.17, 1.27, and 0.86 μg/ml (7.1, 8.5, 3.5 and 2.4 μM), respectively. As for antimicrobial effectiveness, the growth capability of Candida albicans and Staphylococcus aureus was suppressed entirely in the presence of 6.25 µg/ml (17 μM) Thimerosal. The complete growth inhibition of Pseudomonas aeruginosa in culture media was achieved in 100 µg/ml (250 µM) Thimerosal concentration. This value was 12.5 µg/ml (30 μM) for Aspergillus brasiliensis.ConclusionAccording to our results Thimerosal should be present in culture media at 100 μg/ml (250 µM) concentration to achieve an effective antimicrobial activity. We showed that this amount of Thimerosal is toxic for human and animal cells in vitro since the viability of all examined cell lines was suppressed in the presence of less than 5 μg/ml (12.5 μM) of Thimerosal. Overall, our study revealed Thimerosal was 333-fold more cytotoxic to human and animal cells as compared to bacterial and fungal cells. Our results promote more study on Thimerosal toxicity and its antimicrobial effectiveness to obtain more safe concentrations in biopharmaceuticals.  相似文献   

9.
Linoleic acid (LA) had twoeffects on human Kv1.5 and Kv2.1 channels expressed in Chinese hamsterovary cells: an increase in the speed of current activation process(EC50 = 2.4 and 2.7 µM for Kv1.5 and Kv2.1,respectively) and current inhibition (IC50 = 6.6 and7.4 for Kv1.5 and Kv2.1, respectively). LA affected the activationkinetics via two processes: a leftward shift in the instantaneousactivation curves and an increase in the rate of current rise. Currentinhibition by LA was time dependent but voltage independent. Hillslopes for plots of current inhibition (3.5 and 3.9 for Kv1.5 andKv2.1, respectively) vs. dose of LA suggested that cooperativity wasinvolved in the mechanism of current inhibition. A similar analysis ofthe effects of LA on current activation did not reveal cooperativeinteractions. The effects of LA were mediated from the external side ofthe channels, since addition of 10 µM LA to the patch pipettesolution was without effect. Additionally, the methyl ester of LA waseffective at enhancing peak current and promoting channel activationfor Kv1.5 and Kv2.1 without inducing significant current inhibition.

  相似文献   

10.
《Phytomedicine》2015,22(14):1247-1254
IntroductionMultidrug resistance (MDR) in cancer represent a major hurdle in chemotherapy. Previously, the methanol extract of the medicinal spice Xylopia aethiopica displayed considerable cytotoxicity against multidrug resistant (MDR) cancer cell lines.MethodsThe present study was designed to assess the cytotoxicity of compounds, 16α-hydroxy-ent-kauran-19-oic acid (2), 3,4′,5-trihydroxy-6″,6″-dimethylpyrano[2,3-g]flavone (3), isotetrandrine (5) and trans-tiliroside (6) derived from the methanol crude extract of Xylopia aethiopica against 9 drug-sensitive and -resistant cancer cell lines. The resazurin reduction assay was used to evaluate the cytotoxicity of these compounds, whilst caspase-Glo assay was used to detect caspase activation. Cell cycle, mitochondrial membrane potential (MMP) and levels of reactive oxygen species (ROS) were all analyzed via flow cytometry.ResultsFlavonoid 3 and alkaloid 5 also displayed IC50 values ranging from 2.61 µM (towards leukemia CCRF-CEM cells) to 18.60 µM (towards gliobastoma multiforme U87MG.ΔEGFR cells) and from 1.45 µM (towards HepG2 cells) to 7.28 µM (towards MDA-MB-231-pcDNA cells), respectively. IC50 values ranged from 0.20 µM (against CCRF-CEM cells) to 195.12 µM (against CEM/ADR5000 cells) for doxorubicin. Compound 3 induced apoptosis in leukemia CCRF-CEM cells mediated by the disruption of the MMP, whilst 5 induced apoptosis mediated by ROS production.ConclusionsCompounds 2 and 5 represent potential cytotoxic phytochemicals that deserve more investigations to develop novel antineoplastic drugs against multifactorial drug-resistant cancers.  相似文献   

11.
BackgroundGansui-Banxia Decoction (GSBXD) is a classic formula of traditional Chinese medical (TCM) sage Zhang Zhongjing to treat stagnation of evil heat and obstruction of qi. At present GSBXD is wildly used to treat cancerous ascites, pleural effusion, peritoneal effusion, pericardial effusion, cranial cavity effusion and several types of cancers, such as hepatocellular carcinoma (HCC) and esophageal cancer. Myeloid-derived suppressor cells (MDSCs) are a kind of immature and heterogeneous cells which can suppress lymphocytes activation by forming a suppressive environment. MDSCs accumulation in peripheral blood and tumors are closely related to the cancer stage and low survival rate of clinical patients. The antitumor immune effect of GSBXD has not received widespread attention.PurposeTo investigate the effects of GSBXD on MDSCs accumulation and the mediators including AKT/STAT3/ERK signaling pathways.MethodsThe chemical components of GSBXD were analyzed by UHPLC-MS, and the putative pathways of GSBXD based on Network pharmacology were predicted. Mice were vaccinated with Hepatoma 22 (H22) to establish tumor growth model, which were then administrated with GSBXD ethanol extraction (0.49 mg/kg/day, 1.75 mg/kg/day), sorafenib (60 mg/kg) or saline for 14 days. The cell morphology was evaluated by hematoxylin and eosin (H&E) staining, and immunity cells were determined through flowcytometry analysis. The levels of cytokines production in blood were evaluated by using ELISA kits. STAT3, ERK and AKT/mTOR signaling transduction associated proteins were determined by Western blot.ResultsGSBXD could inhibit tumor growth and splenomegaly in H22 tumor model mice. Importantly, GSBXD reduced MDSCs accumulation and differentiation, and inhibited proliferation of F4/80+ CD11b+ macrophages and apoptosis of T cells and B cells, and increased the percentage of CD 3 NK1.1+ NK cells. To better understand the active component of GSBXD, the ethanol-extraction powdered GSBXD was prepared and analyzed by UHPLC-MS. Combined with these main chemical compounds, we predicted that the anti-tumor effect of GSBXD mainly mediated PI3K-AKT and RAS-MAPK signal pathways based on Network Pharmacology. Western blot analysis of tumor tissues and MDSCs cells demonstrated that phosphorylation of AKT, ERK and STAT3 were significantly reduced, specially the activation of ERK. The levels of IL-1β and IFN-γ were significantly decreased by ELISA analysis.ConclusionGSBXD exhibited antitumor immune activity by reducing the accumulation of MDSCs in vivo, which is possible via down-regulation of AKT/STAT3/ERK signaling pathway and suppression of IL-1β and IFN-γ.  相似文献   

12.
《Phytomedicine》2015,22(5):568-572
BackgroundThe root of Asparagus cochinchinensis (Lour.) Merr. has been utilized as mucoregulators and expectorants for controlling the airway inflammatory diseases in folk medicine.Hypothesis/purposeWe investigated whether dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis (Lour.) Merr. suppress the gene expression and production of airway MUC5AC mucin induced by phorbol ester and growth factor.Study designConfluent NCI-H292 cells were pretreated with dioscin or methylprotodioscin for 30 min and then stimulated with EGF or PMA for 24 h. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA.Results(1) Dioscin and methylprotodioscin suppressed the expression of MUC5AC mucin gene induced by EGF or PMA; (2) dioscin suppressed the production of MUC5AC mucin induced by either EGF at 10−5 M (p < 0.05) and 10−6 M (p < 0.05) or PMA at 10−4 M (p < 0.05), 10−5 M (p < 0.05) and 10−6 M (p < 0.05); (3) methylprotodioscin also suppressed the production of MUC5AC mucin induced by either EGF at 10−4 M (p < 0.05) or PMA at 10−4 M (p < 0.05).ConclusionThese results suggest that dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis suppress the gene expression and production of MUC5AC mucin, by directly acting on airway epithelial cells, and the results are consistent with the traditional use of Asparagus cochinchinensis as remedy for diverse inflammatory pulmonary diseases.  相似文献   

13.
IntroductionResearch on childhood cancer survivor offspring has been limited to genetic disease occurrence, malformations or non-hereditary cancers. However, previous surveys indicated that survivors harbor fears about their (prospective) children's overall health. Our Multicenter Offspring Study examined extensive health aspects in children born to survivors and their siblings providing comprehensive information to be used in patient counseling to elucidate and alleviate existing concerns.MethodsUsing a specifically designed questionnaire, childhood cancer survivors and their siblings were surveyed on their offspring’s health (Supplementary material). Recruitment strategies depended on local infrastructures and standards of participating centers, including registry-based and direct approaches. Group differences were tested non-parametrically and effect sizes were calculated.ResultsIn total, 1126 survivors reported on 1780 offspring and 271 siblings reported on 441 offspring. Response rates ranged from 32.1% (Czech Republic) to 85.0% (Austria). Respondents were more likely to be female (p = .007), older at time of survey (p < .001), diagnosed 1980–1999 (p < .001) and treated with chemotherapy (p < .001). Compared to siblings, survivors were younger at time of survey (35 years vs. 39 years, p < .001) and at first birth (29 years vs. 30 years, p < .001). Survivor and sibling offspring only differed in terms of age at survey (6.3 years vs. 8.9 years, p < .001).ConclusionThe Multicenter Offspring Study investigates a wide variety of health aspects in offspring born to survivors and their siblings in five European countries. Our study cohorts form a solid basis for future analyses; yet, certain limitations, due to differences in approach among participating centers, must be considered when interpreting findings.  相似文献   

14.

Background

Aberrations in the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR)/AKT pathway are common in solid tumors. Numerous drugs have been developed to target different components of this pathway. However the prognostic value of these aberrations is unclear.

Methods

PubMed was searched for studies evaluating the association between activation of the PI3K/mTOR/AKT pathway (defined as PI3K mutation [PIK3CA], lack of phosphatase and tensin homolog [PTEN] expression by immunohistochemistry or western-blot or increased expression/activation of downstream components of the pathway by immunohistochemistry) with overall survival (OS) in solid tumors. Published data were extracted and computed into odds ratios (OR) for death at 5 years. Data were pooled using the Mantel-Haenszel random-effect model.

Results

Analysis included 17 studies. Activation of the PI3K/mTOR/AKT pathway was associated with significantly worse 5-year survival (OR:2.12, 95% confidence intervals 1.42–3.16, p<0.001). Loss of PTEN expression and increased expression/activation of downstream components were associated with worse survival. No association between PIK3CA mutations and survival was observed. Differences between methods for assessing activation of the PI3K/mTOR/AKT pathway were statistically significant (p = 0.04). There was no difference in the effect of up-regulation of the pathway on survival between different cancer sites (p = 0.13).

Conclusion

Activation of the PI3K/AKT/mTOR pathway, especially if measured by loss of PTEN expression or increased expression/activation of downstream components is associated with poor survival. PIK3CA mutational status is not associated with adverse outcome, challenging its value as a biomarker of patient outcome or as a stratification factor for patients treated with agents acting on the PI3K/AKT/mTOR pathway.  相似文献   

15.
AimsWe examined the effect of LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, on voltage-dependent K+ (Kv) channels.Main methodsElectrophysiological recordings were performed in freshly isolated rabbit coronary arterial smooth muscle cells.Key findingsThe Kv current amplitude was inhibited by LY294002 in a dose-dependent manner, with a Kd value of 1.48 μM. Without alteration of the kinetics of activation, LY294002 accelerated the decay rate of Kv channel inactivation. The rate constants of association and dissociation for LY294002 were 1.83 ± 0.01 μM? 1 s? 1 and 2.59 ± 0.14 s? 1, respectively. Application of LY294002 had no significant impact on the steady-state activation or inactivation curves. In the presence of LY294002, the recovery time constant from inactivation was increased, and Kv channel inhibition increased under train pulses (1 or 2 Hz). This indicates that LY294002-induced Kv channel inhibition is use-dependent. Furthermore, pretreatment with another PI3K inhibitor, wortmannin (10 μM), did not affect the Kv current, and did not change the inhibitory effect of LY294002.SignificanceBased on these results, we suggest that LY294002 directly blocks Kv current irrespective of PI3K inhibition.  相似文献   

16.
BackgroundNatural killer (NK) cells derived from patients with cancer exhibit diminished cytotoxicity compared with NK cells from healthy individuals. We evaluated the tumor response and in vivo expansion of allogeneic NK cells in recurrent ovarian and breast cancerMethodsPatients underwent a lymphodepleting preparative regimen: fludarabine 25 mg/m2 × 5 doses, cyclophosphamide 60 mg/kg × 2 doses, and, in seven patients, 200 cGy total body irradiation (TBI) to increase host immune suppression. An NK cell product, from a haplo-identical related donor, was incubated overnight in 1000 U/mL interleukin (IL)-2 prior to infusion. Subcutaneous IL-2 (10 MU) was given three times/week × 6 doses after NK cell infusion to promote expansion, defined as detection of ≥100 donor-derived NK cells/μL blood 14 days after infusion, based on molecular chimerism and flow cytometryResultsTwenty (14 ovarian, 6 breast) patients were enrolled. The median age was 52 (range 30–65) years. Mean NK cell dose was 2.16 × 107cells/kg. Donor DNA was detected 7 days after NK cell infusion in 9/13 (69%) patients without TBI and 6/7 (85%) with TBI. T-regulatory cells (Treg) were elevated at day +14 compared with pre-chemotherapy (P = 0.03). Serum IL-15 levels increased after the preparative regimen (P = < 0.001). Patients receiving TBI had delayed hematologic recovery (P = 0.014). One patient who was not evaluable had successful in vivo NK cell expansionConclusionsAdoptive transfer of haplo-identical NK cells after lymphodepleting chemotherapy is associated with transient donor chimerism and may be limited by reconstituting recipient Treg cells. Strategies to augment in vivo NK cell persistence and expansion are needed.  相似文献   

17.
BackgroundAtractylenolide I (ATL-1) is a natural herbal compound used in traditional Chinese medicine that has exhibited anti-cancer properties. The anti-tumorigenic activity of ATL-1 against colorectal cancer (CRC) and the underlying signaling pathways involved in its mechanisms are examined here.HypothesisATL-1 exerts therapeutic effect against CRC by disrupting glucose metabolism and cancer stem cell maintenance via AKT/mTOR pathway regulation.Study designIn vitro studies were performed in COLO205 and HCT116 CRC cell lines and in vivo studies were conducted in a mouse xenograft model of CRC tumor.MethodsCRC cells were treated with ATL-1 at various concentrations, with or without inhibitors of AKT or mTOR. Cell proliferation, apoptosis, invasion, stemness maintenance, glucose metabolism, and AKT/mTOR signaling were evaluated. CRC tumor-xenografted mice were treated with an AKT inhibitor and/or ATL-1, and glucose metabolism and stemness maintenance were examined in tumor tissues.ResultsATL-1 significantly inhibited the invasion of CRC cells by inducing their apoptosis, possibly via the excessive production of reactive oxygen species. Glucose metabolism (Warburg effect) was also altered and stem-like traits were suppressed by ATL-1. In addition, ATL-1 effectively acted as an inhibitor or AKT/mTOR by downregulating the phosphorylation of proteins related to the AKT/mTOR pathway. In vivo studies showed that tumor weight and volume were reduced by ATL-1 and that aerobic glycolysis, stemness maintenance, and AKT/mTOR activation were impaired by ATL-1 in colorectal tumors.ConclusionsATL-1 acts as an effective agent to suppress colorectal tumor progression, mainly by inhibiting CRC cell proliferation through altering apoptosis, glucose metabolism, and stem-like behavior. These processes were mediated by the AKT/mTOR signaling pathway both in vitro and in vivo. ATL-1 may be a potential agent to be used in molecular-targeted strategies for cancer treatment.  相似文献   

18.
《Cytotherapy》2014,16(10):1419-1430
Background aimsInterleukin-21 (IL-21) can enhance the effector function of natural killer (NK) cells but also limits their proliferation when continuously combined with IL-2/IL-15. Paradoxically, membrane-bound (mb)-IL-21 has been shown to improve human NK cell proliferation when cultured with IL-2/mb-IL-15. To clarify the role of IL-21, we investigated the effect of the timing of IL-21 addition to NK cell culture.MethodsIL-2/IL-15–activated NK cells were additionally treated with IL-21 according to the following schedules; (i) control (without IL-21); (ii) first week (day 0 to day 7); (iii) intermittent (the first 3 days of each week for 7 weeks); (iv) after 1 week (day 8 to day 14); and (v) continuous (day 0 to day 49). The expression of NK receptors, granzyme B, perforin, CD107a, interferon-γ, telomere length and NK cell death were measured by flow cytometry.ResultsCompared with the control (2004.2-fold; n = 10 healthy donors) and intermittent groups (2063.9-fold), a strong proliferative response of the NK cells on day 42 was identified in the “first week” group (3743.8-fold) (P < 0.05). NK cells treated with IL-21 in the “first week” group showed cytotoxicity similar to that in control cells. On day 28, there was a significant increase in cytotoxicity of “first week” NK cells that received IL-21 treatment for an additional 2 days compared with the “first week” NK cells (P < 0.05).ConclusionsThese data suggest that controlling temporal exposure of IL-21 during NK cell proliferation can be a critical consideration to improve the yields and cytotoxicity of NK cells.  相似文献   

19.
The chronic use of opioids leads to tolerance, psychological, and physical dependence that limits their use as an effective long-term pain control. Several studies have shown that mammalian target of rapamycin (mTOR) plays a crucial role in the development of opioid tolerance. Metformin activates 5′ adenosine monophosphate-activated protein kinase (AMPK) which directly suppresses the mTOR complex 1 signaling pathway. On the other hand, metformin can also inhibit mTOR directly and in an AMPK-independent manner. Thus, in the current study, we aimed to investigate the effects of metformin on the development of morphine and/or methadone-induced tolerance in human glioblastoma (T98G) cell line. We examined the effects of chronic treatment of morphine and/or methadone in the presence or absence of metformin with or without AMPK inhibitor (dorsomorphin hydrochloride) on levels of nitric oxide and cyclic adenosine monophosphate (cAMP), phosphorylated and dephosphorylated ribosomal protein S6 kinase β-1 (S6K1) and 4E-binding protein 1 (4E-BP1) in T98G cells. Pretreatment of cells with metformin (40 µM) with or without AMPK inhibitor (dorsomorphin hydrochloride; 1 µM) before adding of morphine (2.5 µM) or methadone (1 µM) revealed a protective effects on the development of opioid tolerance. Prior administration of metformin reversed the elevation of nitric oxide levels induced by morphine (p < 0.001) and methadone (p < 0.001) and also prevented the raise of cAMP levels induced by morphine in T98G cells (p < 0.05). Contribution of mTOR signaling pathway in metformin-induced effect was shown by the inhibition of phosphorylation of S6K1 and 4E-BP1, the downstream targets of mTOR. mTOR activation suppresses opioid-induced antinociception, and its activity has also been increased during opioid tolerance.  相似文献   

20.
《Cytotherapy》2021,23(9):787-792
Background aimsVesicular stomatitis virus G (VSV-G)-pseudotyped lentiviral vectors (LVs) are widely used to reliably generate genetically modified, clinical-grade T-cell products. However, the results of genetically modifying natural killer (NK) cells with VSV-G LVs have been variable. The authors explored whether inhibition of the IKK-related protein kinases TBK1 and IKKε, key signaling molecules of the endosomal TLR4 pathway, which is activated by VSV-G, would enable the reliable transduction of NK cells by VSV-G LVs.MethodsThe authors activated NK cells from peripheral blood mononuclear cells using standard procedures and transduced them with VSV-G LVs encoding a marker gene (yellow fluorescent protein [YFP]) or functional genes (chimeric antigen receptors [CARs], co-stimulatory molecules) in the presence of three TBK1/IKKε inhibitors (MRT67307, BX-795, amlexanox). NK cell transduction was evaluated by flow cytometry and/or western blot and the functionality of expressed CARs was evaluated in vitro.ResultsBlocking TBK1/IKKε during transduction of NK cells enabled their efficient transduction by VSV-G LVs as judged by YFPexpression of 40–50%, with half maximal effective concentrations of 1.1 µM (MRT67307), 5 µM (BX-795) and 24.8 µM (amlexanox). Focusing on MRT67307, the authors successfully generated NK cells expressing CD19-CARs or HER2-CARs with an inducible co-stimulatory molecule. CAR NK cells exhibited increased cytolytic activity and ability to produce cytokines in comparison to untreated controls, confirming CAR functionality.ConclusionsThe authors demonstrate that inhibition of TBK1/IKKε enables the reliable generation of genetically modified NK cells using VSV-G LVs. The authors’ protocol can be readily adapted to generate clinical-grade NK cells and thus has the potential to facilitate the clinical evaluation of genetically modified NK cell-based therapeutics in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号