首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNF7 has been reported to play critical roles in various cancers. However, the underlying mechanisms of RNF7 in glioma development remain largely unknown. Herein, the expression level of RNF7 was examined in tissues by quantitative real-time PCR, Western blotting and immunohistochemistry. The effect of RNF7 on glioma progression was measured by performing CCK-8 and apoptosis assays, cell cycle-related experiments and animal experiments. The effect of RNF7 on PI3K/AKT signalling pathway was tested by Western blotting. First, we found that RNF7 was upregulated in tumour tissue compared with normal brain tissue, especially in high-grade glioma, and the high expression of RNF7 was significantly related to tumour size, Karnofsky Performance Scale score and a poor prognosis. Second, RNF7 overexpression facilitated tumour cell cycle progression and cell proliferation and suppressed apoptosis. Conversely, RNF7 knockdown suppressed tumour cell cycle progression and cell proliferation and facilitated apoptosis. Furthermore, follow-up mechanistic studies indicated that RNF7 could facilitate glioma cell proliferation and cell cycle progression and inhibit apoptosis by activating the PI3K/AKT signalling pathway. This study shows that RNF7 can clearly promote glioma cell proliferation by facilitating cell cycle progression and inhibiting apoptosis by activating the PI3K/AKT signalling pathway. Targeting the RNF7/PI3K/AKT axis may provide a new perspective on the prevention or treatment of glioma.  相似文献   

2.
Bladder cancer (BC) is a major disease of the genitourinary tract, and chemotherapy is one of the main treatments commonly used at present. SC66 is a new type of allosteric AKT inhibitor that is reported to play an effective inhibitory role in the progression of many other types of tumours, but there is no reported research on its role in BC. In this study, we found that SC66 significantly inhibited the proliferation and EMT-mediated migration and invasion of T24 and 5637 cells. In addition, experiments confirmed that SC66 achieved its antitumour effect by inducing cell apoptosis and affecting the cell cycle. Luciferase assays confirmed that SC66 exerted an antitumour effect through the AKT/β-catenin signalling pathway, and this inhibitory effect was reversed after the addition of the β-catenin signalling pathway activator, CHIR-99021. In addition, animal studies have shown that, compared with the control group, the experimental group with SC66 intraperitoneal injection showed significantly reduced the tumour weight and volume in nude mice with T24 tumours and that SC66 combined with cisplatin achieved better inhibition on tumours. Western blot analysis and immunohistochemistry staining confirmed that SC66 inhibited the EMT process in vivo and induced apoptosis through the AKT/β-catenin signalling pathway. In conclusion, our study demonstrated that SC66 exerts a significant antitumour effect through the AKT/β-catenin signalling pathway, thereby providing a new potential treatment for BC.  相似文献   

3.
The current study was undertaken to investigate anticancer activity of coumestrol phytoestrogen against human skin cancer. MTT assay was performed for cell viability assessment and clonogenic assay for cell colony formation assessment. Apoptosis was analysed by Annexin V/FITC staining, AO/EB staining and western blotting assays. Effects on the m-TOR/PI3K/AKT signalling pathway were investigated by western blotting. Results indicated that coumestrol induced significant toxicity in human skin cancer cells in contrast to mouse skin cancer cells. The proliferation rate in normal skin cells remained almost intact. Annexin V-FITC and AO/EB staining assays indicated coumestrol induced cytotoxicity in skin cancer cells is mediated through apoptosis stimulation. The apoptosis in skin cancer cells was mediated through caspase-activation. Cell migration and invasion was inhibited by coumestrol in human skin cancer cells via inhibition of MMP-2 and MMP-9 expressions. Moreover, m-TOR/PI3K/AKT signalling pathway in SKEM-5 cells was blocked by coumestrol.  相似文献   

4.
Proteasome 26S subunit ATPase 4 (PSMC4) could regulate cancer progression. However, the function of PSMC4 in prostate carcinoma (PCa) progression requires further clarification. In the study, PSMC4 and chromobox 3 (CBX3) levels were verified by TCGA data and tissue microarrays. Cell counting kit-8, cell apoptosis, cell cycle, wound healing, transwell and xenograft tumour model assays were performed to verify biological functions of PSMC4 in PCa. RNA-seq, PCR, western blotting and co-IP assays were performed to verify the mechanism of PSMC4. Results showed that PSMC4 level was significantly increased in PCa tissues, and patients with PCa with a high PSMC4 level exhibited shorter overall survival. PSMC4 knockdown markedly inhibited cell proliferation, cell cycle and migration in vitro and in vivo, and significantly promoted cell apoptosis. Then further study revealed that CBX3 was a downstream target of PSMC4. PSMC4 knockdown markedly reduced CBX3 level, and inhibited PI3K-AKT-mTOR signalling. CBX3 overexpression markedly promoted epidermal growth factor receptor (EGFR) level. Finally, PSMC4 overexpression showed reverse effect in DU145 cells, and the effects of PSMC4 overexpression on cell proliferation, migration and clonal formation were rescued by the CBX3 knockdown, and regulated EGFR-PI3K-AKT-mTOR signalling. In conclusion, PSMC4 could regulate the PCa progression by mediating the CBX3-EGFR-PI3K-AKT-mTOR pathway. These findings provided a new target for PCa treatment.  相似文献   

5.
The highly unsaturated fatty acids (HUFA) of the n-6 and n-3 series are involved in cell signalling in normal and transformed cells and have recently been associated with pathways leading to tumour cell death. The antitumour activity of three HUFA (arachidonic acid, gamma linolenic acid and eicosapentaenoic acid) were studied in glioma cells and tissue. Using five glioma models, including primary cell suspensions prepared from 46 human glioma samples and an in vivo rat C6 glioma model, we obtained evidence that, following exposure to HUFA, either administered into the medium surrounding human glioma cells or in 16 preparations of multicellular spheroids derived from human and rodent glioma cell lines (C6, MOG, U87, U373) or administered intra-tumourally by infusion using osmotic mini-pumps in 48 rats, glioma regression and apoptosis were detected. Additionally, synergy between gamma irradiation and HUFA administration was observed in 13 experiments analyzing C6 glioma cell apoptosis in vitro. These pro-apoptotic and antiproliferative activities were observed using both C18 and C20 fatty acids of the n-6 and n-3 series, but not when saturated and monounsaturated C18 and C20 fatty acid preparations were used. In the glioma infusion model, in addition to the apoptosis detected in glioma tissue infused with HUFA for 3-7 days, preservation of normal neural tissue and vasculature in adjacent brain was observed. Also, there was little evidence of acute inflammatory infiltration in regressing tumours. Our findings suggest that intraparenchymal infusion of HUFA may be effective in stimulating glioma regression.  相似文献   

6.
Glioma is a brain tumour that is often diagnosed, and temozolomide (TMZ) is a common chemotherapeutic drug used in glioma. Yet, resistance to TMZ is a chief hurdle towards curing the malignancy. The current work explores the pathways and involvement of miR‐3116 in the TMZ resistance. miR‐3116 and FGFR1 mRNA were quantified by real‐time PCR in malignant samples and cell lines. Appropriate assays were designed for apoptosis, viability, the ability to form colonies and reporter assays to study the effects of the miR‐3116 or FGFR1. The involvement of PI3K/AKT signalling was assessed using Western blotting. Tumorigenesis was evaluated in an appropriate xenograft mouse model in vivo. This work revealed that the levels of miR‐3116 dipped in samples resistant to TMZ, while increased miR‐3116 caused an inhibition of the tumour features mentioned above to hence augment TMZ sensitivity. miR‐3116 was found to target FGFR1. When FGFR1 was overexpressed, resistance to TMZ was augmented and reversed the sensitivity caused by miR‐3116. Our findings further confirmed PI3K/AKT signalling pathway is involved in this action. In conclusion, miR‐3116 sensitizes glioma cells to TMZ through FGFR1 downregulation and the PI3K/AKT pathway inactivation. Our results provide a strategy to overcome TMZ resistance in glioma treatment.  相似文献   

7.
The prognosis of glioma is generally poor and is the cause of primary malignancy in the brain. The role of microRNAs has been implicated in tumour inhibition or activation. In several cancers, the Six1 signalling pathway has been found to be aberrant and also relates to the formation of tumours. We analysed the database for expression profiles and clinical specimens of various grades of glioma to assess microRNA‐155‐3p (miR‐155‐3p) expression. The role of miR‐155‐3p in glioblastoma, cell cycle, proliferation, apoptosis and resistance to temozolomide was assessed in vitro through flow cytometry and cell proliferation assays. Bioinformatics analyses, and assays using luciferase reporter, and immunoblotting revealed that miR‐155‐3p targets Six1 and that the relationship between glioma and healthy brain tissues was significantly inverse. In rescue experiments, overexpressed Six1 revoked the changes in cell cycle distribution, proliferation and resistance to temozolomide estimated by apoptosis induced by overexpressed miR‐155‐3p. MiR‐155‐3p inhibition reduced glioma cell growth and proliferation in the brain of a mouse model and increased the survival of mice with gliomas. Thus, miR‐155‐3p modulates Six1 expression and facilitates the progression of glioblastoma and resistance to temozolomide and may act as a novel diagnostic biomarker and a target for glioma treatment.  相似文献   

8.
Long noncoding RNA Breast Cancer Antiestrogen Resistance 4 (BCAR4) has been identified to be oncogenic in several cancers. In our study, we demonstrated that BCAR4 expression was significantly upregulated in glioma tissues compared with paired nontumor tissues. In addition, higher BCAR4 level was associated with poor overall survival in patients with glioma. Besides, we also discovered that knockdown of BCAR4 inhibited cell proliferation, whereas BCAR4 overexpression promoted this process. Intriguingly, we proved a cellular transformation of normal human astrocyte cells (NHAs) in response to enforced expression of BCAR4. In addition, we revealed that BCAR4 affected cell proliferation in glioma cells by promoting cell cycle progression and inhibiting cell apoptosis. Mechanistically, we uncovered that BCAR4 activated PI3K/AKT signaling pathway in glioma through upregulating EGFR and interacting with it. Moreover, activating PI3K/AKT pathway could reverse the repressive effects caused by BCAR4 silence on the biological behaviors of glioma cells, whereas inhibition of this pathway rescued the impact of BACR4 upregulation in NHAs. These findings disclosed that BCAR4 contributes to glioma progression by enhancing cell growth via activating EGFR/PI3K/AKT pathway, providing potent evidence that BCAR4 could be an effective new target for treatment and prognosis of glioma patients.  相似文献   

9.
Cervical cancer is common cancer among women with high morbidity. MicroRNAs (miRs) are involved in the progression and development of cervical cancer. This study aimed to explore the effect of miR-99b-5p (miR-99b) on invasion and migration in cervical cancer through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway. The microarray-based analysis was used to screen out differentially expressed miRNAs. Expression of miR-99b, PI3K, AKT, mTOR, and ribosomal protein S6 kinase (p70S6K) was determined in both cervical cancer tissues and paracancerous tissues. Next, alteration of miR-99b expression in cervical cancer was conducted to evaluate levels of PI3K, AKT, mTOR, p70S6K matrix metallopeptidase 2, epithelial cell adhesion molecule, and intercellular adhesion molecule 1, as well as the effect of miR-99b on cell proliferation, invasion, migration, cell cycle distribution, and apoptosis. The results demonstrated that miR-99b expression was decreased and levels of PI3K, AKT, mTOR, and p70S6K were elevated in cervical cancer tissues. More important, overexpressed miR-99b repressed the PI3K/AKT/mTOR signaling pathway, inhibited cell proliferation, invasion, and migration, blocked cell cycle entry, and promoted apoptosis in cervical cancer. These results indicate that miR-99b attenuates the migration and invasion of human cervical cancer cells through downregulation of the PI3K/AKT/mTOR signaling pathway, which provides a therapeutic approach for cervical cancer treatment.  相似文献   

10.
Gastric cancer (GC) is one of the most common cancers worldwide and has especially high morbidity and mortality in China. LEM domain containing 1 (LEMD1), an important cancer-testis antigen, has been reported to be overexpressed in various cancers and promotes the progression of cancers. However, the biological characteristics of LEMD1 remain to be explored in GC. The connection between LEMD1 expression and GC progression was analyzed by using The Cancer Genome Atlas datasets and our human microarray datasets. A Kaplan-Meier plot was used to analyze the relationship between LEMD1 expression and prognosis. The expression of LEMD1 was analyzed by quantitative real-time polymerase chain reaction and Western blot, and the proliferation ability of GC cells was analyzed by cell proliferation and colony formation assays and 5-ethynyl-2′-deoxyuridine analysis. The cell cycle and apoptosis were analyzed by flow cytometry. Furthermore, subcutaneously implanted tumor models in nude mice were used to demonstrate the role of LEMD1 in promoting tumor proliferation in vivo. In this study, we demonstrated that the LEMD1 expression level was increased in GC tissues and cells compared with normal tissues and GES-1. The in vivo and in vitro assays showed that LEMD1 promoted GC cell proliferation by regulating the cell cycle and apoptosis. Moreover, we showed that LEMD1 regulated cell proliferation by activating the phosphatidylinositol 3 kinase (PI3K) / protein kinase B (AKT) signaling pathway. Overall, the results of our study suggest that LEMD1 contributes to GC proliferation by regulating the cell cycle and apoptosis via activation of the PI3K/AKT signaling pathway. LEMD1 may act as a potential target for GC treatment.  相似文献   

11.
This study purposed to explore the correlation between miR‐129‐5p and TGIF2 and their impacts on glioma cell progression. Differentially expressed miRNA was screened through microarray analysis. MiR‐129‐5p expression levels in glioma tissues and cells were measured by qRT‐PCR. CCK‐8 assay, flow cytometer, transwell assay and wound‐healing assay were employed to detect cell proliferation, apoptosis and cycle, invasiveness and migration, respectively. Dual‐luciferase reporting assay was performed to confirm the targeted relationship between miR‐129‐5p and TGIF2. The effects of TGIF2 expression on cell biological functions were also investigated using the indicated methods. Tumour xenograft was applied to explore the impact of miR‐129‐5p on tumorigenesis in vivo. MiR‐129‐5p expression was down‐regulated in both glioma tissues and glioma cells, while TGIF2 expression was aberrantly higher than normal level. Dual‐luciferase reporter assay validated the targeting relation between miR‐129‐5p and TGIF2. Overexpression of miR‐129‐5p or down‐regulation of TGIF2 inhibited the proliferation, invasion and migration capacity of glioma cells U87 and U251, and meanwhile blocked the cell cycle as well as induced cell apoptosis. MiR‐129‐5p overexpression repressed the tumour development in vivo. MiR‐129‐5p and TGIF2 had opposite biological functions in glioma cells. MiR‐129‐5p could inhibit glioma cell progression by targeting TGIF2, shining light for the development of target treatment for glioma.  相似文献   

12.

The present study was initiated to examine the anticancer effects of Anhuienoside C (AC) against ovarian cancer and postulates the possible molecular mechanism of its action. 3-[4,5-Dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay was implemented for determination of the effects of AC on cell viability of the ovarian cancer OVACAR-3 cell line. To study cellular morphology, phase contrast microscopy was performed. Apoptosis was examined via acridine orange/ethidium bromide used staining assays. Flow cytometry was used to check the different phases of the cell cycle. Cell migration and invasion assays were performed via transwell chamber assay. The effects of AC on expression of phosphoinositide 3-kinases (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) protein in ovarian cell were assessed using western blotting assay. The results indicated that the cell proliferation rate lowered in AC-treated OVACAR-3 cells as compared to the untreated controls in a dose-dependent manner. Cell morphology changed substantially by the exposure to AC and remained dose dependent. These morphological changes were indicative of apoptotic cell death. Apoptosis analysis showed dose-dependent increase of apoptosis. The cell migration and invasion of OVACAR-3 cells was reduced to a minimum by AC in a dose-dependent manner. Finally, western blotting assay showed blocking of PI3K/AKT/mTOR signaling pathway with increasing AC doses. Taking all together, AC is a potential ovarian cancer inhibitor. It induces its anti-ovarian cancer effects via induction of apoptosis, delaying cell migration and invasion, and blocking PI3K/AKT/mTOR signaling pathway.

  相似文献   

13.
IL-22 is a recently discovered cytokine of the IL-10 family that binds to a class II cytokine receptor composed of IL-22R1 and IL-10R2(c) and influences a variety of immune reactions. As IL-22 has also been shown to modulate cell cycle and proliferation mediators such as ERK1/2 and JNK, we studied the role of IL-22 in proliferation, apoptosis, and cell cycle regulation in EMT6 murine breast cancer cells in vitro and in vivo. In this study, we report that murine breast cancer cells express functional IL-22R as indicated by RT-PCR studies, immunoblotting, and STAT3 activation assays. Importantly, IL-22 exposure of EMT6 cells resulted in decreased levels of phosphorylated ERK1/2 and AKT protein kinases, indicating an inhibitory effect of IL-22 on signaling pathways promoting cell proliferation. Furthermore, IL-22 induced a cell cycle arrest of EMT6 cells in the G(2)-M phase. IL-22 reduced EMT6 cell numbers and the proliferation rate by approximately 50% as measured by [(3)H]thymidine incorporation. IL-22 treatment of EMT6 tumor-bearing mice lead to a decreased tumor size and a reduced tumor cell proliferation in vivo, as determined by 3'-deoxy-3'-fluorothymidine-positron emission tomography scans. Interestingly, IL-22 did not induce apoptosis, as determined in annexin V binding assay and caspase-3 activation assay and had no effect on angiogenesis in vivo. In conclusion, our results indicate that IL-22 reduced tumor growth by inhibiting signaling pathways such as ERK1/2 and AKT phosphorylation that promote tumor cell proliferation in EMT6 cells. Therefore, IL-22 may play a role in the control of tumor growth and tumor progression.  相似文献   

14.
Highly unsaturated fatty acids (HUFAs) are naturally occurring anti-tumour agents. HUFAs act as intracellular signalling molecules in cell proliferation and death. In human glioma, HUFAs may stimulate tumour regression and apoptosis. An implantation glioma model, using the C6 glioma cell line, was used to investigate the bioactivity of locally infused n-6 HUFA gamma linolenic acid (GLA). Rat brains (15 normal and 37 C6 tumour bearing) were infused with vehicle or GLA 200 microM-2 mM. The most active local concentration of GLA for anti-tumour activity was 2 mM, infused at 1 microl/h over 7 days. Tumour regression, increased apoptosis and decreased proliferation were observed in tumours of rats infused with this concentration of GLA. Little effect on normal neuronal tissue was detected. The intraparenchymal route was an effective method of GLA administration in the treatment of glioma. These studies provide further insights into the potential role of HUFAs as anti-glioma agents.  相似文献   

15.
Lung cancer remains the leading cause of cancer-related death all over the world. In spite of the great advances made in surgery and chemotherapy, the prognosis of lung cancer patients is poor. A substantial fraction of long noncoding RNAs (lncRNAs) can regulate various cancers. A recent study has reported that lncRNA HOXB-AS3 plays a critical role in cancers. However, its biological function remains unclear in lung cancer progression. In the current research, we found HOXB-AS3 was obviously elevated in NSCLC tissues and cells. Functional assays showed that inhibition of HOXB-AS3 was able to repress A549 and H1975 cell proliferation, cell colony formation ability and meanwhile, triggered cell apoptosis. Furthermore, the lung cancer cell cycle was mostly blocked in the G1 phase whereas the cell ratio in the S phase was reduced. Also, A549 and H1975 cell migration and invasion capacity were significantly repressed by the loss of HOXB-AS3. The PI3K/AKT pathway has been implicated in the carcinogenesis of multiple cancers. Here, we displayed that inhibition of HOXB-AS3 suppressed lung cancer cell progression via inactivating the PI3K/AKT pathway. Subsequently, in vivo experiments were utilized in our study and it was demonstrated that HOXB-AS3 contributed to lung cancer tumor growth via modulating the PI3K/AKT pathway. Overall, we implied that HOXB-AS3 might provide a new perspective for lung cancer treatment via targeting PI3K/AKT.  相似文献   

16.
AMPH1, an abundant protein in nerve terminals, plays a critical role in the recruitment of dynamin to sites of clathrin‐mediated endocytosis. Recently, it is reported to be involved in breast cancer and lung cancer. However, the impact of AMPH1 on ovarian cancer is unclear. In this study, we used gain‐of‐function and loss‐of‐function methods to explore the role of AMPH1 in ovarian cancer cells. AMPH1 inhibited ovarian cancer cell growth and cell migration, and promoted caspase‐3 activity, resulting in the increase of cell apoptosis. In xenograft mice model, AMPH1 prevented tumour progression. The anti‐oncogene effects of AMPH1 on ovarian cancer might be partially due to the inhibition of PI3K/AKT signalling pathway after overexpression of AMPH1. Immunohistochemistry analysis showed that the staining of AMPH1 was remarkably reduced in ovarian cancer tissues compared with normal ovarian tissues. In conclusion, our study identifies AMPH1 as a tumour suppressor in ovarian cancer in vitro and in vivo. This is the first evidence that AMPH1 inhibited cell growth and migration, and induced apoptosis via the inactivation of PI3K/AKT signalling pathway on ovarian cancer, which may be used as an effective strategy.  相似文献   

17.
BackgroundGlioma is the most common cancer in the central nervous system. Previous studies have revealed that the miR-376 family is crucial in tumour development; however, its detailed mechanism in glioma is not clear.MethodsCellular mRNA or protein levels of miR-376a, SIRT1, VEGF and YAP1 were detected via qRT–PCR or Western blotting. We analysed the proliferation, angiogenesis and migration abilities of glioma cell lines using colony formation, tube formation and Transwell assays. A luciferase assay was performed to determine whether miR-376a could recognize SIRT1 mRNA. Xenograft experiments were performed to analyse the tumorigenesis capacity of glioma cell lines in nude mice. The angiogenesis marker CD31 in xenograft tumours was detected via immunohistochemistry (IHC).ResultsmiR-376a expression was lower in glioma cells than in normal astrocytes. miR-376a mimic inhibited SIRT1, YAP1, and VEGF expression and suppressed the proliferation, migration and angiogenesis abilities of the glioma cell lines LN229 and A172, whereas miR-376a inhibitor exerted the opposite functions. In a luciferase assay, miR-376a inhibited the luciferase activity of WT-SIRT1. SIRT1 overexpression upregulated YAP1 and VEGF in glioma cells and promoted proliferation, migration and angiogenesis. Xenografts with ectopic miR-376a expression exhibited lower volumes and weights and a slower growth curve. Overexpression of miR-376a inhibited YAP1/VEGF signalling and angiogenesis by inhibiting SIRT1 in xenograft tissues.ConclusionmiR-376a directly targets and inhibits SIRT1 in glioma cells. Downregulation of SIRT1 resulted in decreased YAP1 and VEGF signalling, which led to suppression of glioma cell proliferation, migration and angiogenesis.  相似文献   

18.
Insulin‐like growth factor‐2 messenger RNA‐binding protein 3 (IGF2BP3) has been reported to contribute to tumorigenesis in several human cancers. However, the biological functions of IGF2BP3 in bladder cancer are poorly understood. We investigated the relation between IGF2BP3 expression and prognosis of bladder cancer patients. Cell proliferation, cell cycle and cell apoptosis assays were performed to assess IGF2BP3 functions. The results showed that IGF2BP3 was overexpressed in bladder cancer tissues compared with that in normal bladder tissues, and its higher expression was closely correlated with poor prognosis in bladder cancer patients. Overexpression of IGF2BP3 markedly promoted cell proliferation and cell cycle progression and inhibited cell apoptosis, while knockdown of IGF2BP3 notably suppressed the proliferation, promoted cell apoptosis and induced cell cycle arrest at the G0/G1 phase. Mechanistically, we revealed that IGF2BP3 promotes the activation of the JAK/STAT pathway in bladder cancer cells. Moreover, the JAK/STAT inhibitor dramatically blocked the tumour‐promoting activity of IGF2BP3. Tumour growth in vivo was also suppressed by knocking down of IGF2BP3. Hence, IGF2BP3 facilitated bladder cancer cell proliferation by activating the JAK/STAT signalling pathway. These findings suggest that IGF2BP3 exhibits an oncogenic effect in human bladder cancer progression.  相似文献   

19.
20.
Pan  Meichen  Shi  Jingren  Yin  Shangqi  Meng  Huan  He  Chaonan  Wang  Yajie 《Neurochemical research》2021,46(7):1737-1746

Glioma is the most frequent primary malignant brain tumor, which is characterized by high incidence and mortality, with a poor prognosis. Numerous studies have revealed the abnormal expression of long non-coding RNAs in gliomas. This study explored the effects and potential mechanism of LINC00663 in glioma. The LINC00663 levels and their prognostic values were analyzed from the GEO databases using bioinformatics. Also, LINC00663 expression in tissue samples and cell lines was measured using qRT-PCR. The roles of LINC00663 in glioma were confirmed using CCK8, EdU assay as well as Transwell tests. Moreover, the influences of LINC00663 on the AKT/mTOR signal cascades were detected using western blotting assay. LINC00663 expression was higher in both glioma tissues and cell lines than that in the normal brain tissues and human astrocytes. High expression of LINC00663 led to the low overall survival rate of patients with glioma. LINC00663 knockdown notably restrained cell proliferation, migration, and invasion abilities by decreasing the activation of AKT and mTOR. This study indicated that LINC00663 might have a cancer-promoting role in accelerating glioma development and progression through regulating AKT/mTOR pathway.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号