首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Our aim was to evaluate the protective and antioxidant effects of ginger extract against cadmium-induced renal toxicity in animal models and to support the use of ginger as anti-renal failure natural remedy. Seventy rats were examined in a 4-week experiment to evaluate the effect of Ginger (Zingiber officinale) at doses of 100 and 200 mg/kg body weight on molecular DNA content, antioxidant status, and renal function in rats intoxicated with cadmium at dose of (5 mg/kg) using biochemical and histological analysis. Renal dysfunction, kidney tissue damage, and oxidative effect were evident in cadmium intoxicated rats as estimated by significant increase in (creatinine, urea), decrease in (creatinine clearance and reabsorption rate of urine albumin), increase in MDA, decrease in total antioxidant status (TAC), reduction in DNA content, and histopathological changes of kidneys’ tissues compared to control rats. Treatment with ginger resulted in significant restoring of renal function biomarkers, TAC, molecular DNA, and histological improvements which occurs via free radical scavenging and regenerative mechanisms. The activity of ginger was supported by estimation of bioactive phenolic and falvinods constituents. Twenty-eight polyphenolic compounds were estimated in ginger extract; [6]-gingerol, [6]-shogaol, citral and pyrogallol were the highest amounts in ginger, and supposed to be responsible for its major antioxidant and free radical scavenging activity as shown by In vitro DPPH/β-carotene-linolic acid assay tests. Consequently, ginger extracts could have a potent protective effects against nephrotoxicity induced by various toxicants.  相似文献   

2.
Cadmium (Cd) is an industrial contaminant that poses severe threats to human and animal health. Vitexin (VIT) is a polyphenolic flavonoid of characteristic pharmacological properties. We explored the curative role of vitexin on Cd-induced mitochondrial-dysfunction in rat renal tissues. Twenty-four rats were equally divided into four groups and designated as control, Cd, Cd + vitexin and vitexin treated groups. The results showed that Cd exposure increased urea and creatinine levels while decreased creatinine clearance. Cd reduced the activities of antioxidant enzymes, i.e., catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione content in the Cd exposed group. Cd exposure significantly (p < 0.05) elevated the reactive oxygen species (ROS) and Thiobarbituric acid reactive substances (TBARS) levels in rat kidney. Cd also caused a significant (p < 0.05) reduction in the mitochondrial TCA-cycle enzymes, including isocitrate dehydrogenase, succinate dehydrogenase, alpha-ketoglutarate dehydrogenase, and malate-dehydrogenase activities. Besides, mitochondrial respiratory chain enzymes, including NADH-dehydrogenase, coenzyme Q-cytochrome reductase, succinic-coenzyme Q, and cytochrome c-oxidase activities were also decreased under Cd exposure. Cd exposure also damaged the mitochondrial membrane potential (MMP). However, VIT treatment potentially reduced the detrimental effects of Cd in the kidney of rats. In conclusion, our study indicated that the VIT could attenuate the Cd-induced renal toxicity in rats.  相似文献   

3.
The present study investigated oxidative damage and neuroprotective effect of the antiparkinsonian drug, L-deprenyl in neuronal death produced by intranigral infusion of a potent mitochondrial complex-I inhibitor, rotenone in rats. Unilateral stereotaxic intranigral infusion of rotenone caused significant decrease of striatal dopamine levels as measured employing HPLC-electrochemistry, and loss of tyrosine hydroxylase immunoreactivity in the perikarya of ipsilateral substantia nigra (SN) neurons and their terminals in the striatum. Rotenone-induced increases in the salicylate hydroxylation products, 2,3- and 2,5-dihydroxybenzoic acid indicators of hydroxyl radials in mitochondrial P2 fraction were dose-dependently attenuated by L-deprenyl. L-deprenyl (0.1-10mg/kg; i.p.) treatment dose-dependently attenuated rotenone-induced reductions in complex-I activity and glutathione (GSH) levels in the SN, tyrosine hydroxylase immunoreactivity in the striatum or SN as well as striatal dopamine. Amphetamine-induced stereotypic rotations in these rats were also significantly inhibited by deprenyl administration. The rotenone-induced elevated activities of cytosolic antioxidant enzymes superoxide dismutase and catalase showed further significant increase following L-deprenyl. Our findings suggest that unilateral intranigral infusion of rotenone reproduces neurochemical, neuropathological and behavioral features of PD in rats and L-deprenyl can rescue the dopaminergic neurons from rotenone-mediated neurodegeneration in them. These results not only establish oxidative stress as one of the major causative factors underlying dopaminergic neurodegeneration as observed in Parkinson's disease, but also support the view that deprenyl is a potent free radical scavenger and an antioxidant.  相似文献   

4.
Cadmium (Cd) induces neurotoxicity owing to its highly deleterious capacity to cross the blood brain barrier (BBB). Recent studies have provided insights on antioxidant properties of bioflavonoids which have emerged as potential therapeutic and nutraceutical agents. The aim of our study was to examine the hypothesis that hesperidin (HP) ameliorates oxidative stress and may have mitigatory effects in the extent of heavy metal-induced neurotoxicity. Cd (3 mg/kg body weight) was administered subcutaneously for 21 days while HP (40 mg/kg body weight) was administered orally once every day. The results of the current investigation demonstrate significant elevated levels of oxidative stress markers such as lipid peroxidation (LPO) and protein carbonyl (PC) along with significant depletion in the activity of non-enzymatic antioxidants like glutathione (GSH) and non-protein thiol (NP-SH) and enzymatic antioxidants in the Cd treated rats’ brain. Activity of neurotoxicity biomarkers such as acetylcholinesterase (AchE), monoamine oxidase (MAO) and total ATPase were also altered significantly and HP treatment significantly attenuated the altered levels of oxidative stress and neurotoxicity biomarkers while salvaging the antioxidant sentinels of cells to near normal levels thus exhibiting potent antioxidant and neuroprotective effects on the brain tissue against oxidative damage in Cd treated rodent model.  相似文献   

5.
The present study was aimed to evaluate the influence of flaxseed oil on renal toxicity induced by thioacetamide in male rats. The animals were distributed into four groups. Rats of the first group were served as control. Rats of the second group were exposed to thioacetamide. Rats of the third group were treated with flaxseed oil and thioacetamide. Rats of the fourth group were treated with flaxseed oil. Significant increases of blood creatinine and uric acid were observed in TAA-treated rats after three weeks. In thioacetamide group, the levels of serum creatinine, blood urea nitrogen and uric acid were significantly elevated after six weeks. Histopathologically, the renal sections from thioacetamide-treated rats showed severe alterations in the structure of renal corpuscles including a degeneration of glomeruli and Bowman’s capsules. Administration of flaxseed oil protects the observed biochemical and histopathological alterations induced by thioacetamide exposure. Hence, the results of this study suggest that flaxseed oil protects against thioacetamide-induced renal injury and the protective influence of flaxseed oil may be attributed to its antioxidant role.  相似文献   

6.

Background

Cadmium (Cd) is well known as one of the most toxic metals affecting the environment and can severely restrict plant growth and development. In this study, Cd toxicities were studied in strawberry cv. Camarosa using pot experiment. Chlorophyll and malondialdehyde (MDA) contents, catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX) activities and mineral nutrient concentrations were investigated in both roots and leaves of strawberry plant after exposure Cd.

Results

Cd content in both roots and leaves was increased with the application of increasing concentrations of Cd. We found higher Cd concentration in roots rather than in leaves. Chlorophyll a and b was decreased in leaves but MDA significantly increased under increased Cd concentration treatments in both roots and leaves. SOD and CAT activities was also increased with the increase Cd concentrations. K, Mn and Mg concentrations were found higher in leaves than roots under Cd stress. In general, increased Cd treatments increased K, Mg, Fe, Ca, Cu and Zn concentration in both roots and leaves. Excessive Cd treatments reduced chlorophyll contents, increased antioxidant enzyme activities and changes in plant nutrition concentrations in both roots and leaves.

Conclusion

The results presented in this work suggested that Cd treatments have negative effect on chlorophyll content and nearly decreased 30% of plant growth in strawberry. Strawberry roots accumulated higher Cd than leaves. We found that MDA and antioxidant enzyme (CAT, SOD and APX) contents may have considered a good indicator in determining Cd tolerance in strawberry plant.  相似文献   

7.
Dune reed (DR) is the more tolerant ecotype of reed to environmental stresses than swamp reed (SR). Under osmotic stress mediated by polyethylene glycol (PEG-6000), the suspension culture of SR showed higher ion leakage, and more oxidative damage to the membrane lipids and proteins was observed compared with the relatively tolerant DR suspension culture. Treatment with sodium nitroprusside (SNP) can significantly alleviated PEG-induced ion leakage, thiobarbituric acid reactive substances (TBARS) and carbonyl contents increase in SR suspension culture. The levels of H(2)O(2) and O(2)(-) were reduced, and the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were increased in both suspension cultures in the presence of SNP under osmotic stress, but lipoxygenase (LOX) activity was inhibited. 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a specific Nitric oxide (NO) scavenger, blocked the SNP-mediated protection. Depletion of endogenous NO with PTIO strongly enhanced oxidative damage in DR compared with that of PEG treatment alone, whereas had no effect on SR. Moreover, NO production increased significantly in DR while kept stable in SR under osmotic stress. Taken together, these results suggest that PEG induced NO release in DR but not SR can effectively protect against oxidative damage and confer an increased tolerance to osmotic stress in DR suspension culture.  相似文献   

8.
Solanum nigrum is a newly discovered Cd-hyperaccumulator. In the present study, the protective effects of proline against cadmium toxicity of callus and regenerated shoots of S. nigrum are investigated based on a high frequency in vitro shoot regeneration system. Proline pretreatment reduces the reactive oxygen species levels and protects the plasma membrane integrity of callus under cadmium stress, and therefore improves the cadmium tolerance in S. nigrum. Inductively coupled plasma mass spectroscopy analysis shows that exogenous proline increases the cadmium accumulation in callus and regenerated shoots of S. nigrum. Further analysis indicates that the improvement of cadmium tolerance caused by proline pretreatment is correlated with an increase of superoxide dismutase and catalase activity and intracellular total glutathione content. The interaction between proline and enzymic or non-enzymic antioxidants is discussed.  相似文献   

9.
The clinical use of cisplatin is highly limited by its nephrotoxicity, which has been associated with mitochondrial dysfunction. We investigated the protective effect of carvedilol, an antihypertensive with strong antioxidant properties, against the nephrotoxicity induced by cisplatin in rats. Carvedilol was able to counteract the renal damage by preventing the mitochondrial dysfunction induced by cisplatin. The mitochondrial eletrochemical potential, calcium uptake, respiration and the phosphorylative capacity were preserved by the co-administration of carvedilol. The mechanism of protection probably does not involve alterations in the cellular and sub-cellular distribution of cisplatin. The study suggests that carvedilol is a potential drug for the adjuvant nephroprotective therapy during cisplatin chemotherapy.  相似文献   

10.
BACKGROUNDAluminum (Al) has been reported to induce testicular injury via oxidative stress. Ananas comosus stem extract is an inexpensive byproduct waste rich in bromelain which is a group of sulfur-containing enzymes known for its biological activities and medicinal applications. So, the current investigation aims to evaluate the efficacy of bromelain in counteracting oxidative injury and testicular dysfunction stimulated by aluminum in rats.METHODSMale adult Wistar rats were divided into four groups. The first group used as control, however, the second and third groups were received bromelain (250 mg/kg) and AlCl3 (34 mg/Kg, 1/25 LD50), and the fourth group supplemented with bromelain one hour before AlCl3 intoxication, respectively. Bromelain was administered daily while AlCl3 was given every other day by oral gavages for one month.RESULTSAl intoxicated animals revealed an elevation in lipid peroxidation (TBARS and H2O2) level and lactate dehydrogenase (LDH) activity. However, reduced glutathione (GSH) and protein contents, antioxidant enzymes (SOD, CAT, GPx, GR, GST), phosphatases (ALP, AcP) and aminotransferases (AST, ALT) activities were significantly reduced. Additionally, considerable amendments in hormonal levels (testosterone, luteinizing and follicle-stimulating hormone) and sperm characteristics were spotted. Further, histological variations in the testes section were detected and this supports the biochemical observations. Otherwise, rats supplemented with bromelain alone diminished TBARS and H2O2 and augmented mostly other parameters. Furthermore, supplementation with bromelain before Al intoxication in rats exhibited worthy betterment in oxidative stress markers, hormones, and sperm quality compared to Al treated group.CONCLUSIONIn conclusion, bromelain had a powerful protective role against Al-induced testicular dysfunction so, it represents a novel approach in metal toxicity processing.  相似文献   

11.
The present study was undertaken to examine the attenuative effect of Piper betle leaf extract (PBE) against cadmium (Cd) induced oxidative hepatic dysfunction in the liver of rats. Pre-oral supplementation of PBE (200 mg/kg BW) treated rats showed the protective efficacy against Cd induced hepatic oxidative stress. Oral administration of Cd (5 mg/kg BW) for four weeks to rats significantly (P > 0.05) elevated the level of serum hepatic markers such as serum aspartate transaminase (AST), serum alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), gamma-glutamyl transpeptidase (GGT), bilirubin (TBRNs), oxidative stress markers viz., thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH), protein carbonyls (PC) and conjugated dienes (CD) and significantly (P > 0.05) reduced the enzymatic antioxidants viz., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD) and non-enzymatic antioxidants Viz., reduced glutathione (GSH), total sulfhydryls (TSH), vitamin C and vitamin E in the liver. Pre-oral supplementation of PBE (200 mg/kg BW) in Cd intoxicated rats, the altered biochemical indices and pathological changes were recovered significantly (P > 0.05) which showed ameliorative effect of PBE against Cd induced hepatic oxidative stress. From the above findings, we suggested that the pre-administration of P. betle leaf extract exhibited remarkable protective effects against cadmium-induced oxidative hepatic injury in rats.  相似文献   

12.
Cadmium is an environmental toxic metal implicated in human diseases. In the present study, the effect of diphenyl diselenide, (PhSe)(2), on sub-chronic exposure with cadmium chloride (CdCl(2)) was investigated in rats. Male adult Swiss albino rats received CdCl(2) (10 micromol/kg, orally) and (PhSe)(2) (5 micromol/kg, orally) for a period of 30 days. A number of parameters were examined as indicators of toxicity, including hepatic and renal damage, glucose and glycogen levels and markers of oxidative stress. Cadmium content, liver histology, delta-aminolevulinate dehydratase (delta-ALA-D) activity, metallothionein (MT) levels were also evaluated. Cadmium content determined in the tissue of rats exposed to CdCl(2) provides evidence that the liver is the major cadmium target where (PhSe)(2) acts. The concentration of cadmium in liver was about three fold higher than that in kidney, and (PhSe)(2) reduced about six fold the levels of this metal in liver of rats exposed. Rats exposed to CdCl(2) showed histological alterations abolished by (PhSe)(2) administration. (PhSe)(2) administration ameliorated plasma malondialdehyde (MDA) levels, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and gamma-glutamyl transferase (GGT) activities increased by CdCl(2) exposure. Urea and bilirubin levels increased by CdCl(2) exposure were also reduced by (PhSe)(2). In conclusion, this study demonstrated that co-treatment with (PhSe)(2) ameliorated hepatotoxicity and cellular damage in rat liver after sub-chronic exposure with CdCl(2). The proposed mechanisms by which (PhSe)(2) acts in this experimental protocol are its antioxidant properties and its capacity to form a complex with cadmium.  相似文献   

13.
《Phytomedicine》2014,21(14):1785-1793
Diabetic nephropathy is a complex disease that involves increased production of free radicals which is a strong stimulus for the release of pro-inflammatory factors. We evaluated the renal protective effect of kolaviron (KV) – a Garcinia kola seed extract containing a mixture of 5 flavonoids, in diabetes-induced nephrotoxic rats. Male Wistar rats were divided into 4 groups: untreated controls (C); normal rats treated with kolaviron (C + KV); untreated diabetic rats (D); kolaviron treated diabetic rats (D + KV). A single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg) was used for the induction of diabetes. Renal function parameters were estimated in a clinical chemistry analyzer. Markers of oxidative stress in the kidney homogenate were analyzed in a Multiskan Spectrum plate reader and Bio-plex Promagnetic bead-based assays was used for the analysis of inflammatory markers. The effect of kolaviron on diabetes-induced apoptosis was assessed by TUNEL assay. In the diabetic rats, alterations in antioxidant defenses such as an increase in lipid peroxidation, glutathione peroxidase (GPX) activity and a decrease in catalase (CAT) activity, glutathione (GSH) levels and oxygen radical absorbance capacity (ORAC) were observed. There was no difference in superoxide dismutase (SOD) activity. Diabetes induction increased apoptotic cell death and the levels of interleukin (IL)-1β and tumor necrosis factor (TNF)-α with no effect on IL-10. Kolaviron treatment of diabetic rats restored the activities of antioxidant enzymes, reduced lipid peroxidation and increased ORAC and GSH concentration in renal tissues. Kolaviron treatment of diabetic rats also suppressed renal IL-1β. The beneficial effects of kolaviron on diabetes-induced kidney injury may be due to its inhibitory action on oxidative stress, IL-1β production and apoptosis.  相似文献   

14.
Endurance exercise training promotes a small but significant increase in antioxidant enzyme activity in the costal diaphragm (DIA) of rodents. It is unclear if these training-induced improvements in muscle antioxidant capacity are large enough to reduce oxidative stress during prolonged contractile activity. To test the hypothesis that training-related increases in DIA antioxidant capacity reduces contraction-induced lipid peroxidation, we exercise trained adult female Sprague-Dawley (n = 7) rats on a motor-driven treadmill for 12 weeks at approximately 75% maximal O2 consumption (90 min/day). Control animals (n = 8) remained sedentary during the same 12-week period. After training, DIA strips from animals in both experimental groups were excised and subjected to an in vitro fatigue contractile protocol in which the muscle was stimulated for 60 min at a frequency of 30 Hz, every 2 s, with a train duration of 330 m. Compared to the controls, endurance training resulted in an increase (P < 0.05) in diaphragmatic non-protein thiols and in the activity of the antioxidant enzyme superoxide dismutase. Following the contractile protocol, lipid peroxidation was significantly lower (P < 0.05) in the trained DIA compared to the controls. These data support the hypothesis that endurance exercise training-induced increases in DIA antioxidant capacity protect the muscle against contractile-related oxidative stress.  相似文献   

15.
BACKGROUNDChromium hexavalent (CrVI) is known as a toxic contaminant that induced oxidative stress and nephrotoxicity in humans and animals. Rosmarinus officinalis is a perennial herb rich in biologically active constituents that have powerful antioxidant properties. So, the current work evaluated the effectiveness of Rosmarinus officinalis essential oil (REO) against alterations induced by potassium dichromate in the kidney of male rats.METHODSGC-MS analysis, in vitro total phenol contents, and DPPH scavenging activity of REO were estimated. Thirty-five Wistar male rats were categorized into 5 groups. The first group was the control, the second one was orally administered rosemary essential oil (REO; 0.5 mL/kg BW), the third group was injected intraperitoneally with hexavalent chromium (CrVI; 2 mg/kg BW) for 14 days, the fourth group used as the protective group (REO was administrated 30 min before i.p. injection of CrVI) and the fifth group applied as the therapeutic group (rats injected with CrVI 30 min followed by oral administration of REO), respectively.RESULTSTwenty-nine components were detected with high total phenolic contents and high DPPH scavenging activity. Results revealed that CrVI- intoxicated rats showed a valuable increase in oxidative stress profile (TBARS and H2O2) and a notable decline in glutathione (GSH), total protein content, and enzymatic antioxidants (SOD, CAT, GPx, and GST). Furthermore, serum kidney functions biomarkers (urea, creatinine, and uric acid) were increased significantly. Also, the administration of CrVI showed histological and immunohistochemical (PCNA-ir) changes in rat kidney tissue. Otherwise, administration of REO pre or post-treatment with CrVI significantly restored most of the biochemical parameters in addition to improvement in kidney tissue architecture. Moreover, individual intake with REO exhibited an amendment in oxidative stress markers.CONCLUSIONConclusively, REO had a potential antioxidant capacity in ameliorating K2Cr2O7-induced nephrotoxicity, especially in the protection group.  相似文献   

16.
Diazinon (DZN) is a synthetic organophosphrus acaricide and insecticide widely used for veterinary and agricultural purposes. However, its animal and human exposure leads to nephrotoxicity. Our experimental objective was to evaluate protective effects of ceftriaxone and/or ascorbic acid—vitamin C against DZN-induced renal injury in male Wistar albino rats. DZN-treated animals revealed significant elevation in serum biochemical parameters related to renal injury: urea, uric acid and creatinine. DZN intoxication significantly increased renal lipid peroxidation, and significant inhibition in antioxidant biomarkers including, reduced glutathione, glutathione peroxidase, superoxide dismutase, catalase and total antioxidant capacity. In addition, DZN significantly reduced serum acetylcholinestrase level. Moreover, It induced serum and kidney tumor necrosis factor-α level. Both ceftriaxone and vitamin C protect against DZN-induced serum as well as renal tissue biochemical parameters when used alone or in combination along with DZN-intoxication. Furthermore, both ceftriaxone and vitamin C produced synergetic nephroprotective and antioxidant effects. Therefore, it could be concluded that ceftriaxone and/or vitamin C administration are able to minimize the toxic effects of DZN by its free radical-scavenging and potent antioxidant activity.  相似文献   

17.
Exposure to heavy metals not only impacts on fertility in males, it may also affect the offspring. The aim of the present study was to examine the toxic effects of lead acetate on fertility in male mice and their offspring, and the potential effect of quercetin on mitigating the likely effects. Experimental mice were randomly divided into three groups and administered with (i) distilled water (control); (ii) lead acetate (150 mg/kg BW/day); (iii) lead acetate (150 mg/kg BW/day) with quercetin (75 mg/kg BW/day). Lead acetate administration in male mice adversely affected their fertility through changes in sperm motility, viability, morphology, maturity, membrane integrity, and intracellular reactive oxygen species (P < 0.05). Similar findings were observed in the offspring of the lead-treated male mice. Early embryonic development and implantation rate were also adversely influenced in both the sires and offspring when male mice were treated with lead acetate (P < 0.05). The data demonstrated that down-regulation of Cks2 (CDC28 protein kinase regulatory subunit-2) in sperm had an association with early embryonic development in lead acetate treated group. In conclusion, lead acetate administration adversely impacted on the fertility of the male mice and their male offspring fertility; on the other hand, paternal quercetin co-administration somewhat ameliorated the adverse effects of lead on male mice and their offspring.  相似文献   

18.
In our study, we examined the radioprotective effects of dantrolene against gamma irradiation-induced damage of blood cells after total body irradiation of rats. Rats were divided into three groups of eight rats each. The first group was the control group receiving no dantrolene or irradiation, the second group received total body irradiation (RT) with 5 Gy of gamma irradiation only, and the third group received dantrolene at a dose of 5 mg x kg(-1) plus RT. Dantrolene was given intraperitoneally 30 min before RT. All groups were sacrificed 2 h after RT, and blood samples were taken. Leukocyte, and thrombocyte counts and hemoglobin levels were measured. Furthermore, malondialdehyde (MDA) levels in plasma and erythrocytes and superoxide dismutase (SOD) and glutathione peroxidase activities (GSH-Px) in erythrocytes were determined. It was found that pretreatment with dantrolene at a dose of 5 mg x kg(-1) significantly reduced the MDA levels and increased the antioxidant SOD and GSH-Px activities, and prevented the decrease in leukocyte and thrombocyte counts. We conclude that dantrolene has clear antioxidant properties when given prior to radiation exposure and the protective effect of dantrolene against damage inflicted by radiation, depends, at least in part, on the decrease in lipid peroxidation and increase in the activity of antioxidant enzymes SOD and GSH-Px.  相似文献   

19.
Humans are systemically exposed to persistent organic pollutants, of which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has become a major environmental concern. Exposure to TCDD results in a wide variety of adverse health effects which is mediated by oxidative stress through CYP1A1 activation and arachidonic acid metabolites. Eicosapentaenoic acid (EPA) exhibits antioxidant property and competes with arachidonic acid in membrane phospholipids and produces anti-inflammatory EPA derivatives. Since both EPA and its derivatives have been reported to enhance the antioxidant mechanism, the present study aimed at studying whether EPA could offer protection against TCDD-induced oxidative stress and nephrotoxicity in Wistar rats. Estimation of kidney markers (serum urea and creatinine) and histopathological studies revealed that EPA treatment significantly reduced TCDD-induced renal damage. TCDD-induced oxidative damage was reflected in a significant increase in CYP1A1 activity and lipid peroxide levels with a concomitant decline in non-enzymic antioxidant (GSH) and various enzymic antioxidants such catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), and glutathione peroxidase (GPx). In addition, TCDD-induced oxidative stress also resulted in decline in Na+-K+ and Mg2+ATPases activities with increase in Ca2+ ATPases activity. Oral treatment with EPA showed a significant cytoprotection against TCDD-induced renal oxidative stress by decreased CYP1A1 activity and enhanced antioxidant status. TCDD-induced alterations in ATPase enzyme activities were also prevented by EPA treatment. Our results show clear evidence that EPA ameliorates TCDD-induced oxidative stress and kidney damage; thus suggest the potential of EPA as an effective therapeutic agent against toxic effects mediated through redox imbalance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号