首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study was conducted to determine the reciprocal effects for anther culture response in wheat (Triticum aestivum L.) using a set of 4 × 4 full diallel crosses. Both reciprocal and nuclear genetic effects were highly significant for anther culture response and useful for selection and breeding purposes. General combining ability (GCA) effects were predominant for all investigated anther culture traits. Also, significant differences for specific combining ability (SCA) effects were detected between reciprocal crosses. Although significant reciprocal differences for responding anther, callus number and green plant regeneration were recorded in some reciprocal crosses, there were no significant reciprocal differences for albino plant regeneration. The use of one parent as male or female could lead to change at the production of green plants from the F1 hybrids and screening of inbred lines for response to anther culture, without reciprocal effects, could decrease the utilization of breeding material.  相似文献   

2.
Addition of the ethylene antagonist, silver nitrate (AgNO3), into callus induction medium significantly enhanced embryogenic callus production (both induction frequency and callus growth) of field-collected male immature inflorescence cultures of buffalograss NE84-45-3 and 'Texoka'. No stimulatory effect of AgNO3 was observed on embryogenic callus induction for female immature inflorescence culture of a female genotype `609' and `Texoka'. Calli initiated on AgNO3-containing media had more shoot-regenerating calli than those initiated on AgNO3-free media, when they were transferred to the regeneration media. Benzyladenine at 2.2 μM gave the best response for regeneration, regardless of the callus source. Although average number of shoots regenerated per callus was lower for calli initiated on AgNO3-containing media, total number of shoots regenerated was higher. The stimulatory effect, however, was environment and genotype dependent. While the addition of AgNO3 significantly stimulated embryogenic callus induction of NE84-45-3 immature inflorescences collected in Fall 1995 and May 1997, it only slightly increased the embryogenic callus induction frequencies in May 1996 when rainy conditions occurred. For male inflorescences of `Texoka' collected in early May, AgNO3 significantly enhanced embryogenic callus production consistently over the two-year period (1996, 1997). Published as Journal Series No. 1351, Agricultural Research Division, University of Nebraska. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The embryo culture in vitro response was examined among ten rice (Oryza sativa L.) cultivars and 26 cross combinations to evaluate the correlation between callus induction rate and differentiation rate with plantlet regeneration rate, the influence of parents to hybrid Fl embryo culture in vitro as well as the cytoplasmic effects. Plantlet regeneration rate was used as the product of callus production and regeneration capacity. The ten pure-lines, the five F1s and their reciprocal hybrid as well as the ten F1s among the ten lines were evaluated for callus production and regeneration capaticy. Significant variation was observed among the 36 genotypes in callus induction rate, callus differentiation rate and plantlet regeneration rate on embryo culture in vitro. The positive correlation between general callus induction rate and differentiation rate with plantlet regeneration rate was significant. There was a similar trend for callus induction rate between maternal parents and Fis during mature embryo culture in vitro. However, parent-offspring correlation for callus differentiation rate and plantlet regeneration rate were nonsignificant. Whether cytoplasmic effects for embryo culture response exist among the six pure-lines was examined py the differences between reciprocal F1 hybrids. The extent of cytoplasmic effects depended on cross combination.  相似文献   

4.
橡胶树的花药愈伤组织在长期继代过程中,胚性易下降甚至丧失;而AgNO3作为乙烯活性抑制剂,被广泛应用于植物组织培养中.该研究以继代培养4 a以上的热研7-33-97花药愈伤组织为材料,在继代培养基中添加2.5 mg·L-1 AgNO3预培养35 d后,观察预培养前后愈伤组织表形及其细胞形态的变化,并设计不同浓度AgNO3及不同处理时间对其进行体胚诱导,90 d后分别统计胚状体总数和正常胚数.结果表明:浅黄色质地柔软的愈伤组织在含AgNO3的培养基上预培养后能转变成鲜黄色易碎愈伤组织,在倒置显微镜下前者大多表现为不规则多边形,细胞内含物较稀薄;而后者则呈圆形或椭圆形,细胞内含物丰富,属于典型的胚性细胞.在体胚诱导的第1个月添加5 mg·L-1 AgNO3能显著促进体胚的发生,AgNO3浓度升至10 mg·L-1时体胚发生受到抑制,且畸形胚的形成率显著增加;在含5 mg·L-1 AgNO3的培养基中培养2个月以上,体胚发育明显受阻,大部分形成畸形胚.该研究结果在一定程度上恢复了橡胶树长期继代花药愈伤组织的胚性能力,并提高了其体胚发生频率,为橡胶树花药胚性愈伤组织长期继代培养过程中胚性的保持提供了参考.  相似文献   

5.
Summary Design II matings were made among randomly selected clones of Arlington red clover (Trifolium pratense L.). Progeny were evaluated in vitro on two regeneration media for callus growth and differentiation. Additive genetic variance was a significant source of variability for nearly all traits evaluated, including somatic embryogenesis. In vitro traits, such as rapid callus growth, colony vascularization, root initiation, chlorophyll production and embryogenesis were highly heritable and should respond to breeding and selection. Dominance genetic variance was significant for only a few in vitro characters. Maternal and cytoplasmic factors were significant primarily in the early subcultures. Highly significant additive genetic correlation of performance on two regeneration media was found. A population selected on one of the regeneration media for such characteristics as improved plantlet regeneration, rapid callus growth, long term colony viability or the frequency of root initiation should show correlated improvement on the other medium. No significant differences for embryogenesis were attributable to differences in the regeneration media used. Furthermore, no interaction of additive genetic effects with regeneration media were observed. These data indicate that improvement in the frequency of plantlet regeneration from callus of red clover could effectively be achieved by breeding and selection for embryogenic types.The research reported in this paper (No. 80-3-152) is in connection with a project of the Kentucky Agric. Exp. Stn. and the paper is published with the approval of the director. Part of a thesis submitted by the senior author in partial fulfillment of the requirements for the M.S. degree  相似文献   

6.
Summary Cefotaxime ( 50 and 100 mg/1 ), a cephalosporin antibiotic and the amino acids asparagine and proline (200 mg/l) enhanced the production of embryogenic callus, increased the frequency of plant regeneration, and delayed the loss of regeneration potential in immature embryo-derived callus cultures ofSorghum bicolor (L.) Moench. Although these compounds did not promote callus induction or growth of callus, they influenced plant regeneration considerably in 10 low responding genotypes of grain and high anthocyanin containing sweet sorghums.  相似文献   

7.
The frequency of in vitro callus induction and plant regeneration is influenced by several factors, including composition of culture medium, explant source, and the genotype. Crosses between regenerable and non-regenerable upland cotton cultivars were evaluated for hybrid vigour towards regeneration responses, which is consequential in recalcitrant crop species like cotton where regeneration is limited only to a few cultivars. The results indicated that regenerable and non-regenerable parental cultivars had similar potential of producing callus, but differed in producing callus weight and embryogenic calli. Mean performance of crosses, regarding callus induction, callus weight, callus growth rate, percent embryo induction, and percentage of germinating embryos, deviated considerably from the performance of their parents, signifying the presence of hybrid vigour for the expression of these traits. Magnitude of hybrid vigour varied across hormonal levels. Genetic component was evident for all the traits although of lower magnitude. The results indicated that genetic component in the phenotypic expression of callus growth, percentages of embryo induction and germinating embryos was higher than that of callus induction, callus weight and percentage of embryogenic calli. Hormonal concentration in the media had affect on the degree of gene expression responsible for regeneration in upland cotton. Over, partial- and additive-dominance types of gene effects were apparent in the expression of these traits. Genotype × growth regulator level interaction caused considerable variation in the expression of regeneration responses, suggesting that determination of specific level of growth regulator concentration in the medium was necessary for a particular genotype to obtain optimum response. Genotype × explant source interaction was, however, relatively less important. Differences among genotypes for percent embryo induction were clearly evident.  相似文献   

8.
The plant regeneration ability of zygotic embryo-derived callus cultures was studied for 12 A. cepa varieties and accessions, two A. fistulosum varieties, one A. fistulosum x A. cepa interspecific hybrid and two A. porrum varieties. Compact embryogenic callus was induced on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid. The embryogenic calluses of all three Allium species were similar in appearance. For all accessions tested plants could be regenerated at a high frequency from this compact callus through somatic embryogenesis, when using kinetin supplemented MS medium (regeneration medium). Addition of abscisic acid to the regeneration medium stimulated the formation of both somatic embryos and shoots for a number of varieties. Concerning shoot regeneration from callus cultures, significant differences existed between genotypes of all accessions except one.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - VDH Van Der Have Seed company  相似文献   

9.
Genetic analysis of five in vitro characters was made through a 5 × 5 diallel analysis using callus derived from immature inflorescence segments of pearl millet (Pennisetum glaucum). The characters studied were: — volume of total callus, — frequency of embryogenic calli, — embryogenic callus volume, — growth rate in terms of increase in fresh weight, and — frequency of regeneration. High heritability values and heterosis were noticed for all these characters except for E callus frequency. Additive gene action was predominant for callus growth rate and frequency of regeneration. Of the five inbreds, IP 1346 (= P5) was found to be the best genetic background for embryogenic callus volume, embryogenic growth rate and frequency of regeneration. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Anzidei  M.  Bennici  A.  Schiff  S.  Tani  C.  Mori  B. 《Plant Cell, Tissue and Organ Culture》2000,61(1):69-79
Different NAA plus kinetin or BA combinations were tested on Francia Pernod fennel seedlings for callus induction and plant regeneration. Callogenesis from hypocotyls was obtained in all auxin/cytokinin-containing media. The organogenic response was observed especially in presence of NAA plus kinetin. The highest frequency of shoot regeneration was found when the auxin and kinetin were used at a 1:1 ratio. Moreover, a prolonged culture period increased shoot formation. Somatic embryogenesis was tested on several fennel populations. The results gave evidence of the genotypic importance. Two different protocols were used for somatic embryo induction. Using the first protocol among the different fennel genotypes tested, only Francia Pernod showed embryogenic capacity. In this case, from a primary non-embryogenic callus cultured for 12 months in presence of 2,4-D, an embryogenic secondary callus was produced. When transferred to the medium without 2,4-D (agarized or liquid), this gave embryogenic plants in high frequency. As far as the second embryogenic method is concerned, secondary embryogenic callus developed only in the presence of 2,4-D plus kinetin in Francia Pernod genotype. Thereafter, the replacement of those growth regulators by GA3 into the medium greatly increased the somatic embryo development, especially in `Francia Pernod', but also in `Aboca erbe' callus, a population with a very poor embryogenic capacity. In Francia Pernod, the primary and secondary (embryogenic) calli showed different morphological and histological responses, either when the secondary callus was induced by 2,4-D alone or by 2,4-D plus kinetin. Ontogenetic processes leading to somatic embryo formation are described in this context. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
An efficient protocol of callus induction, plant regeneration and long-term maintenance of embryogenic cultures for manilagrass was developed. Callus induction and embryogenic callus formation were influenced by cytokinins and nodal positions. Murashige and Skoog (MS) medium with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D), 0.02 mg l−1 kinetin (KT) or 6-benzyladenine (BA) gave the highest frequency for both callus induction and embryogenic callus formation compared with 0.02 mg l−1 thidiazuron (TDZ) or N6-(2-isopenteny) adenine (2iP). The frequency of callus induction of different nodes (from the first to the sixth node) varied from 22.5 to 92.1%, and the embryogenic callus formation frequencies ranged from 13.3 to 25.7%. The highest frequencies of callus induction and embryogenic callus formation (92.1 and 25.7%, respectively) were observed in the fourth node group. During subculture on callus induction and maintenance medium, somatic embryos formed on the surface of the embryogenic callus. On regeneration medium, the regeneration rates of embryogenic callus varied from 96.8 to 100% during the 4-year period of subculture. The results also indicate that preservation of manilagrass callus is stable at low-temperature (4°C) over a period of 11 months. No significant differences were found in the activities of superoxide dismutase (SOD), peroxidase (POD) and proline content of the plants regenerated from the 4-year subcultured callus on different regeneration media.  相似文献   

12.
Summary Reciprocal differences for male sterility, dwarfism and morphological traits have been studied in intra- and interspecific crosses of five Epilobium species. Male sterility occurred in two interspecific hybrids with E. montanum as the male parent while dwarfism has been found to varying degrees in three interspecific crosses with E. watsonni. In contrast to transient differences in plant height and leaf morphology in reciprocal hybrids of the cross between E. hirsutum and E. parviflorum, male sterility and dwarfism persistently occur as reciprocally different traits which may be influenced by determinants of the cytoplasm. The molecular characterization of the plastid DNA of the parental lines and the F1 hybrids indicate that the plastome of male sterile and dwarf plants is identical to that of the female parents. Furthermore, in spite of these developmental disturbances, the expression of plastid genes coding for polypeptides of thylakoid-membrane complexes is unchanged. Thus, it seems unlikely that the genetic compartement of the plastids is responsible for the expression of the male sterile or the dwarfed phenotype.  相似文献   

13.
The regeneration of shoot buds from callus cells in vitro is an important technique in modern plant genetic manipulation. Whilst it is clear that genetic factors play a major role in determining the ability of callus cells to become organized into regenerating shoot buds, the precise nature of these factors remains unknown. Here we show that callus derived from mutants of Arabidopsis thaliana which have reduced levels of endogenous bioactive gibberellins (GAs), or reduced responsivity to GAs, regenerates shoot buds more readily than does callus derived from wild-type controls. In addition, exogenous GA reduces, and exogenous paclobutrazol (a GA-biosynthesis inhibitor) increases, the frequency of shoot bud regeneration from wild-type callus. These results show that GA levels play a role in regulating shoot bud regeneration from callus, and suggest that variation in endogenous GA levels or responsivity may account for a major component of the genetic variation in shoot bud regeneration frequency described in other species.  相似文献   

14.
Summary The frequency of initiation of friable, embryogenic callus from immature embryos of the elite maize inbred line B73 was increased dramatically by introgression of chromosomal segments from the inbred line A188 through classical backcross breeding. Less than 0.2% of the immature B73 embryos tested (5 of 3,710) formed embryogenic callus. The breeding scheme consisted of six generations of backcrossing to B73 with selection at each generation for high frequency initiation of embryogenic cultures. BC6 individuals were selfed for four generations to select homozygous lines. The average embryogenic culture initiation frequency increased to 46% (256/561). Nearly all (91%) of the embryos from one BC6 S4 plant formed embryogenic cultures. RFLP analysis was used to determine the locations and effects of the introgressed A188 chromosomal segments. Five segments were retained through at least the fifth backcross generation. The hypothesis that one or more of these five regions contains genes controlling somatic embryogenesis in maize was tested using an F2 population of the cross A188 X Mo17. A set of five DNA markers (three of them linked) explained 82% of the observed phenotypic variance for percentage of immature embryos forming embryognic callus. Four of the five markers were located in or near introgressed A188 chromosome segments.The region marked by probe c595 on the long arm of chromosome 9 was highly associated with several measures of in vitro culture response (percent embryogenic embryos, plants per embryo, and plants per embryogenic embryo). We propose that there is a major gene (or genes) in this region in A188 that promotes embryogenic callus initiation and plant regeneration in B73, Mo17, and probably many other recalcitrant inbred lines of maize.  相似文献   

15.
Summary Embryogenic callus induction and plant regeneration systems have long been established for creeping bentgrass (Agrostis palustris Huds.), but little research has been reported on optimal medium for embryogenic callus induction and plant regeneration in velvet bentgrass (Agrostis canina L.), colonial bentgrass (Agrostis capillaries L.), and annual bluegrass (Poa annua L.). The present study compared 14 callus induction media and eight regeneration media for their efficacies on embryogenic callus induction and plant regeneration in these four species. The embryogenic callus initiation media contained the Murashige and Skoog inorganic salts and vitamins supplemented with 2,4-dichlorophenoxyacetic acid or 3,6-dichloro-anisic acid and 6-benzyladenine. l-Proline or casein hydrolyzate was included in some media to stimulate embryogenic callus formation and plant regeneration. The frequencies of embryogenic callus formation ranged from 0% to 38% and exhibited medium differences within each of the four species. Callus induction media, plant regeneration media, and genotypes affected plant regeneration rates, which varied between 0% and 100%. The embryogenic callus induced on Murashige and Skoog medium supplemented with 500 mgl−1 casein hydrolyzate, 6.63 mg l−1 (30 μM) 3,6-dichloro-anisic acid and 0.5–2.0 mg l−1 (2–9 μM) 6-benzyladenine had much higher regeneration rates than those formed on other callus induction media. Embryogenic callus of annual bluegrass had higher regeneration rates than those of bentgrass species. MSA2D, a media containing 2 mgl−1 (8 μM) 2,4-dichlorophenoxyacetic acid, 100 mgl−1 myo-inositol, and 150 mgl−1 asparagine, was effective in promoting embryogenic callus formation in creeping bentgrass but not in colonial and velvet bentgrasses and annual bluegrass.  相似文献   

16.
Camellia nitidissima Chi (Theaceae) is a world-famous economic and ornamental plant with golden-yellow flowers. It has been classified as one of the rarest and most endangered plants in China. Our objective was to induce somatic embryogenesis, shoot organogenesis and plant regeneration for C. nitidissima. Three types of callus (whitish, reddish and yellowish) were induced from immature cotyledons on improved woody plant medium (WPM) with different plant growth regulators (PGRs). Among the callus, whitish callus was induced by 4.5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and reddish and yellowish callus were induced by strongly active cytokinins, thidiazuron (TDZ) or 6-benzylaminopurine (BAP), singly or combined with weakly active auxin, α-naphthaleneacetic acid (NAA). The embryogenic callus could differentiate into somatic embryos, nodular embryogenic structures (large embryo-like structures) or adventitious shoots depending on the PGR used in WPM. BAP was best for adventitious buds and zeatin was best for somatic embryogenesis while kinetin (Kt) was best for the formation of nodular embryogenic structures. The three regeneration pathways often occurred in the same embryogenic callus clumps. Most shoots (80.0%) developed roots in WPM supplemented with 24.6 μM IBA and 0.3 μM NAA while 47.5% of somatic embryos could germinate directly and develop into plantlets on induction medium supplemented with 0.9 μM BAP and 0.1 μM NAA. The nodular embryogenic structures could be sub-cultured and cyclically developed in one of two differentiation pathways: shoot organogenesis or somatic embryogenesis. Plantlets derived from shoot buds rooted and somatic embryos germinated when transplanted into soil in a greenhouse; 66.7% of plantlets from shoot culture and 78.6% of plantlets from somatic embryos survived after 8 weeks’ acclimatization.  相似文献   

17.
Summary Reciprocal crosses were made between plants that had nuclear genes of S.tuberosum L. ssp tuberosum combinated, by recurrent backrossing, with cytoplasmic factors of S. phureja Juz. & Buk. and, separately, of S. tuberosum ssp. andigena (Juz. & Buk.) Hawkes. Significant differences in growth between 19 of 23 intra-cytoplasmic reciprocal progenies occurred in vigor at one or more growth stages during the season and/or in yield as measured by tuber number and weight. If no transmission of cytoplasmic factors occurred through the pollen, the cytoplasmic factors of the parents were the same, and these reciprocal differences were caused by parental chromosomal gene mechanisms such as maternal effect, pollen-tube selection, and/or imprinting. Early seedling vigor was, in some cases, associated with greater seed weight, but this did not account for all of the reciprocal contrasts. The data do not show whether these parental effects are a result of maternal and/or paternal effects. Analysis to determine whether parental effect was a single gene character or alleles expressed at two levels, or multi-genic and so expressed at multiple levels, was based on a study of progeny of ten parents that were used in more than one reciprocal pair combination. The data showed that the parents could be classified at eight successive levels of relative effectiveness as staminate or pistillate parents. Of 23 crosses, 19 showed significant differences between reciprocal progenies that were consistent with this eight-level array. The data support the interpretation that parental effect is a multi-genic character.Authorized for publication as paper No. 163 of the Department of Horticulture  相似文献   

18.
Summary Anther-culture response was examined among three spring wheat (Triticum aestivum L.) cultivars to evaluate the genetic component of response and to determine whether androgenetic performance could be improved by selection. The three lines, the three possible F1's among the three lines, their F2's, and the backcrosses to the parents were evaluated for callus production and regeneration capacity. Significant variation was observed among the generations of the three crosses for callus formation. Genetic variation for regenerability was nonsignificant. Callus production was negatively correlated (-0.24) with regeneration capacity. The random variation in the study was too great to determine whether major-gene differences for antherculture response exist among the three lines by examining population distributions. When the material was evaluated for quantitative gene effects, the estimates for the additive gene effects were generally greater than the estimates for the dominance gene effects for callus formation. Only the Pavon x Chris cross, however, exhibited a significant narrow sense heritability estimate for callusing response (0.94). Due to the large component of random variation and the varying selection potential among crosses for androgenetic performance, improving anther-culture response in wheat by selection could prove difficult unless the anther-culture process itself selects for response traits at the gametic level.  相似文献   

19.
The frequency of plant regeneration from seed-derived Pokkali rice callus has been substantially increased. Four conclusions were drawn from the study: (1) Non-embryogenic callus consisting of elongated, highly-vacuolated cells did not produce regenerated plants. Embryogenic callus consisting of small, non-vacuolated cells produced somatic embryos and regenerated plants. (2) The numbers of plants could be markedly increased by optimizing a medium for embryogenic callus production and a second medium for plant regeneration from embryogenic callus. (3) The optimization of callus to medium volume ratio of 6.5 mg embryogenic callus per 1.0 ml of medium significantly increase plant production on regeneration medium. (4) A further significant increase was obtained by using regeneration medium previously conditioned for one or two weeks by optimal amounts of embryogenic callus. At present, the callus derived from a single seed in six months could theoretically be used in the seventh month to produce 127500 plants.This research was supported by the Agency for International Development under Contract No. AID/DSAN-C-0273  相似文献   

20.
Summary Immature embryos of 41 lines of barley were screened in vitro for callus induction and somatic embryogenesis on different media to establish totipotent cultures. The use of modified MS and CC media, both supplemented with 1 g/l casein hydrolysate, and the substitution of agarose for agar resulted in the highest frequencies of somatic embryo induction. Embryogenic callus was induced and plants regenerated from 23 of the lines tested. The auxins 2,4-D, dicamba, picloram and 2,4,5-T were suitable for embryogenic callus induction. High frequencies of somatic embryo germination occurred on CC medium supplemented with 1 mg/l IAA and 0.05 mg/l zeatin. A strong genotypic effect on the capacity and frequency of embryogenic callus formation was found. Cultivar Golden Promise always gave the best results. Experiments with field grown material in 3 consecutive years showed that environmental factors also strongly influenced the induction of somatic embryogenesis and plant regeneration.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid - dicamba 3,6-dichloro-o-anisic acid - picloram 4-amino-3,6,6-trichloropicolinic acid - NAA naphtaleneacetic acid - IAA indole-3-acetic acid - ABA abscisic acid - BAP 6-benzyl amino purine - 2iP 6-(3-methyl-2 butenyl 1-amino)purine - GA3 gibberellic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号