首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lignocellulosic biomass provides attractive nonfood carbohydrates for the production of ethanol, and dilute acid pretreatment is a biomass-independent process for access to these carbohydrates. However, this pretreatment also releases volatile and nonvolatile inhibitors of fermenting microorganisms. To identify unique gene products contributing to sensitivity/tolerance to nonvolatile inhibitors, ethanologenic Escherichia coli strain LY180 was adapted for growth in vacuum-treated sugarcane bagasse acid hydrolysate (VBHz) lacking furfural and other volatile inhibitors. A mutant, strain AQ15, obtained after approximately 500 generations of growth in VBHz, grew and fermented the sugars in a medium with 50% VBHz. Comparative genome sequence analysis of strains AQ15 and LY180 revealed 95 mutations in strain AQ15. Six of these mutations were also found in strain SL112, an independent inhibitor-tolerant derivative of strain LY180. Among these six mutations, null mutations in mdh and bacA were identified as contributing factors to VBHz tolerance in strain AQ15, based on the genetic and physiological analysis. The deletion of either gene in strain LY180 increased tolerance to VBHz from approximately 30–50% (vol/vol). Considering the location and physiological role of the two enzymes in the cell, it is likely that the two enzymes contribute to the VBHz sensitivity of ethanologenic E. coli by different mechanisms.  相似文献   

2.
Expression of genes encoding polyamine transporters from plasmids and polyamine supplements increased furfural tolerance (growth and ethanol production) in ethanologenic Escherichia coli LY180 (in AM1 mineral salts medium containing xylose). This represents a new approach to increase furfural tolerance and may be useful for other organisms. Microarray comparisons of two furfural-resistant mutants (EMFR9 and EMFR35) provided initial evidence for the importance of polyamine transporters. Each mutant contained a single polyamine transporter gene that was upregulated over 100-fold (microarrays) compared to that in the parent LY180, as well as a mutation that silenced the expression of yqhD. Based on these genetic changes, furfural tolerance was substantially reconstructed in the parent, LY180. Deletion of potE in EMFR9 lowered furfural tolerance to that of the parent. Deletion of potE and puuP in LY180 also decreased furfural tolerance, indicating functional importance of the native genes. Of the 8 polyamine transporters (18 genes) cloned and tested, half were beneficial for furfural tolerance (PotE, PuuP, PlaP, and PotABCD). Supplementing AM1 mineral salts medium with individual polyamines (agmatine, putrescine, and cadaverine) also increased furfural tolerance but to a smaller extent. In pH-controlled fermentations, polyamine transporter plasmids were shown to promote the metabolism of furfural and substantially reduce the time required to complete xylose fermentation. This increase in furfural tolerance is proposed to result from polyamine binding to negatively charged cellular constituents such as nucleic acids and phospholipids, providing protection from damage by furfural.  相似文献   

3.
This work had as its main objective to contribute to the development of a biological detoxification of hemicellulose hydrolysates obtained from different biomass plants using Issatchenkia occidentalis CCTCC M 206097 yeast. Tests with hemicellulosic hydrolysate of sugarcane bagasse in different concentrations were carried out to evaluate the influence of the hydrolysate concentration on the inhibitory compounds removal from the sugarcane bagasse hydrolysate, without reduction of sugar concentration. The highest reduction values of inhibitors concentration and less sugar losses were observed when the fivefold concentrated hydrolysate was treated by the evaluated yeast. In these experiments it was found that the high sugar concentrations favored lower sugar consumption by the yeast. The highest concentration reduction of syringaldehyde (66.67%), ferulic acid (73.33%), furfural (62%), and 5-HMF (85%) was observed when the concentrated hydrolysate was detoxified by using this yeast strain after 24 h of experimentation. The results obtained in this work showed the potential of the yeast Issatchenkia occidentalis CCTCC M 206097 as detoxification agent of hemicellulosic hydrolysate of different biomass plants.  相似文献   

4.
The addition of reduced sulfur compounds (thiosulfate, cysteine, sodium hydrosulfite, and sodium metabisulfite) increased growth and fermentation of dilute acid hydrolysate of sugarcane bagasse by ethanologenic Escherichia coli (strains LY180, EMFR9, and MM160). With sodium metabisulfite (0.5 mM), toxicity was sufficiently reduced that slurries of pretreated biomass (10% dry weight including fiber and solubles) could be fermented by E. coli strain MM160 without solid-liquid separation or cleanup of sugars. A 6-h liquefaction step was added to improve mixing. Sodium metabisulfite also caused spectral changes at wavelengths corresponding to furfural and soluble products from lignin. Glucose and cellobiose were rapidly metabolized. Xylose utilization was improved by sodium metabisulfite but remained incomplete after 144 h. The overall ethanol yield for this liquefaction plus simultaneous saccharification and co-fermentation process was 0.20 g ethanol/g bagasse dry weight, 250 L/tonne (61 gal/US ton).  相似文献   

5.
Hemicellulose syrups from dilute sulfuric acid hydrolysates of hemicellulose contain inhibitors that prevent efficient fermentation by yeast or bacteria. It is well known that the toxicity of these hydrolysate syrups can be ameliorated by optimized "overliming" with Ca(OH)(2). We have investigated the optimization of overliming treatments for sugar cane bagasse hydrolysates (primarily pentose sugars) using recombinant Escherichia coli LY01 as the biocatalyst. A comparison of composition before and after optimal overliming revealed a substantial reduction in furfural, hydroxymethylfurfural, and three unidentified high-performance liquid chromatography (HPLC) peaks. Organic acids (acetic, formic, levulinic) were not affected. Similar changes have been reported after overliming of spruce hemicellulose hydrolysates (Larsson et al., 1999). Our studies further demonstrated that the extent of furan reduction correlated with increasing fermentability. However, furan reduction was not the sole cause for reduced toxicity. After optimal overliming, bagasse hydrolysate was rapidly and efficiently fermented (>90% yield) by LY01. During these studies, titration, and conductivity were found to be in excellent agreement as methods to estimate sulfuric acid content. Titration was also found to provide an estimate of total organic acids in hydrolysate, which agreed well with the sum of acetic, levulinic, and formic acids obtained by HPLC. Titration of acids, measurement of pH before and after treatment, and furan analyses are proposed as relatively simple methods to monitor the reproducibility of hydrolysate preparations and the effectiveness of overliming treatments.  相似文献   

6.
A natural isolate, Candida tropicalis was tested for xylitol production from corn fiber and sugarcane bagasse hydrolysates. Fermentation of corn fiber and sugarcane bagasse hydrolysate showed xylose uptake and xylitol production, though these were very low, even after hydrolysate neutralization and treatments with activated charcoal and ion exchange resins. Initial xylitol production was found to be 0.43 g/g and 0.45 g/g of xylose utilised with corn fiber and sugarcane bagasse hydrolysate respectively. One of the critical factors for low xylitol production was the presence of inhibitors in these hydrolysates. To simulate influence of hemicellulosic sugar composition on xylitol yield, three different combinations of mixed sugar control experiments, without the presence of any inhibitors, have been performed and the strain produced 0.63 g/g, 0.68 g/g and 0.72 g/g of xylose respectively. To improve yeast growth and xylitol production with these hydrolysates, which contain inhibitors, the cells were adapted by sub culturing in the hydrolysate containing medium for 25 cycles. After adaptation the organism produced more xylitol 0.58 g/g and 0.65 g/g of xylose with corn fiber hydrolysate and sugarcane bagasse hydrolysate respectively.  相似文献   

7.
This paper evaluates the fermentative potential of Kluyveromyces marxianus grown in sugarcane bagasse cellulosic and hemicellulosic hydrolysates obtained by acid hydrolysis. Ethanol was obtained from a single glucose fermentation product, whereas xylose assimilation resulted in xylitol as the main product and ethanol as a by-product derived from the metabolism of this pentose. Fermentation performed in a simulated hydrolysate medium with a glucose concentration similar to that of the hydrolysate resulted in ethanol productivity (Qp?=?0.86 g L?1 h?1) that was tenfold higher than the one observed in the cellulosic hydrolysate. However, the use of hemicellulosic hydrolysate favored xylose assimilation in comparison with simulated medium with xylose and glucose concentrations similar to those found in this hydrolysate, without toxic compounds such as acetic acid and phenols. Under this condition, xylitol yield was 53.8 % higher in relation to simulated medium. Thus, the total removal of toxic compounds from the hydrolysate is not necessary to obtain bioproducts from lignocellulosic hydrolysates.  相似文献   

8.
Rhodosporidium toruloides is a lipid-producing yeast, the growth of which is severely suppressed when hydrolysates of lignocellulosic biomass are used as carbon source. This is probably due to the toxic substances, such as organic acids, furans, and phenolic compounds produced during the preparation of the hydrolysates. In order to solve this problem, R. toruloides cultures were subjected to atmospheric room-temperature plasma mutagenesis, resulting in the isolation of mutants showing tolerance to sugarcane bagasse hydrolysate (SBH). Three mutant strains, M11, M13, and M18, were found to grow with producing lipids with SBH as carbon source. M11 in particular appeared to accumulate higher levels (up to 60% of dry cell weight) of intracellular lipids. Further, all three mutant strains showed tolerance of vanillin, furfural, and acetic acid, with different spectra, suggesting that different genetic determinants are involved in SBH tolerance.  相似文献   

9.
Hexose and pentose sugars from phosphoric acid pretreated sugarcane bagasse were co-fermented to ethanol in a single vessel (SScF), eliminating process steps for solid-liquid separation and sugar cleanup. An initial liquefaction step (L) with cellulase was included to improve mixing and saccharification (L + SScF), analogous to a corn ethanol process. Fermentation was enabled by the development of a hydrolysate-resistant mutant of Escherichia coli LY180, designated MM160. Strain MM160 was more resistant than the parent to inhibitors (furfural, 5-hydroxymethylfurfural, and acetate) formed during pretreatment. Bagasse slurries containing 10% and 14% dry weight (fiber plus solubles) were tested using pretreatment temperatures of 160-190 °C (1% phosphoric acid, 10 min). Enzymatic saccharification and inhibitor production both increased with pretreatment temperature. The highest titer (30 g/L ethanol) and yield (0.21 g ethanol/g bagasse dry weight) were obtained after incubation for 122 h using 14% dry weight slurries of pretreated bagasse (180 °C).  相似文献   

10.
The recently isolated anaerobic bacterium Caloramator boliviensis with an optimum growth temperature of 60 °C can efficiently convert hexoses and pentoses into ethanol. When fermentations of pure sugars and a pentose-rich sugarcane bagasse hydrolysate were carried out in a packed bed reactor with immobilized cells of C. boliviensis, more than 98% of substrates were converted. Ethanol yields of 0.40-0.46 g/g of sugar were obtained when sugarcane bagasse hydrolysate was fermented. These features reveal interesting properties of C. boliviensis in producing ethanol from a renewable feedstock.  相似文献   

11.
The use of sugarcane bagasse and grass as low cost raw material for xylanase production by Bacillus circulans D1 in submerged fermentation was investigated. The microorganism was cultivated in a mineral medium containing hydrolysate of bagasse or grass as carbon source. High production of enzyme was obtained during growth in media with bagasse hydrolysates (8.4 U/mL) and in media with grass hydrolysates (7.5 U/mL). Xylanase production in media with hydrolysates was very close to that obtained in xylan containing media (7.0 U/mL) and this fact confirm the feasibility of using this agro-industrial byproducts by B. circulans D1 as an alternative to save costs on the enzyme production process.  相似文献   

12.
The search for new microbial strains that are able to withstand inhibitors released from hemicellulosic hydrolysis and are also still able to convert sugars in ethanol/xylitol is highly desirable. A yeast strain isolated from sugarcane juice and identified as Meyerozyma guilliermondii was evaluated for the ability to grow and ferment pentoses in synthetic media and in sugarcane bagasse hydrolysate. The yeast grew in xylose, arabinose and glucose at the same rate at an initial medium pH of 5.5. At pH 4.5, the yeast grew more slowly in arabinose. There was no sugar exhaustion within 60 h. At higher xylose concentrations with a higher initial cell concentration, sugar was exhausted within 96 h at pH 4.5. An increase of 350 % in biomass was obtained in detoxified hydrolysates, whereas supplementation with 3 g/L yeast extract increased biomass production by approximately 40 %. Ethanol and xylitol were produced more significantly in supplemented hydrolysates regardless of detoxification. Xylose consumption was enhanced in supplemented hydrolysates and arabinose was consumed only when xylose and glucose were no longer available. Supplementation had a greater impact on ethanol yield and productivity than detoxification; however, the product yields obtained in the present study are still much lower when compared to other yeast species in bagasse hydrolysate. By the other hand, the fermentation of both xylose and arabinose and capability of withstanding inhibitors are important characteristics of the strain assayed.  相似文献   

13.
A decreased fermentation rate due to inhibition is a significant problem for economic conversion of acid-pretreated lignocellulose hydrolysates to ethanol, since the inhibition gives rise to a requirement for separate detoxification steps. Together with acetic acid, the sugar degradation products furfural and 5-hydroxymethyl furfural are the inhibiting compounds found at the highest concentrations in hydrolysates. These aldehydes have been shown to affect both the specific growth rate and the rate of fermentation by yeast. Two strains of Saccharomyces cerevisiae with different abilities to ferment inhibiting hydrolysates were evaluated in fermentations of a dilute acid hydrolysate from spruce, and the reducing activities for furfural and 5-hydroxymethyl furfural were determined. Crude cell extracts of a hydrolysate-tolerant strain (TMB3000) converted both furfural and 5-hydroxymethyl furfural to the corresponding alcohol at a rate that was severalfold higher than the rate observed for cell extracts of a less tolerant strain (CBS 8066), thereby confirming that there is a correlation between the fermentation rate in a lignocellulosic hydrolysate and the bioconversion capacity of a strain. The in vitro NADH-dependent furfural reduction capacity of TMB3000 was three times higher than that of CBS 8066 (1,200 mU/mg protein and 370 mU/mg protein, respectively) in fed-batch experiments. Furthermore, the inhibitor-tolerant strain TMB3000 displayed a previously unknown NADH-dependent reducing activity for 5-hydroxymethyl furfural (400 mU/mg protein during fed-batch fermentation of hydrolysates). No corresponding activity was found in strain CBS 8066 (<2 mU/mg). The ability to reduce 5-hydroxymethyl furfural is an important characteristic for the development of yeast strains with increased tolerance to lignocellulosic hydrolysates.  相似文献   

14.
Adaptation of a xylose-utilizing genetically engineered strain of Saccharomyces cerevisiae to sugarcane bagasse hydrolysates by cultivation during 353h using medium with increasing concentrations of inhibitors, including phenolic compounds, furaldehydes and aliphatic acids, led to improved performance with respect to ethanol production. The remaining xylose concentration in the medium at the end of the cultivation was 5.2g l(-1), while it was 11gl(-1) in the feed, indicating that approximately half of the xylose was consumed. The performance of the adapted strain was compared with the parental strain with respect to its ability to ferment three bagasse hydrolysates with different inhibitor concentration. The ethanol yield after 24h of fermentation of the bagasse hydrolysate with lowest inhibitor concentration increased from 0.18gg(-1) of total sugar with the non-adapted strain to 0.38gg(-1) with the adapted strain. The specific ethanol productivity increased from 1.15g ethanol per g initial biomass per h with the non-adapted strain to 2.55gg(-1) h(-1) with the adapted strain. The adapted strain performed better than the non-adapted also in the two bagasse hydrolysates containing higher concentrations of inhibitors. The adapted strain converted the inhibitory furaldehydes 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF) at a faster rate than the non-adapted strain. The xylose-utilizing ability of the yeast strain did not seem to be affected by the adaptation and the results suggest that ethanol rather than xylitol was formed from the consumed xylose.  相似文献   

15.
A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process.  相似文献   

16.
An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates.  相似文献   

17.
Chipped tobacco stalks were subjected to steam pretreatment at 205 °C for either 5 or 10 min before enzymatic hydrolysis. Glucose (15.4–17.1 g/l) and xylose (4.5–5.0 g/l) were the most abundant monosaccharides in the hydrolysates. Mannose, galactose and arabinose were also detected. The hydrolysate produced by pretreatment for 10 min contained higher levels of all sugars than the 5 min-pretreated hydrolysate. The amounts of inhibitory compounds found in the hydrolysates were relatively low and increased with increasing pretreatment time. The hydrolysates were fermented with baker's yeast. Ethanol yield, maximum volumetric productivity and specific productivity were used as criteria of fermentability of the hydrolysates. The fermentation of the hydrolysates was only slightly inhibited compared to reference solutions having a similar composition of fermentable sugars. The ethanol yield in the hydrolysates was 0.38–0.39 g/g of initial fermentable sugars, whereas it was 0.42 g/g in the reference. The biomass yield was twofold lower in the hydrolysates than in the reference. The fermentation inhibition caused by the tobacco stalk hydrolysates was less than that caused by sugarcane bagasse hydrolysates obtained under the same hydrolysis conditions.  相似文献   

18.
Acid hydrolysis of sugarcane bagasse for lactic acid production   总被引:3,自引:0,他引:3  
In order to use sugarcane bagasse as a substrate for lactic acid production, optimum conditions for acid hydrolysis of the bagasse were investigated. After lignin extraction, the conditions were varied in terms of hydrochloric (HCl) or sulfuric (H2SO4) concentration (0.5–5%, v/v), reaction time (1–5 h) and incubation temperature (90–120 °C). The maximum catalytic efficiency (E) was 10.85 under the conditions of 0.5% of HCl at 100 °C for 5 h, which the main components (in g l−1) in the hydrolysate were glucose, 1.50; xylose, 22.59; arabinose, 1.29; acetic acid, 0.15 and furfural, 1.19. To increase yield of lactic acid production from the hydrolysate by Lactococcus lactis IO-1, the hydrolysate was detoxified through amberlite and supplemented with 7 g l−1 of xylose and 7 g l−1 of yeast extract. The main products (in g l−1) of the fermentation were lactic acid, 10.85; acetic acid, 7.87; formic acid, 6.04 and ethanol, 5.24.  相似文献   

19.
Furfural is one of main inhibitors in hemicellulose hydrolysates such as xylose mother liquor, but its positive effect on the production of validamycin-A (VAL-A), a widely used agricultural antibiotic, was interestingly found in fermentation of Streptomyces hygroscopicus 5008. The furfural level in medium up to 1 g/L was effectively converted to furfuryl alcohol and furoic acid by the microorganism. Both intracellular H2O2 level and ValG enzyme activity of the cells were enhanced by furfural addition. Xylose mother liquor medium with supplementation of about 1 g/L furfural could enhance the VAL-A titer by 39 %. This work is helpful to VAL-A fermentation using the hemicellulose hydrolysate.  相似文献   

20.
The fermentation of carbohydrates and hemicellulose hydrolysate by Mucor and Fusarium species has been investigated, with the following results. Both Mucor and Fusarium species are able to ferment various sugars and alditols, including d-glucose, pentoses and xylitol, to ethanol. Mucor is able to ferment sugar-cane bagasse hemicellulose hydrolysate to ethanol. Fusarium F5 is not able to ferment sugar-cane bagasse hemicellulose hydrolysate to ethanol. During fermentation of hemicellulose hydrolysates, d-glucose was utilized first, followed by d-xylose and l-arabinose. Small amounts of xylitol were produced by Mucor from d-xylose through oxidoreduction reactions, presumably mediated by the enzyme aldose reductase1 (alditol: NADP+ 1-oxidoreductase, EC 1.1.1.21). For pentose fermentation, d-xylose was the preferred substrate. Only small amounts of ethanol were produced from l-arabinose and d-arabitol. No ethanol was produced from l-xylose, d-arabinose or l-arabitol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号