共查询到20条相似文献,搜索用时 15 毫秒
1.
Jean Guillon Robert C. Reynolds Jean-Michel Leger Marie-Aude Guie Stephane Massip Patrick Dallemagne 《Journal of enzyme inhibition and medicinal chemistry》2013,28(6):489-495
New pyrrolo[1,2-a]quinoxaline-2- or -4-carboxylic acid hydrazide derivatives were synthesized from nitroaniline or 1,2-phenylenediamine, and evaluated in vitro for their antimycobacterial activity as part of a TAACF TB screening program. Two compounds 7c and 13 showed an interesting activity at 6.25?μg/mL against Mycobacterium tuberculosis H37Rv, with a 94 and 100 percentage inhibition, respectively. 相似文献
2.
Yi-Gui Qiu Zi-Hui Yang Xue-Bao Sun Dao-Jun Jin Yi-Ming Zheng Jia Li Wen Gu 《化学与生物多样性》2023,20(7):e202300539
To discover novel laccase inhibitors as potential fungicides, twenty-six novel L-menthol hydrazide derivatives were designed and synthesized. In the in vitro antifungal assay, most of the target compounds displayed pronounced antifungal activity against Sclerotinia sclerotiorum, Fusarium graminearum, and Botryosphaeria dothidea. Especially, the EC50 of compounds 3 b and 3 q against B. dothidea was 0.465 and 0.622 mg/L, which was close to the positive compound fluxapyroxad (EC50=0.322 mg/L). Scanning electron microscopy (SEM) analysis showed that compound 3 b could significantly damage the mycelial morphology of B. dothidea. In vivo antifungal experiments on apple fruits showed that 3 b exhibited excellent protective and curative effects. Furthermore, in the in vitro laccase inhibition assay, 3 b showed outstanding inhibitory activity with the IC50 value of 2.08 μM, which is much stronger than positive control cysteine and PMDD-5Y. These results indicated that this class of L-menthol derivatives could be promising leads for the discovery of laccase-targeting fungicides. 相似文献
3.
Tuberculosis (TB) remains a major threat to human health. Due to the prevalence of drug-resistant Mycobacterium tuberculosis (Mtb), it is urgent to discover drugs with new mechanisms of action (MOA) to ensure effectiveness against strains that are resistant to existing TB drugs. Cynoglossum lanceolatum Forsk was used to treat TB in Traditional Chinese Medicine. In this article, shikonin, the anti-Mtb active component, was obtained from the whole herb extract of C. lanceolatum by bioassay-guided isolation. Using the microplate alamar blue assay (MABA), the minimum inhibitory concentration (MIC) of shikonin against Mtb was determined to be 128 μg/mL. In order to obtain a more efficient anti-Mtb molecule, (E)-1-(6-bromo-2,3-dihydrochromen-4-ylidene)thiosemicarbazide was synthesized based on the scaffold of shikonin, which exhibited potent activity against Mtb (MIC=4 μg/mL). These results highlight that both naphthalene-1,4-dione and chroman-4-one are pharmacophores with activities against Mtb. To investigate a plausible mechanism of action, the molecular docking was firstly performed against catalase-peroxidase enzyme (KatG) of Mtb using AutoDock 4 software. The results demonstrated that both shikonin and (E)-1-(6-bromo-2,3-dihydrochromen-4-ylidene)thiosemicarbazide could bind to the active site of Mtb KatG. KatG enzyme activity and intracellular reactive oxygen species (ROS) levels in Mtb cells were then measured by ultraviolet spectrophotometric method and fluorescence microplate reader assay, respectively. The experiments confirmed that above compounds could inhibit the catalytic activity of Mtb KatG, and cause the ROS accumulation in Mtb cells. Therefore, inhibition of KatG may be a novel mechanism of action for these two compounds to fight against Mtb. 相似文献
4.
Vijayshri Rokde Kishor Danao Juhi Nimje Deweshri Nandurkar Tiksha Yerne Priyanka Yadav Ujwala Mahajan 《化学与生物多样性》2023,20(7):e202300433
A series of compounds was synthesized and characterized to explore new antimicrobial agents. These compounds were evaluated by using the agar cup plate method. The most active compound exhibited a zone of inhibition 18±0.09 mm and 19±0.09 mm against E. Coli and S. aureus, respectively. To gain insights into the intermolecular interactions, molecular docking studies were performed at the active site of the glucosamine fructose 6 phosphate synthase (GlcN 6 p) enzyme (PDB Id: 1XFF). The results of the molecular docking studies are in agreement with the pharmacological evaluation with potent compounds, exhibiting docking scores of −11.2. However, deformability, B-factor and covariance computations showed a result that the most active compound favored molecular connections with the protein. Therefore, our research is important for the development of antimicrobial agents 相似文献
5.
Asim Raza Dr. Mohsin Abbas Khan Prof. Dr. Irshad Ahmad Dr. Sajid Ur Rehman Dr. Saharish Khaliq Dr. Javed Ahmed Breena Awan Farhat Ullah Anum Masood Naveed Ahmed 《化学与生物多样性》2023,20(7):e202300482
Prodrugs of dexibuprofen having ester moieties instead of free carboxylic acid which involves in gastrointestinal side effects have been synthesized. Dexibuprofen acid was condensed with different alcohols/phenols to afford the ester prodrugs. All of the synthesized prodrugs were characterized by their physical attributes, elemental analysis, FT-IR, 1H-NMR, and 13C-NMR spectroscopy. The in vitro anti-inflammatory studies was done by chemiluminescence technique reflect prodrugs have been more potent, owing to the different chemical structures. Lipoxygenase enzyme inhibition assay was also assess and found compound DR7 with IC50=19.8 μM), DR9 (IC50=24.8 μM) and DR3 (IC50=47.2 μM) as compared with Dexibuprofen (IC50=156.6 μM). It was also evaluated for docking studies revealed that DR7 has found to be more potent anti-inflammatory against 5-LOX (3 V99) as well as analgesic against COX-II (5KIR) enzyme. Anti-oxidant activities were also performed, DR3 (86.9 %), DR5 (83.5 %), DR7 (93.9 %) and DR9 (87.4 %) were found to be more anti-oxidant as compared to (2S)-2-[4-(2-methylpropyl)phenyl]propanoic acid (52.7 %). 相似文献
6.
Helloana Azevedo-Barbosa Bianca Pereira do Vale Grazielle Guidolin Rossi Fallon dos Santos Siqueira Kevim Bordignon Guterres Marli Matiko Anraku de Campos Thiago dos Santos Jamie Anthony Hawkes Danielle Ferreira Dias Stefânia Neiva Lavorato Thiago Belarmino de Souza Diogo Teixeira Carvalho 《化学与生物多样性》2021,18(5):e2100066
Using molecular hybridization, specific sulfonamide derivatives of eugenol were synthesized with subtle modifications in the allylic chain of the eugenol subunit (and also in the nature of the substituent group in the sulfonamide aromatic ring) which allowed us to study the influence of structural changes on the antimicrobial potential of the hybrids. Antimicrobial test results showed that most of the synthesized hybrid compounds showed good activity with better results than the parent compounds. Molecular docking studies of the hybrids with the essential bacterial enzyme DHPS showed complexes with low binding energies, suggesting that DHPS could be a possible target for the antibacterial sulfonamide-eugenol hybrids. Furthermore, most of the final compounds presented similar docking poses to that of the crystallographic ligand sulfamethoxazole. The results obtained allow us to conclude that these are promising compounds for use as new leads in the search for new antibacterial sulfonamides. 相似文献
7.
Pran Kishore Deb Nizar A. Al-Shari Katharigatta N. Venugopala Melendhran Pillay Pobitra Borah 《Journal of enzyme inhibition and medicinal chemistry》2021,36(1):869
The alarming increase in multi- and extensively drug-resistant (MDR and XDR) strains of Mycobacterium tuberculosis (MTB) has triggered the scientific community to search for novel, effective, and safer therapeutics. To this end, a series of 3,5-disubstituted-1,2,4-oxadiazole derivatives (3a–3i) were tested against H37Rv, MDR and XDR strains of MTB. Of which, compound 3a with para-trifluorophenyl substituted oxadiazole showed excellent activity against the susceptible H37Rv and MDR-MTB strain with a MIC values of 8 and 16 µg/ml, respectively.To understand the mechanism of action of these compounds (3a–3i) and identify their putative drug target, molecular docking and dynamics studies were employed against a panel of 20 mycobacterial enzymes reported to be essential for mycobacterial growth and survival. These computational studies revealed polyketide synthase (Pks13) enzyme as the putative target. Moreover, in silico ADMET predictions showed satisfactory properties for these compounds, collectively, making them, particularly compound 3a, promising leads worthy of further optimisation. 相似文献
8.
To discover ‘me-better’ insecticidal active molecules targeting ryanodine receptors (RyRs), a series of novel N-pyridylpyrazole amide derivatives containing a maleimide were designed and synthesized in accordance with the prior investigations of our group. Preliminary bioassay findings indicated some compounds containing a maleimide exhibited good larvicidal activities against lepidopteran pests at a concentration of 500 mg L−1. Compound 9 j showed 60 % larvicidal activities against M. Separata at 50 mg L−1. Compound 9 b exhibited 40 % larvicidal activities against P. xylostella at 50 mg L−1. Molecular docking study indicated that H-bonds, π–π interaction and cation-π interaction made for the binding of compounds 9 b , 9 j with P. Xylostella RyR. These results indicated that compounds 9 b and 9 j could be developed as novel and promising insecticidal leads. 相似文献
9.
Among the tetrahydroisoquinoline(THIQ) of natural products, a family of THIQ alkaloids has the characteristics of similar biosynthetic pathway. Such THIQ alkaloids family mainly include Renieramycins, Ecteinasicdins, Tetrazaomine, Lemonomycin, etc. Most of these natural compounds have strong antitumor activities, and its family member Ecteinasicdins743 (ET-743, Trabectedin) has been marketed in the European Union and the United States for the treatment of advanced soft tissue tumors and ovarian cancer. Because of the excellent biological activity and complex chemical structure of this kind of THIQ products, it has aroused great interest of biologists and chemists, and many synthetic chemists have paid considerable efforts to their total synthesis over the past decade. Based on this, the recent advances in the total synthesis of such THIQ alkaloids are reviewed. 相似文献
10.
Afra Quasar A. Nadaf Mahesh S. Najare Manjunatha Garbhagudi Shivaraj Mantur Manjunath G. Sunagar Supreet Gaonkar Shrinivas Joshi Imtiyaz Ahmed M. Khazi 《化学与生物多样性》2020,17(5)
A series of novel alkyl substituted purines were synthesized. 6‐[4‐(4‐Propoxyphenyl)piperazin‐1‐yl]‐9H‐purine was used as the key starting material, which was synthesized via a multistep protocol and finally subjected for N‐alkylation with various alkyl halides with an aim to get prospective antimicrobial agents. The structures of the novel compounds were established by substantiating them through spectral techniques like 1H‐NMR, 13C‐NMR, FT‐IR and EI‐MS. They were explored for antitubercular activity against Mycobacterium tuberculosis H37RV. Furthermore, they were checked for their antimicrobial activity concerning bacterial and fungal strains. The title compounds exhibited considerable antimicrobial activity without any significant toxicity. In silico studies depicted their good binding profile against Mycobacterium tuberculosis enoyl reductase (InhA; PDB ID: 4TZK) and Candida albicans dihydrofolate reductase (PDB ID: 1AI9). The title compounds obeyed Lipinski's parameters and have exhibited good drug‐like properties. 相似文献
11.
Hailang Lan Xiaping Zhu Guishan Lin Wengui Duan Yucheng Cui Fangyao Li Dianpeng Li 《化学与生物多样性》2023,20(3):e202201163
Twenty novel longifolene-derived tetraline fused thiazole-amide compounds were synthesized from longifolene, a renewable natural resource. Their structures were characterized by FT-IR, NMR, ESI-MS, and elemental analysis. The in vitro antiproliferative activity of these compounds against SK-OV-3 ovarian cancer cell lines, MCF-7 human breast cancer cell lines, HepG2 human liver cancer cell lines, A549 human lung adenocarcinoma cell lines, and T-24 human bladder cancer cell lines was tested by MTT assay. Compounds 6a – 6c displayed significant and broad-spectrum antiproliferative activity against almost the tested cancer cell lines with IC50 in the range of 7.84 to 55.88 μM, of which compound 6c exhibited excellent antiproliferative activities with 7.84 μM IC50 against SKOV-3, 13.68 μM IC50 against HepG2, 15.69 μM IC50 against A549, 19.13 μM IC50 against MCF-7, and 22.05 μM IC50 against T-24, showing better and broad-spectrum antiproliferative effect than that of the positive control 5-FU. Furthermore, the action model was analyzed by the molecular docking study. Some intriguing structure-activity relationships were found and discussed herein by DFT theoretical calculation. 相似文献
12.
Aysan Etemadi Salar Hemmati Mohammad Shahrivar-Gargari Yasaman Tamaddon Abibiglue Ahad Bavili Maryam Hamzeh-Mivehroud Siavoush Dastmalchi 《化学与生物多样性》2023,20(8):e202300075
Indanone derivatives containing meta/para-substituted aminopropoxy benzyl/benzylidene moieties were designed based on the structures of donepezil and ebselen analogs as the cholinesterase inhibitors. The designed compounds were synthesized and their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were measured. Inhibitory potencies (IC50 values) for the synthesized compounds ranged from 0.12 to 11.92 μM and 0.04 to 24.36 μM against AChE and BChE, respectively. Compound 5 c showed the highest AChE inhibitory potency with IC50 value of 0.12 μM, whereas the highest BChE inhibition was achieved by structure 7 b (IC50=0.04 μM). Structure-activity relationship (SAR) analysis revealed that there is no significant difference between meta and para-substituted derivatives in AChE and BChE inhibition. However, the most potent AChE inhibitor 5 c belongs to meta-substituted compounds, while the most active BChE inhibitor is para-substituted derivative 7 b . The order of enzyme inhibition potency based on the substituted amine group is dimethyl amine>piperidine>morpholine. Compounds containing C=C linkage are more potent AChE inhibitors than the corresponding saturated structures. Molecular docking studies indicated that 5 c interacts with AChE in a very similar way to that observed experimentally for donepezil. The introduced indanone-aminopropoxy benzylidenes could be used in drug-discovery against Alzheimer's disease. 相似文献
13.
Faten Zahran Mohammed Youstina William Rizzk Ibrahim Mohey El Deen Ahmed A. E. Mourad Mohammed El Behery 《化学与生物多样性》2021,18(12):e2100580
Thiosemicarbazones have been the focus of scientists owing to their broad clinical anticancer range. Herein, A Series of new thiosemicarbazone derivatives 5 – 9 were synthesized and confirmed through the use of different spectroscopic techniques along with elemental analysis. The in vitro cytotoxic activity of compounds 5 – 9 against MCF-7 and A549 cell lines and normal breast cells were assessed. Several compounds were found to be active. The most active compound 7 caused MCF-7 cell cycle arrest at G1/ S phases; and induced apoptosis at the pre-G1 phase. The apoptosis-inducing activity of compound 7 was proofed by the elevation of caspase 3/7 activity and also by up-regulation of the expression of Bax and p53 proteins together with the down-regulation of the expression of the Bcl-2 protein. It also had a strong inhibitory effect topoisomerase IIβ enzyme. Molecular Docking study revealed that the synthesized compounds had good docking scores compared to the standard drug Etoposide towards the topoisomerase IIβ protein (3QX3). Overall, these findings confirmed that the new thiosemicarbazone derivatives could aid in the development of promising cancer drug candidates. 相似文献
14.
Prof. Ritchu Babbar Dr. Swikriti Makkar Dr. Deepika Saini Dr. Ravi Rawat Dr. Celia Vargas-De-La-Cruz Dr. Faris Q. Alenzi Prof. Tapan Behl 《化学与生物多样性》2023,20(8):e202300379
Designed, synthesized a sequence of novel benzimidazol-1-yl-1-phenylpropanone hybrids and assessed for in vitro antimicrobial potential counter to several bacterial strains. Computational Methodology was carried out for designing of the target molecules and structures were confirmed by spectroscopic analysis. Amid the 12 integrated derivatives, (3-(2-((3-fluorobenzylidene)amino)-1H-benzo[d]imidazol-1-yl)-1-phenylpropan-1-one ( 6g ) and 3-(2-((4-fluorobenzylidene)amino)-1H-benzo[d]imidazol-1-yl)-1-phenylpropan-1-one ( 6k ) were found to acquire excellent antibacterial activity against all bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus), whereas derivative 3-(2-((2-fluorobenzylidene)amino)-1H-benzo[d]imidazol-1-yl)-1-phenylpropan-1-one ( 6c ), was potent against Escherichia coli, Bacillus subtilis, Staphylococcus aureus and displayed moderate action against P. aeruginosa. Derivatives with NO2 substituent at 3rd and 4th position, 3-(2-((3-nitroobenzylidene)amino)-1H-benzo[d]imidazol-1-yl)-1-phenylpropan-1-one ( 6h ) and 3-(2-((4-nitroobenzylidene)amino)-1H-benzo[d]imidazol-1-yl)-1-phenylpropan-1-one ( 6 l ) respectively declared good to moderate results against all bacterial strains. Further, 3-(2-((3-chlorobenzylidene)amino)-1H-benzo[d]imidazol-1-yl)-1-phenylpropan-1-one ( 6f ) and 3-(2-((4-chlorobenzylidene)amino)-1H-benzo[d]imidazol-1-yl)-1-phenylpropan-1-one ( 6j ) were found to be more competent against both fungal strains (C. albicans, A. niger). Serial two-fold dilution method was used for the entire study and standard drugs utilized were ciprofloxacin and clotrimazole. MIC values (μg/ml) of novel synthesized analogs were reported in comparison to standard drugs for antibacterial and antifungal actions. Molecular docking studies showed that designed molecules dynamically bound with effective area of the receptor (DNA gyrase B, Clotrimazole complex of cytochrome P 45046A1) and in vitro results were in accord with in silico studies. 相似文献
15.
Sevil Şenkardeş İrem Atlıhan Elif Çayır Pınar Mega Tiber Oya Orun Şeyma Nigiz Ceren Özkul Miyase Gözde Gündüz Ş. Güniz Küçükgüzel 《化学与生物多样性》2023,20(8):e202300766
By exploiting the wide biological potential of the hydrazone scaffold, a series of hydrazone derivatives were synthesized, starting from N-(3-hydroxyphenyl)acetamide (metacetamol). The structures of the compounds were determined using IR, 1H and 13C-NMR, and mass spectroscopic methods. The obtained molecules ( 3 a – j ) were evaluated for their anticancer potential against MDA-MB-231 and MCF-7 breast cancer cell lines. According to the CCK-8 assay, all tested compounds showed moderate to potent anticancer activity. Among them, N-(3-(2-(2-(4-nitrobenzylidene)hydrazinyl)-2-oxoethoxy)phenyl)acetamide ( 3 e ) was found to be the most effective derivative with an IC50 value of 9.89 μM against MDA-MB-231 cell lines. This compound was further tested for its potential effects on the apoptotic pathway. Molecular docking studies was also carried out for 3 e in the colchicine binding pocket of tubulin. Additionally, compound 3 e also demonstrated effective antifungal activity, particularly against Candida krusei (MIC=8 μg/ml), indicating that nitro group at the 4th position of the phenyl ring was the most preferable substituent for both cytotoxic and antimicrobial activity. Our preliminary findings suggest that compound 3 e could be exploited as a leading structure for further anticancer and antifungal drug development. 相似文献
16.
AbstractIncreasing prevalence of resistance to anti-tubercular drugs has become the foremost challenge now. According to WHO, over half a million of multidrug resistance cases (rifampicin, isoniazid, etc.) were reported in 2017, mostly emerging from countries such as China, India, and Russia. Therefore, developing new drugs or repurposing existing ones is need of the hour. The Mycobacterium cell wall biogenesis pathway offers many attractive targets for drug discovery against Tuberculosis (TB). MurA, a transferase enzyme that catalyzes the initial step of peptidoglycan (PG) biosynthesis, is one among them. A peptidoglycan layer resides over the plasma membrane and is an integral component of the bacterial cell wall. Therefore, disruption of their formation through inhibition of MurA enzyme should lead to deficiency in Mycobacterium cell synthesis. Based on this strategy, we have designed this study where two libraries of peptidomimetic compounds (Asinex & ChemDiv) were first screened against our modeled MurA structure and then validated through molecular dynamic simulations. From our virtual screening, top four compounds (ChemDiv: D675-0102, D675-0217; Asinex: BDE25373574, BDE 26717803) were selected based on their docking scores, binding energies, and interactions with catalytic site residues, for further evaluation. Results revealed stable ligand-MurA interactions throughout 50?ns of MD simulation and also druggability acceptable pharmacokinetic profile for all four compounds. Thus, based on our findings, these compounds could be considered as potential inhibitors of Mycobacterium MurA enzyme and hence be further tested for in vitro experimental validation as TB therapeutic drug candidate.Communicated by Ramaswamy H. Sarma 相似文献
17.
Thais C.S. Souza Daniela Josa Teodorico C. Ramalho Melissa Soares Caetano 《Molecular simulation》2013,39(7):707-713
Mycobacterium tuberculosis is a leading cause of infectious disease in the world today. This outlook is aggravated by a growing number of M. tuberculosis infections in individuals who are immunocompromised as a result of HIV infections. Thus, new and more potent anti-TB agents are necessary. Therefore, acetolactate synthase (mtALS) was selected as a target enzyme to combat M. tuberculosis. In this work, the three-dimensional molecular model of the hypothetical structure for the ALS catalytic subunit of M. tuberculosis was elucidated by homology modelling. In addition, the orientations and binding affinities of sulfonylurea inhibitors with the new structure was investigated. Our findings could be helpful for the design of new, more potent mtAHAS inhibitors. 相似文献
18.
19.
The emodin anthraquinone derivatives are generally used in traditional Chinese medicine due to their various pharmacological activities. In the present study, a series of emodin anthraquinone derivatives have been designed and synthesized, among which 1,3‐dihydroxy‐6,8‐dimethoxyanthracene‐9,10‐dione is a natural compound that has been synthesized for the very first time, and 1,3‐dimethoxy‐5,8‐dimethylanthracene‐9,10‐dione is a compound that has never been reported earlier. Interestingly, while total seven of these compounds showed neuraminidase inhibitory activity in influenza virus with inhibition rate more than 50 %, specific four compounds exhibited significant inhibition of tumor cell proliferation. The further results demonstrate that 1,3‐dimethoxy‐5,8‐dimethylanthracene‐9,10‐dione showed the best anticancer activity among all the synthesized compounds by inducing highest apoptosis rate to HCT116 cancer cells and arresting their G0/G1 cell cycle phase, through elevation of intracellular level of reactive oxygen species (ROS). Moreover, the binding of 1,3‐dimethoxy‐5,8‐dimethylanthracene‐9,10‐dione with BSA protein has thoroughly been investigated. Altogether, this study suggests the neuraminidase inhibitory activity and antitumor potential of the new emodin anthraquinone derivatives. 相似文献
20.
Lutz F. Tietze Frank Behrendt Galina F. Pestel Ingrid Schuberth Mišo Mitkovski 《化学与生物多样性》2012,9(11):2559-2570
For a better understanding of the mode of action of duocarmycin and its analogs, the novel fluorescent duocarmycin derivatives 13 – 15 and 17b – 19b were synthesized, and their bioactivity as well as their cellular uptake investigated using confocal laser scanning microscopy (CLSM) in live‐cell imaging experiments. 相似文献