首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Redox state of glutathione in human plasma   总被引:5,自引:0,他引:5  
Thiol and disulfide forms of glutathione (GSH) and cysteine (Cys) were measured in plasma from 24 healthy individuals aged 25-35 and redox potential values (E(h)) for thiol/disulfide couples were calculated using the Nernst equation. Although the concentration of GSH (2.8 +/- 0.9 microM) was much greater than that of GSSG (0.14 +/- 0.04 microM), the redox potential of the GSSG/2GSH pool (-137 +/- 9 mV) was considerably more oxidized than values for tissues and cultured cells (-185 to -258 mV). This indicates that a rapid oxidation of GSH occurs upon release into plasma. The difference in values between individuals was remarkably small, suggesting that the rates of reduction and oxidation in the plasma are closely balanced to maintain this redox potential. The redox potential for the Cys and cystine (CySS) pool (-80 +/- 9 mV) was 57 mV more oxidized, showing that the GSSG/2GSH and the CySS/2Cys pools are not in redox equilibrium in the plasma. Potentials for thiol/disulfide couples involving CysGly were intermediate between the values for these couples. Regression analyses showed that the redox potentials for the different thiol/disulfide couples within individuals were correlated, with the E(h) for CySS-mono-Gly/(Cys. CysGly) providing the best correlation with other low molecular weight pools as well as protein disulfides of GSH, CysGly and Cys. These results suggest that E(h) values for GSSG/2GSH and CySS-mono-Gly/(Cys. CysGly) may provide useful means to quantitatively express the oxidant/antioxidant balance in clinical and epidemiologic studies.  相似文献   

2.
The tripeptide antioxidant glutathione (γ-l-glutamyl-l-cysteinyl-glycine; GSH) essentially contributes to thiol-disulphide conversions, which are involved in the control of seed development, germination, and seedling establishment. However, the relative contribution of GSH metabolism in different seed structures is not fully understood. We studied the GSH/glutathione disulphide (GSSG) redox couple and associated low-molecular-weight (LMW) thiols and disulphides related to GSH metabolism in bread wheat (Triticum aestivum L.) seeds, focussing on redox changes in the embryo and endosperm during germination. In dry seeds, GSH was the predominant LMW thiol and, 15?h after the onset of imbibition, embryos of non-germinated seeds contained 12 times more LMW thiols than the endosperm. In germinated seeds, the embryo contained 17 and 11 times more LMW thiols than the endosperm after 15 and 48?h, respectively. This resulted in the embryo having significantly more reducing half-cell reduction potentials of GSH/GSSG and cysteine (Cys)/cystine (CySS) redox couples (EGSSG/2GSH and ECySS/2Cys, respectively). Upon seed germination and early seedling growth, Cys and CySS concentrations significantly increased in both embryo and endosperm, progressively contributing to the cellular LMW thiol-disulphide redox environment (Ethiol-disulphide). The changes in ECySS/2Cys could be related to the mobilisation of storage proteins in the endosperm during early seedling growth. We suggest that EGSSG/2GSH and ECySS/2Cys can be used as markers of the physiological and developmental stage of embryo and endosperm. We also present a model of interaction between LMW thiols and disulphides with hydrogen peroxide (H2O2) in redox regulation of bread wheat germination and early seedling growth.  相似文献   

3.
Limited data in animal models suggest that colonic mucosa undergoes adaptive growth following massive small bowel resection (SBR). In vitro data suggest that intestinal cell growth is regulated by reactive oxygen species and redox couples [e.g., glutathione (GSH)/glutathione disulfide (GSSG) and cysteine (Cys)/cystine (CySS) redox]. We investigated the effects of SBR and alterations in redox on colonic growth indexes in rats after either small bowel transection (TX) or 80% midjejunoileal resection (RX). Rats were pair fed +/- blockade of endogenous GSH synthesis with buthionine sulfoximine (BSO). Indexes of colonic growth, proliferation, and apoptosis and GSH/GSSG and Cys/CySS redox potentials (E(h)) were determined. RX significantly increased colonic crypt depth, number of cells per crypt, and epithelial cell proliferation [crypt cell bromodeoxyuridine (BrdU) incorporation]. Administration of BSO markedly decreased colonic mucosal GSH, GSSG, and Cys concentrations in both TX and RX groups, with a resultant oxidation of GSH/GSSG and Cys/CySS E(h). BSO did not alter colonic crypt cell apoptosis but significantly increased all colonic mucosal growth indexes (crypt depth, cells/crypt, and BrdU incorporation) in both TX and RX groups in a time- and dose-dependent manner. BSO significantly decreased plasma GSH and GSSG, oxidized GSH/GSSG E(h), and increased plasma Cys and CySS concentrations. Collectively, these data provide in vivo evidence indicating that oxidized colonic mucosal redox status stimulates colonic mucosal growth in rats. The data also suggest that GSH is required to maintain normal colonic and plasma Cys/CySS homeostasis in these animal models.  相似文献   

4.
《Free radical research》2013,47(5):656-664
Abstract

The tripeptide antioxidant γ-L-glutamyl-L-cysteinyl-glycine, or glutathione (GSH), serves a central role in ROS scavenging and oxidative signalling. Here, GSH, glutathione disulphide (GSSG), and other low-molecular-weight (LMW) thiols and their corresponding disulphides were studied in embryogenic suspension cultures of Dactylis glomerata L. subjected to moderate (0.085 M NaCl) or severe (0.17 M NaCl) salt stress. Total glutathione (GSH + GSSG) concentrations and redox state were associated with growth and development in control cultures and in moderately salt-stressed cultures and were affected by severe salt stress. The redox state of the cystine (CySS)/2 cysteine (Cys) redox couple was also affected by developmental stage and salt stress. The glutathione half-cell reduction potential (EGSSG/2 GSH) increased with the duration of culturing and peaked when somatic embryos were formed, as did the half-cell reduction potential of the CySS/2 Cys redox couple (ECySS/2 Cys). The most noticeable relationship between cellular redox state and developmental state was found when all LMW thiols and disulphides present were mathematically combined into a ‘thiol–disulphide redox environment’ (Ethiol–disulphide), whereby reducing conditions accompanied proliferation, resulting in the formation of pro-embryogenic masses (PEMs), and oxidizing conditions accompanied differentiation, resulting in the formation of somatic embryos. The comparatively high contribution of ECySS/2 Cys to Ethiol–disulphide in cultures exposed to severe salt stress suggests that Cys and CySS may be important intracellular redox regulators with a potential role in stress signalling.  相似文献   

5.
Cigarette smoking contributes to the development or progression of numerous chronic and age-related disease processes, but detailed mechanisms remain elusive. In the present study, we examined the redox states of the GSH/GSSG and Cys/CySS couples in plasma of smokers and nonsmokers between the ages of 44 and 85 years (n = 78 nonsmokers, n = 43 smokers). The Cys/CySS redox in smokers (−64 ± 16 mV) was more oxidized than nonsmokers (− 76 ± 11 mV; p < .001), with decreased Cys in smokers (9 ± 5 μM) compared to nonsmokers (13 ± 6 μM; p < .001). The GSH/GSSG redox was also more oxidized in smokers (−128 ± 18 mV) than in nonsmokers (−137 ± 17 mV; p = .01) and GSH was lower in smokers (1.8 ± 1.3 μM) than in nonsmokers (2.4 ± 1.0; p < .005). Although the oxidation of GSH/GSSG can be explained by the role of GSH in detoxification of reactive species in smoke, the more extensive oxidation of the Cys pool shows that smoking has additional effects on sulfur amino acid metabolism. Cys availability and Cys/CySS redox are known to affect cell proliferation, immune function, and expression of death receptor systems for apoptosis, suggesting that oxidation of Cys/CySS redox or other perturbations of cysteine metabolism may have a key role in chronic diseases associated with cigarette smoking.  相似文献   

6.
Several lines of evidence indicate that depletion of glutathione (GSH), a critical thiol antioxidant, is associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, GSH synthesis depends on the amino acid cysteine (Cys), and relatively little is known about the regulation of Cys in fibrosis. Cys and its disulfide, cystine (CySS), constitute the most abundant low-molecular weight thiol/disulfide redox couple in the plasma, and the Cys/CySS redox state (E(h) Cys/CySS) is oxidized in association with age and smoking, known risk factors for IPF. Furthermore, oxidized E(h) Cys/CySS in the culture media of lung fibroblasts stimulates proliferation and expression of transitional matrix components. The present study was undertaken to determine whether bleomycin-induced lung fibrosis is associated with a decrease in Cys and/or an oxidation of the Cys/CySS redox state and to determine whether these changes were associated with changes in E(h) GSH/glutathione disulfide (GSSG). We observed distinct effects on plasma GSH and Cys redox systems during the progression of bleomycin-induced lung injury. Plasma E(h) GSH/GSSG was selectively oxidized during the proinflammatory phase, whereas oxidation of E(h) Cys/CySS occurred at the fibrotic phase. In the epithelial lining fluid, oxidation of E(h) Cys/CySS was due to decreased food intake. Thus the data show that decreased precursor availability and enhanced oxidation of Cys each contribute to the oxidation of extracellular Cys/CySS redox state in bleomycin-induced lung fibrosis.  相似文献   

7.
Human cell lines regulate the redox state (E(h)) of the cysteine/cystine (Cys/CySS) couple in culture medium to approximately -80 mV, a value similar to the average E(h) for Cys/CySS in human plasma. The mechanisms involved in regulation of extracellular E(h) of Cys/CySS are not known, but GSH is released from tissues at rates proportional to tissue GSH concentration, and this released GSH could react with CySS to contribute to maintenance of this balance. The present study was undertaken to determine whether depletion of cellular GSH alters regulation of extracellular Cys/CySS E(h). Decrease of GSH in HT-29 cells by inhibiting synthesis with l-buthionine-[S,R]-sulfoximine showed no effect on the rate of reduction of extracellular CySS to achieve a stable E(h) for Cys/CySS in the culture medium. Limiting Cys and CySS in the culture medium also substantially decreased cellular GSH but resulted in no significant effect on extracellular Cys/CySS E(h). Addition of CySS to these cells showed that extracellular Cys/CySS E(h) approached -80 mV at 4 h while cellular GSH and extracellular GSH/GSSG E(h) recovered more slowly. Together, these results show that HT-29 cells have the capacity to regulate the extracellular Cys/CySS E(h) by mechanisms that are independent of cellular GSH. The results suggest that transport systems for Cys and CySS and/or membranal oxidoreductases could be more important than cellular GSH in regulation of extracellular Cys/CySS E(h).  相似文献   

8.
Zhu JW  Yuan JF  Yang HM  Wang ST  Zhang CG  Sun LL  Yang H  Zhang H 《Biochimie》2012,94(3):617-627
Extracellular cysteine (Cys)/cystine (CySS) redox potential (Eh) has been shown to regulate diverse biological processes, including enzyme catalysis, gene expression, and signaling pathways for cell proliferation and apoptosis, and is sensitive to aging, smoking, and other host factors. However, the effects of extracellular Cys/CySS redox on the nervous system remain unknown. In this study, we explored the role of extracellular Cys/CySS Eh in metabotropic glutamate receptor 5 (mGlu5) activation to understand the mechanism of its regulation of nerve cell growth and activation. We showed that the oxidized Cys/CySS redox state (0 mV) in C6 glial cells induced a significant increase in mGlu5-mediated phosphorylation of extracellular signal-regulated kinase (ERK), blocked by an inhibitor of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (MEK), U0126, a nonpermeant alkylating agent, 4-acetamide-4′-maleimidylstilbene-2,2′-disulfonic acid (AMS), and a specific mGlu5 antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP), respectively. ERK phosphorylation under oxidized extracellular Cys/CySS Eh was confirmed in mGlu5-overexpressed human embryonic kidney 293 (HEK293) cells. Oxidized extracellular Cys/CySS Eh also stimulated the generation of intracellular reactive oxygen species (ROS) involved in the phosphorylation of ERK by mGlu5. Moreover, activation of mGlu5 by oxidized extracellular Cys/CySS Eh was found to affect expression of NF-κB and inducible nitric oxide synthase (iNOS). The results also showed that extracellular Cys/CySS Eh involved in the activation of mGlu5 controlled cell death and cell activation in neurotoxicity. In addition, plasma Cys/CySS Eh was found to be associated with the process of Parkinson’s disease (PD) in a rotenone-induced rat model of PD together with dietary deficiency and supplementation of sulfur amino acid (SAA). The effects of extracellular Cys/CySS Eh on SAA dietary deficiency in the rotenone-induced rat model of PD was almost blocked by MPEP pretreatment, further indicating that oxidized extracellular Cys/CySS Eh plays a role in mGlu5 activity. Taken together, the results indicate that mGlu5 can be activated by extracellular Cys/CySS redox in nerve cells, which possibly contributes to the process of PD. These in vitro and in vivo findings may aid in the development of potential new nutritional strategies that could assist in slowing the degeneration of PD.  相似文献   

9.
The tripeptide antioxidant γ-L-glutamyl-L-cysteinyl-glycine, or glutathione (GSH), serves a central role in ROS scavenging and oxidative signalling. Here, GSH, glutathione disulphide (GSSG), and other low-molecular-weight (LMW) thiols and their corresponding disulphides were studied in embryogenic suspension cultures of Dactylis glomerata L. subjected to moderate (0.085 M NaCl) or severe (0.17 M NaCl) salt stress. Total glutathione (GSH + GSSG) concentrations and redox state were associated with growth and development in control cultures and in moderately salt-stressed cultures and were affected by severe salt stress. The redox state of the cystine (CySS)/2 cysteine (Cys) redox couple was also affected by developmental stage and salt stress. The glutathione half-cell reduction potential (E(GSSG/2 GSH)) increased with the duration of culturing and peaked when somatic embryos were formed, as did the half-cell reduction potential of the CySS/2 Cys redox couple (E(CySS/2 Cys)). The most noticeable relationship between cellular redox state and developmental state was found when all LMW thiols and disulphides present were mathematically combined into a 'thiol-disulphide redox environment' (E(thiol-disulphide)), whereby reducing conditions accompanied proliferation, resulting in the formation of pro-embryogenic masses (PEMs), and oxidizing conditions accompanied differentiation, resulting in the formation of somatic embryos. The comparatively high contribution of E(CySS/2 Cys) to E(thiol-disulphide) in cultures exposed to severe salt stress suggests that Cys and CySS may be important intracellular redox regulators with a potential role in stress signalling.  相似文献   

10.
The intestinal epithelium sits at the interface between an organism and its luminal environment, and as such is prone to oxidative damage induced by luminal oxidants. Mucosal integrity is maintained by the luminal redox status of the glutathione/glutathione disulfide (GSH/GSSG) and cysteine/cystine (Cys/CySS) couples which also support luminal nutrient absorption, mucus fluidity, and a diverse microbiota. The epithelial layer is uniquely organized for rapid self-renewal that is achieved by the well-regulated processes of crypt stem cell proliferation and crypt-to-villus cell differentiation. The GSH/GSSG and Cys/CySS redox couples, known to modulate intestinal cell transition through proliferation, differentiation or apoptosis, could govern the regenerative potential of the mucosa. These two couples, together with that of the thioredoxin/thioredoxin disulfide (Trx/TrxSS) couple are the major intracellular redox systems, and it is proposed that they each function as distinctive redox control nodes or circuitry in the control of metabolic processes and networks of enzymatic reactions. Specificity of redox signaling is accomplished in part by subcellular compartmentation of the individual redox systems within the mitochondria, nucleus, endoplasmic reticulum, and cytosol wherein each defined redox environment is suited to the specific metabolic function within that compartment. Mucosal oxidative stress would result from the disruption of these unique redox control nodes, and the subsequent alteration in redox signaling can contribute to the development of degenerative pathologies of the intestine, such as inflammation and cancer.  相似文献   

11.
Development is an orderly process that requires the timely activation and/or deactivation of specific regulatory elements that control cellular proliferation, differentiation and apoptosis. While many studies have defined factors that control developmental signaling, the role of intracellular reduction/oxidation (redox) status as a means to control differentiation has not been fully studied. Redox states of intracellular couples may play a very important role in regulating redox-sensitive elements that are involved in differentiation signaling into specific phenotypes. In human mesenchymal stem cells (hMSCs), which are capable of differentiating into many different types of phenotypes, including osteoblasts and adipocytes, glutathione (GSH), cysteine (Cys) and thioredoxin-1 (Trx1) redox potentials were measured during adipogenesis and osteogenesis. GSH redox potentials (Eh) during both osteogenesis and adipogenesis became increasingly oxidized as differentiation ensued, but the rate at which this oxidation occurred was unique for each process. During adipogenesis, Cys Eh became oxidized as adipogenesis progressed but during osteogenesis, it became reduced. Interestingly, intracellular Trx1 concentrations appeared to increase in both adipogenesis and osteogenesis, but the Eh was unchanged when compared to undifferentiated hMSCs. These data show that hMSC differentiation into either adipocytes of osteoblasts corresponds to a unique redox state profile, suggesting that differentiation into specific phenotypes are likely regulated by redox states that are permissive to a specific developmental process.  相似文献   

12.
The redox potential of the plasma cysteine/cystine couple (EhCySS) is oxidized in association with risk factors for cardiovascular disease (CVD), including age, smoking, type 2 diabetes, obesity, and alcohol abuse. Previous in vitro findings support a cause–effect relationship for extracellular EhCySS in cell signaling pathways associated with CVD, including those controlling monocyte adhesion to endothelial cells. In this study, we provide evidence that mitochondria are a major source of reactive oxygen species (ROS) in the signaling response to a more oxidized extracellular EhCySS. This increase in ROS was blocked by overexpression of mitochondrial thioredoxin-2 (Trx2) in endothelial cells from Trx2-transgenic mice, suggesting that mitochondrial thiol antioxidant status plays a key role in this redox signaling mechanism. Mass spectrometry-based redox proteomics showed that several classes of plasma membrane and cytoskeletal proteins involved in inflammation responded to this redox switch, including vascular cell adhesion molecule, integrins, actin, and several Ras family GTPases. Together, the data show that the proinflammatory effects of oxidized plasma EhCySS are due to a mitochondrial signaling pathway that is mediated through redox control of downstream effector proteins.  相似文献   

13.
Glutathione (GSH) is considered to play an important role in maintaining the integrity of the small intestine. In piglets, altered mucosal GSH levels might therefore be involved in weaning-induced changes of the small intestinal morphology and barrier function. To test this hypothesis, we aimed to challenge the mucosal GSH redox status during the first 28 days after weaning, by feeding diets containing 5% fresh linseed oil (CON), or 2.5% (OF1) or 5% (OF2) peroxidized linseed oil (peroxide value 225 mEq O2/kg oil) and exploring the effects on gut integrity. Piglets were pair-fed and had a total daily feed allowance of 32 g/kg BW. A fourth treatment included animals that were fed the control diet ad libitum (ACON). Animals were sampled at days 5 and 28 post-weaning. The malondialdehyde (MDA) concentration and GSH redox status (GSH/GSSG Eh) were determined in blood, liver and small intestinal mucosa. Histomorphology of the duodenal and jejunal mucosa was determined, and Ussing chambers were used to assess fluorescein isothiocyanate dextran (FD4) and horseradish peroxidase (HRP) fluxes across the mucosa. Results show that peroxidized linseed oil imposed an oxidative challenge at day 28, but not at day 5 post-weaning. At day 28, increasing levels of dietary peroxides to pair-fed pigs linearly increased MDA levels in duodenal and jejunal mucosa. Moreover, FD4 fluxes were significantly increased in OF1 (+75%) and OF2 (+64%) in the duodenum, and HRP fluxes tended (P=0.099) to show similar differences, as compared to CON. This co-occurred with a significant 11 mV increase of the hepatic GSH/GSSG Eh, potentiated by a significantly increased GSH peroxidase activity for treatments OF1 (+47%) and OF2 (+63%) in liver as compared to CON. Furthermore; duodenal HRP flux significantly correlated with the hepatic glutathione disulphide (GSSG) level (r=0.650), as also observed in the jejunum for hepatic GSSG (r=0.627) and GSH/GSSG Eh (r=0.547). The jejunal permeability was not affected, but FD4 and HRP fluxes significantly correlated with the local GSH (r=0.619; r=0.733) and GSSG (r=0.635; r=0586) levels. Small intestinal histomorphology was not affected by dietary lipid peroxides, nor were there any correlations found with the GSH redox system. To conclude, under oxidative stress conditions, jejunal barrier function is related to the local and hepatic GSH redox system. It is suggested that the hepatic GSH system participates in the elimination of luminal peroxides, and thereby impacts on duodenal barrier function.  相似文献   

14.
Redox compartmentalization in eukaryotic cells   总被引:1,自引:0,他引:1  
Diverse functions of eukaryotic cells are optimized by organization of compatible chemistries into distinct compartments defined by the structures of lipid-containing membranes, multiprotein complexes and oligomeric structures of saccharides and nucleic acids. This structural and chemical organization is coordinated, in part, through cysteine residues of proteins which undergo reversible oxidation-reduction and serve as chemical/structural transducing elements. The central thiol/disulfide redox couples, thioredoxin-1, thioredoxin-2, GSH/GSSG and cysteine/cystine (Cys/CySS), are not in equilibrium with each other and are maintained at distinct, non-equilibrium potentials in mitochondria, nuclei, the secretory pathway and the extracellular space. Mitochondria contain the most reducing compartment, have the highest rates of electron transfer and are highly sensitive to oxidation. Nuclei also have more reduced redox potentials but are relatively resistant to oxidation. The secretory pathway contains oxidative systems which introduce disulfides into proteins for export. The cytoplasm contains few metabolic oxidases and this maintains an environment for redox signaling dependent upon NADPH oxidases and NO synthases. Extracellular compartments are maintained at stable oxidizing potentials. Controlled changes in cytoplasmic GSH/GSSG redox potential are associated with functional state, varying with proliferation, differentiation and apoptosis. Variation in extracellular Cys/CySS redox potential is also associated with proliferation, cell adhesion and apoptosis. Thus, cellular redox biology is inseparable from redox compartmentalization. Further elucidation of the redox control networks within compartments will improve the mechanistic understanding of cell functions and their disruption in disease.  相似文献   

15.
《Free radical research》2013,47(11-12):1245-1266
Abstract

The intestinal tract, known for its capability for self-renew, represents the first barrier of defence between the organism and its luminal environment. The thiol/disulfide redox systems comprising the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine (Cys/CySS) and reduced and oxidized thioredoxin (Trx/TrxSS) redox couples play important roles in preserving tissue redox homeostasis, metabolic functions, and cellular integrity. Control of the thiol-disulfide status at the luminal surface is essential for maintaining mucus fluidity and absorption of nutrients, and protection against chemical-induced oxidant injury. Within intestinal cells, these redox couples preserve an environment that supports physiological processes and orchestrates networks of enzymatic reactions against oxidative stress. In this review, we focus on the intestinal redox and antioxidant systems, their subcellular compartmentation, redox signalling and epithelial turnover, and contribution of luminal microbiota, key aspects that are relevant to understanding redox-dependent processes in gut biology with implications for degenerative digestive disorders, such as inflammation and cancer.  相似文献   

16.

Background

Diesel exhaust particle (DEP) exposure enhances allergic inflammation and has been linked to the incidence of asthma. Oxidative stress on the thiol molecules cysteine (Cys) and glutathione (GSH) can promote inflammatory host responses. The effect of DEP on the thiol oxidation/reduction (redox) state in the asthmatic lung is unknown.

Objective

To determine if DEP exposure alters the Cys or GSH redox state in the asthmatic airway.

Methods

Bronchoalveolar lavage fluid was obtained from a house dust mite (HDM) induced murine asthma model exposed to DEP. GSH, glutathione disulfide (GSSG), Cys, cystine (CySS), and s-glutathionylated cysteine (CySSG) were determined by high pressure liquid chromatography.

Results

DEP co-administered with HDM, but not DEP or HDM alone, decreased total Cys, increased CySS, and increased CySSG without significantly altering GSH or GSSG.

Conclusions

DEP exposure promotes oxidation and S-glutathionylation of cysteine amino acids in the asthmatic airway, suggesting a novel mechanism by which DEP may enhance allergic inflammatory responses.  相似文献   

17.
Oxidized extracellular redox states have been associated with many diseases related to obesity, including heart disease and diabetes, but relatively little is known about the relationship between extracellular redox states and obesity. In 3T3-L1 preadipocytes, oxidizing extracellular redox potentials (Eh) increased intracellular and mitochondrial reactive oxygen species (ROS) production. 3T3-L1 adipocytes showed a greater response to extracellular Eh, producing more intracellular ROS, than preadipocytes. 3T3-L1 adipocytes also produced more extracellular ROS and re-regulated the extracellular Eh to a more oxidizing state than preadipocytes. During 3T3-L1 differentiation, cellular glutathione and mitochondrial thioredoxin-2 become oxidized, suggesting that adipogenesis may be enhanced under conditions promoting intracellular and mitochondrial compartment oxidation. Under various extracellular Eh, 3T3-L1 adipogenesis, as determined by lipid accumulation and the expression of early genetic markers of adipogenesis, was sensitive to the extracellular redox environment, where it was enhanced under oxidizing conditions and lower under reducing conditions. Using a diet-induced obesity mouse model, plasma was collected before and after the 8 week diet regimens. Plasma GSH Eh was unchanged as a consequence of weight gain but plasma cystiene (Cys) Eh was significantly oxidized in overweight animals. Data presented here show that adipocytes/excessive adipose preferentially alter extracellular Eh to a more oxidized state in vivo and in vitro and may promote further adipogenesis.  相似文献   

18.
Oxidative stress and DNA methylation are metabolically linked through the relationship between one-carbon metabolism and the transsulfuration pathway, but possible modulating effects of oxidative stress on DNA methylation have not been extensively studied in humans. Enzymes involved in DNA methylation, including DNA methyltransferases and histone deacetylases, may show altered activity under oxidized cellular conditions. Additionally, in vitro studies suggest that glutathione (GSH) depletion leads to global DNA hypomethylation, possibly through the depletion of S-adenosylmethionine (SAM). We tested the hypothesis that a more oxidized blood GSH redox status is associated with decreased global peripheral blood mononuclear cell (PBMC) DNA methylation in a sample of Bangladeshi adults. Global PBMC DNA methylation and whole blood GSH, glutathione disulfide (GSSG), and SAM concentrations were measured in 320 adults. DNA methylation was measured by using the [3H]-methyl incorporation assay; values are inversely related to global DNA methylation. Whole blood GSH redox status (Eh) was calculated using the Nernst equation. We found that a more oxidized blood GSH Eh was associated with decreased global DNA methylation (B ± SE, 271 ± 103, p = 0.009). Blood SAM and blood GSH were associated with global DNA methylation, but these relationships did not achieve statistical significance. Our findings support the hypothesis that a more oxidized blood GSH redox status is associated with decreased global methylation of PBMC DNA. Furthermore, blood SAM does not appear to mediate this association. Future research should explore mechanisms through which cellular redox might influence global DNA methylation.  相似文献   

19.
Concentration changes of reduced glutathione (GSH) and oxidized glutathione (GSSG) were studied by fluorometric assay witho-phthalaldehyde to clarify the relationship between seizure mechanism and the glutathione redox state. In cerebellum the GSH/GSSG ratio was significantly decreased in the interictal stage of E1 mice (stimulated group), but in ddY mice this ratio was decreased before convulsions induced by pentylenetetrazol and during submaximal ECS. No change was found in the GSH/GSSG ratio of the cerebellum during and after convulsions induced by pentylenetetrazol and maximal ECS. GSH levels in cerebrum in the interictal stage of E1 mice (stimulated group) were lower compared to control E1 mice. In ddY mice submaximal ECS increased GSSG levels in cerebrum so that the GSH/GSSG ratio was decreased.  相似文献   

20.
Circu ML  Aw TY 《Free radical research》2011,45(11-12):1245-1266
The intestinal tract, known for its capability for self-renew, represents the first barrier of defence between the organism and its luminal environment. The thiol/disulfide redox systems comprising the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine (Cys/CySS) and reduced and oxidized thioredoxin (Trx/TrxSS) redox couples play important roles in preserving tissue redox homeostasis, metabolic functions, and cellular integrity. Control of the thiol-disulfide status at the luminal surface is essential for maintaining mucus fluidity and absorption of nutrients, and protection against chemical-induced oxidant injury. Within intestinal cells, these redox couples preserve an environment that supports physiological processes and orchestrates networks of enzymatic reactions against oxidative stress. In this review, we focus on the intestinal redox and antioxidant systems, their subcellular compartmentation, redox signalling and epithelial turnover, and contribution of luminal microbiota, key aspects that are relevant to understanding redox-dependent processes in gut biology with implications for degenerative digestive disorders, such as inflammation and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号