首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
BackgroundThe existing data demonstrate that alteration of trace element and mineral status in children with neurodevelopmental disorders including ASD and ADHD. However, comparative analysis of the specific patterns of trace element and mineral metabolism in children with ASD and ADHD was not performed. Therefore, the primary objective of the present study was to assess hair trace element and mineral levels in boys with ADHD, ASD, as well as ADHD with ASD.MethodsBoys with ADHD (n = 52), ASD (n = 53), both ADHD and ASD (n = 52), as well as neurotypical controls (n = 52) were examined. Hair analysis was performed using inductively-coupled plasma mass-spectrometry.ResultsThe obtained data demonstrate that hair Co, Mg, Mn, and V levels were significantly reduced in children with ADHD and ASD, and especially in boys with ADHD + ASD. Hair Zn was found to be reduced by 20% (p = 0.009) only in children with ADHD + ASD as compared to healthy controls. Factor analysis demonstrated that ASD was associated with significant alteration of hair Co, Fe, Mg, Mn, and V levels, whereas impaired hair Mg, Mn, and Zn content was also significantly associated with ADHD. In regression models hair Zn and Mg were negatively associated with severity of neurodevelopmental disorders. The revealed similarity of trace element and mineral disturbances in ASD and ADHD may be indicative of certain similar pathogenetic features.ConclusionThe obtained data support the hypothesis that trace elements and minerals, namely Mg, Mn, and Zn, may play a significant role in development of both ADHD and ASD. Improvement of Mg, Mn, and Zn status in children with ASD and ADHD may be considered as a nutritional strategy for improvement of neurodevelopmental disturbances, although clinical trials and experimental studies are highly required to support this hypothesis.  相似文献   

2.
BackgroundEssential trace elements and minerals play a significant role in neurodevelopment. Although certain studies demonstrated impaired essential trace element and mineral status in children with ADHD, the existing data are insufficient. The objective of the present study was to assess serum trace element and mineral levels in children with ADHD.MethodsSerum trace element and mineral levels in 68 children with ADHD and 68 neurotypical controls were assessed using ICP-MS at NexION 300D (PerkinElmer Inc., USA) equipped with ESI SC-2 DX4 autosampler (Elemental Scientific Inc., USA).ResultsSerum Cr, Mg, and Zn levels in children with ADHD were 21 % (p = 0.010), 4 % (p = 0.005), and 7 % (p = 0. 001) lower as compared to the healthy controls, respectively. In turn, serum Cu/Zn values were 11 % higher than those in the control group. Age and gender had a significant impact on serum element levels in ADHD. Particularly, preschool children were characterized by significantly increased Cu (+8 %; p = 0.034), and Cu/Zn (+19 %; p < 0.001) values, whereas serum Zn (-9 %; p = 0.004) level was decreased. In primary school-aged children only 6 % (p = 0.007) lower Mg levels were observed. Both boys and girls with ADHD were characterized by 8 % (p = 0.016) lower serum Zn levels and 10 % (p = 0.049) higher Cu/Zn values when compared to neurotypical girls. Boys with ADHD also had significantly higher Cu/Zn, exceeding the respective control values by 12 % (p = 0.021), predominantly due to a 7 % (p = 0.035) decrease in serum Zn. Serum Mg levels were also found to be significantly lower than those in neurotypical children by 5 % (p = 0.007). In adjusted regression models serum Cr (β=-0.234; p = 0.009) and Cu/Zn (β = 0.245; p = 0.029) values were significantly associated with ADHD, respectively. Two-way ANOVA revealed a significant impact of ADHD on Cr, Mg, Zn, and Cu/Zn, whereas age was associated with Cu, I, Mg, Mo, and Cu/Zn, whereas gender accounted only for variability in serum Mn levels. Principal component analysis (PCA) also revealed significant contributions of Mg, Zn, and Cu/Zn values to ADHD variability.ConclusionsHypothetically, the observed decrease of essential trace elements, namely Mg and Zn, and elevation of Cu/Zn may significantly contribute to the risk of ADHD or its severity and/or comorbidity.  相似文献   

3.
BackgroundSystemic lupus erythematosus (SLE) is an autoimmune disorder in which the body's defense system wrongly attacks healthy body tissues. The objective of this current setup was to quantify and compare the serum concentration of ascorbic acid (Vit-C), malondialdehyde (MDA), c-reactive protein (CRP) and trace elements (Cu, Fe, Mn and Zn) in SLE and normal subjects.MethodsThe proposed case-control study was performed with 25 SLE patients and 25 healthy subjects as case and control, respectively. The serum level of malondialdehyde (MDA) and vitamin C was evaluated by UV spectrophotometric method. For the determination of CRP, the latex agglutination method was used, whereas serum trace elements were estimated by atomic absorption spectroscopy (AAS).ResultsThis analysis demonstrated that patients with SLE possessed a significant (p < 0.001) higher level of MDA and lower level of vitamin C compared to control subjects. Pearson’s correlation analysis found negative correlation between the serum level of MDA and vitamin C (r= -0.023, p = 0.887) for patients while control group also possessed similar result (r= -0.157, p = 0.453). The current findings have also revealed that serum level of Zn and Cu in SLE patients was significantly (p < 0.05) lowered to that of the control group, while serum level of Mn also showed a similar scenario. During Pearson’s correlation analysis a significantly (p < 0.05) negative correlation was found between Zn and Mn (r= -0.410, p = 0.042) in patients’ group.ConclusionAlthough our study was limited to a small sample size and confined to a particular area of the country, the study results support a significant role of antioxidants, CRP, and trace elements in the generation of SLE and, therefore, recommends a large spectrum study of the associations between SLE and these biochemical parameters.  相似文献   

4.
BackgroundThe use of unconventional biological materials in human trace element studies has increased in terms of published research studies. The aim of present study was to develop and validate the use of teardrop fluid for determining trace element levels in the human body. No study has been published in this area yet. This is a new non-invasive approach in the possible early diagnosis of the pathogenesis of type 2 diabetes.Materials and methodsHuman teardrop fluid samples were obtained from Karbala (Iraq) (n = 111) healthy individuals and with type 2 diabetes (n = 44); and London (UK) healthy individuals (n = 18). The levels of V, Cr, Mn, Fe, Cu, Zn, As, Sr and Cd were determined using an inductively coupled plasma mass equipped with collision cell technology for polyatomic ion correction (ICP-MS).Statistical analysisDiscriminate function analysis (DFA) was carried out to determine the set of variables that discriminated between the trace elements in teardrop fluid samples from healthy individuals and diabetic patients.ResultsThe trace element levels of human teardrop fluid are similar for many elements to that reported for human blood serum in the literature. This is interesting since they have different physiological functions, although overall they are mainly water containing electrolytes (∼ 90 %) and solids (antibodies, hormones, etc). In general, for the study groups in Karbala, Iraq, significantly higher teardrop fluid levels of Mn and Sr were found in type 2 diabetic patients when compared with healthy individuals (evaluated using an F-test and a two-tailed t-test). The levels of V, Cu and As were found to be significantly higher (P < 0.05) in healthy individuals than type 2 diabetic patients. Although the levels of Fe and Zn were slightly higher in type 2 diabetic patients than healthy cases, the differences were not statistically significant (P > 0.05). Cr and Cd were found to have similar levels for both study groups. Significantly higher teardrop fluid levels of V, Cr, Mn, Fe, Zn, As and Sr were found in healthy individuals from Karbala (Iraq) when compared with those from London (UK). In contrast, the levels of Cd observed to be significantly higher in London (UK) than Karbala. No statistical difference was found for Cu between the two healthy groups.Statistical analysisDiscriminate analysis showed that human teardrop fluid V, Mn, Zn, As, Sr and Cd levels could be used to discriminate between healthy and type 2 diabetes study groups in Karbala, Iraq (83 % of cases correctly classified).ConclusionThe use of human teardrop fluid for determining the trace element levels of human health conditions has been evaluated. Trace elemental levels are like that for blood serum which is widely used as an invasive method for assessing human health conditions. Sample collection for teardrop fluid is non-invasive and the application has potential for determining the trace element levels in healthy individuals and disorder conditions (like type 2 diabetes) in countries where cultural and gender sensitivity are issues with respect to the collection methods used for other body fluid samples.  相似文献   

5.
BackgroundType 1 diabetes (T1D) exhibited sex-specific metabolic status including oxidative stress with dynamic change of trace elements, which emphasized the importance of the evaluation of trace elements according to sex. Besides, the most significant characteristic, insulin auto-antibodies, could not be found in all T1D patients, which needed the auxiliary prediction of clinical parameters. And it would benefit the early detection and treatment if some high-risk groups of T1D could predict and prevent the occurrence of disease through common clinical parameters. Hence, there was an urgent need to construct more effective and scientific statistical prediction models to serve clinic better. This study aimed to evaluate the sex-specific levels of trace elements and the relationship between trace elements and clinical parameters in T1D, and construct sex-specific auxiliary prediction model combined with trace elements and clinical parameters.MethodsA total of 105 T1D patients with negative insulin auto-antibodies and 105 age/sex-matched healthy individuals were enrolled in First Hospital of Jilin University. Inductively Coupled Plasma Mass Spectrometry was performed for the measurement of calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu), iron (Fe), selenium (Se) in the serum, and the data of clinical parameters were received from medical record system. The lambda-mu-sigma method was used to evaluate the relationship between abnormal clinical parameters and trace elements. Training set and validation set were divided for the construction of predictable models in males and females: clinical parameters model, trace element model and the combined model (clinical parameters and trace elements). Goodness fit test, decision curve analysis and other related statistical methods were used to perform data analysis.ResultsLower levels of Mg, Ca, Fe in the serum were found in T1D population in females compared with healthy population, while levels of Fe, Zn and Cu of serum in T1D individuals were higher than those of healthy population in males. Levels of serum Mg, Fe and Cu in T1D group were found with significant sex difference for (P < 0.05), and the levels of Fe and Cu in serum of males were higher than those of females, level of serum Mg in males was lower than those of females. Levels of serum Mg and Zn showed fluctuation trend with increased numbers of abnormal clinical parameters (NACP) in males. Serum Zn in females showed consistent elevated trend with NACP; serum Se increased first and then decreased with NACP in males and females. The auxiliary prediction model (Triglyceride, Total protein, serum Mg) was found with the highest predicted efficiency in males (AUC=0.993), while the model in females (Apolipoprotein A, Creatinine, Fe, Se, Zn/Cu ratio) showed the best predicted efficiency (AUC=0.951). The models had passed the verification in validation set, and Chi-square goodness-of-fit test, DCA results both confirmed their satisfactory clinical applicability.ConclusionSex-specific difference were found in serum Mg, Fe and Cu in T1D. The combination of triglyceride, total protein and serum Mg for males, and apolipoprotein A, creatinine, Fe, Se, Zn/Cu ratio for females could effectively predict T1D in patients with negative anti-bodies, which would provide alarm for the population with high-risk of T1D and serve the T1D prediction in patients with negative anti-bodies.  相似文献   

6.
Trace elements are essential components of biological structures, but alternatively, they can be toxic at concentrations beyond those necessary for their biological functions. Changes in the concentration of essential trace elements and heavy metals may affect acute hemorrhagic stroke. The aim of this study was to measure serum levels of essential trace elements [iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), and magnesium (Mg)] and heavy metals [cobalt (Co), cadmium (Cd), and lead (Pb)] in patients with acute hemorrhagic stroke. Twenty-six patients with acute hemorrhagic stroke and 29 healthy controls were enrolled. Atomic absorption spectrophotometry (UNICAM-929) was used to measure serum Fe, Cu, Pb, Cd, Zn, Co, Mn and Mg concentrations. Serum Cd, Pb and Fe levels were significantly higher in patients with acute hemorrhagic stroke than controls (p < 0.001), while serum Cu, Zn, Mg and Mn levels were significantly lower (all p < 0.001). However, there was no significant difference between the groups with respect to serum Co levels (p > 0.05). We first demonstrate increased Cd, Pb, and Fe levels; and decreased Cu, Zn, Mg, and Mn levels in patients with acute hemorrhagic stroke. These findings may have diagnostic and prognostic value for acute hemorrhagic stroke. Further studies are required to elucidate the roles of trace elements and heavy metals in patients with acute hemorrhagic stroke.  相似文献   

7.
BackgroundMammary tumors are one of the major malignancies seen in cats. Researchers have indicated the similarity between the epidemiological and clinicopathological patterns of feline mammary tumors and human breast cancer (HBC). In recent years, the investigation of trace elements in cancer tissues becomes prevalent in HBC due to the role of these elements in biochemical and physiological processes. This study, it is aimed to evaluate some trace elements in feline mammary tumors according to clinical and pathological findings.MethodsA total of 60 tumoral masses from 16 female cats with mammary tumors were included in the study. The study groups were formed according to histopathology as malignant epithelial tumor (MET; n = 39) and hyperplasia and dysplasia (H&D; n = 21). Copper (Cu), Iron (Fe), Magnesium (Mg), Manganese (Mn), Selenium (Se) and Zinc (Zn) trace elements in mammary tissues were analyzed by using an inductively coupled plasma-optical emission spectrophotometer.ResultsThe mean age and weight of the cats were 11.75 ± 0.75 years and 3.35 ± 0.21 kg; respectively. Eleven of 16 cats were intact whereas the rest of them had been spayed. Metastases were observed in 10 cats. Tissue Mg level in group MET was significantly higher than in group H&D (P < 0.01) while the other elements had not significant differences between the groups. In group MET, analyzed elements were not statistically significant related to the inflammation, ulceration and invasion to the peripheral muscle (P > 0.05). However, tissue Fe level was significantly higher in T2 than in T3 (P < 0.05). The mean levels of tissue Fe, Mg and Mn had significant differences related to histological grading as P < 0.01, P < 0.05 and P < 0.001; respectively. A mild to severe correlation was found between tissue Zn and Se, Cu, Fe, Mg, and Mn levels.ConclusionTissue Mg and some trace elements were evaluated in feline mammary tumours in regard to various clinicopathological parameters. Tissue Mg level was sufficient to differentiate the malignant epithelial tumors from hyperplasia and dysplasia. However, Mn and Se tended to distinguish different tumor types. Tissue Fe, Mg and Mn had significant differences related to histological grading. Also, the Fe level was significantly higher in T2 than in T3 and Zn level tended to be higher in T3 than in T1. It was concluded that Mg, Se, Mn, Fe, Cu and Zn provided useful information on the pathogenesis of feline mammary tumors. Further research is needed on the tissue and serum concentrations of trace elements which may provide valuable information for the disease prognosis.  相似文献   

8.
PurposeWe investigated the impacts of plasma levels of magnesium (Mg), zinc (Zn), calcium (Ca), iron (Fe), copper (Cu), selenium (Se), and chromium (Cr) on GDM risk and the potential mediation effect of blood glucose levels on the relationship between trace elements and GDM risk.MethodsThis nested case-control study was based on data from a birth cohort study conducted in Wuhan, China in 2013−2016. A total of 305 GDM cases and 305 individually-matched controls were included in the study. Conditional logistic regression models were used to estimate the associations between plasma trace element concentrations and GDM risk. A mediation analysis was conducted to explore whether blood glucose levels act as a mediator between trace element levels and GDM risk.ResultsAn IQR increment in plasma levels of Fe and Cu was associated with a significant increase in GDM risk [OR = 2.04 (95 % CI 1.62, 2.57) and OR = 1.52 (95 % CI 1.25, 1.82)], respectively. On the other hand, an IQR increment in plasma levels of Zn and Ca was associated with a significant decrease in GDM risk [OR = 0.55 (95 % CI 0.43, 0.71) and OR = 0.72 (95 % CI 0.56, 0.92)], respectively. The mediation analysis showed significant mediation of the association between Cu and GDM risk via the FBG (%mediated: 19.27 %), 1 h-PBG (12.64 %), 2h-PBG (28.44 %) pathways.ConclusionsPlasma levels of Zn and Ca were negatively associated with GDM risk, while Fe and Cu were positively associated. Blood glucose levels act as a mediator between plasma trace element exposures and GDM risk.  相似文献   

9.
A number of essential trace elements play a major role in various metabolic pathways. Selenium (Se), manganese (Mn), copper (Cu), zinc (Zn), and iron (Fe) are essential trace elements that have been studied in many diseases, including autoimmune, neurological, and psychiatric disorders. However, the findings of previous research on the status of trace elements in patients with schizophrenia have been controversial. We studied these elements in patients with a DSM-IV diagnosis of schizophrenia and compared them with sex- and age-matched healthy controls. Plasma Cu concentrations were significantly higher (p<0.01) and Mn and Fe concentrations were lower (p<0.05 and p<0.05, respectively) in schizophrenic patients than in controls. Se and Zn concentrations and protein levels did not differ between patients and healthy controls. These observations suggest that alterations in essential trace elements Mn, Cu, and Fe may play a role in the pathogenesis of schizophrenia. However, findings from trace element levels in schizophrenia show a variety of results that are difficult to interpret.  相似文献   

10.
The purpose of this study was to examine the status of trace elements (Cu, Zn, and Fe) and minerals (Mg, K, Na, and Cl) and the level of biochemical parameters (urea, creatinine, total protein, albumin, and glucose) in hemodialysis (HD) patients. This study included 30 HD patients (25 men and 5 women) aged 52.12 +/- 3.13 years and 30 healthy subjects (23 men and 7 women) aged 51.64 +/- 2.22 years. This study investigated the status of trace elements and minerals in HD patients. It was found that the total HD patients (before and after dialysis) had statistically lower Zn and albumin in the after-dialysis group K and Cl levels and higher Mg, creatinine, and urea in the before-dialysis group K and in the after-dialysis group glucose levels than those of the controls. It was determined that the results might be helpful in monitoring patients with renal failure in terms of insufficiency or excess of trace elements and minerals. There was positive correlation for Mg-K (r = 0.64; p = 0.001), creatinine-urea (r = 0.59; p = 0.001), K-urea (r = 0.56; p = 0.001), K-creatinine (r = 0.52; p = 0.003), Mg-creatinine (r = 0.47; p = 0.008), Zn-albumin (r = 0.40; p = 0.028), and Zn-creatinine (r = 0.40; p = 0.031) in the before-dialysis session. There was also positive correlation for creatinine-urea (r = 0.56; p = 0.001), K-urea (r = 0.39; p = 0.035), and Mg-creatinine (r = 0.38; p = 0.041) in the after-analysis session. As a result of the analysis of regression between serum levels of albumin and zinc in total HD patients, the use of the level of albumin might be a suitable choice in determining zinc deficiency resulting from the decrease in the level of zinc in parallel to that of albumin. The results also suggest that the relationship between creatinine and K, Mg, and Zn could be ascribed to the loss of renal function.  相似文献   

11.
The objective was to examine changes in trace elements due to thyroid cancer in humans. Serum levels and tissue contents of trace elements (Zn, Cu, Mn, Mg, Fe and Se) were measured in 43 patients with thyroid cancer before and 4 days after surgery were compared to normal values. The serum levels of zinc in cancer patients were lower than those of normal subjects. Surgical removal of the cancer resulted in the restoration of these levels. Although serum Cu levels in patients were not different from normal, but post-operatively these levels rose significantly (p < 0.001). Levels of Fe, Mg and Mn were significantly lower (p < 0.001) post-operatively. There was no significant change in Serum Se levels. The thyroid tissue contents of these trace elements did not show a difference between the normal (Juxta-tumor) thyroid tissue and the cancerous lesion. Out of the six trace elements examined, the decrease of serum levels of zinc in cancer patients may be linked to the disease condition. It is suggested that this change: (a) may be used to demonstrate successful cancer surgery and (b) may have implications for a long-term follow-up of thyroid cancer patients.  相似文献   

12.
Concentrations of trace elements Zn, Cu, Fe, Mn, Mg, and Sr in the serum of 50 thyroid cancer patients and 50 healthy controls were analyzed comprehensively by Pattern Recognition Analysis Method. Based on the Principal Component Analysis Method, Zn, Cu, and Sr were found to be the principal elements with significant variations between patients and healthy controls. According to the Mahalanolis Distance Decision and Nonlinear Mapping Methods, the trace elements levels in the serum of cancerous patients were found significantly different from that of controls. For 16 thyroid malignant tumor patients who underwent surgery, sample points of patients after surgery were directional away from corresponding points before surgery. However, an overlapping was found and separation between two groups of points was not complete. This finding suggests that there may be a latency period for the restoration of trace element levels after removal of the malignant tumorous tissue.  相似文献   

13.
The objective was to examine changes in trace elements due to thyroid cancer in humans. Serum levels and tissue contents of trace elements (Zn, Cu, Mn, Mg, Fe and Se) were measured in 43 patients with thyroid cancer before and 4 days after surgery were compared to normal values. The serum levels of zinc in cancer patients were lower than those of normal subjects. Surgical removal of the cancer resulted in the restoration of these levels. Although serum Cu levels in patients were not different from normal, but post-operatively these levels rose significantly (p < 0.001). Levels of Fe, Mg and Mn were significantly lower (p < 0.001) post-operatively. There was no significant change in Serum Se levels. The thyroid tissue contents of these trace elements did not show a difference between the normal (Juxta-tumor) thyroid tissue and the cancerous lesion. Out of the six trace elements examined, the decrease of serum levels of zinc in cancer patients may be linked to the disease condition. It is suggested that this change: (a) may be used to demonstrate successful cancer surgery and (b) may have implications for a long-term follow-up of thyroid cancer patients.  相似文献   

14.
BackgroundThe existing data demonstrate that both trace elements and amino acids play a significant role in neurodevelopment and brain functioning. Certain studies have demonstrated alteration of micronutrient status in children with cerebral palsy, although multiple inconsistencies exist.The objectiveof the present study was to assess serum trace element and mineral, as well as amino acid levels in children with cerebral palsy.Methods71 children with cerebral palsy (39 boys and 32 girls, 5.7 ± 2.3 y.o.) and 84 healthy children (51 boys and 33 girls, 5.4 ± 2.3 y.o.) were enrolled in the present study. Serum trace element and mineral levels were assessed using inductively-coupled plasma mass-spectrometry (ICP-MS). Amino acid profile was evaluated by means of high-pressure liquid chromatography (HPLC).ResultsChildren with cerebral palsy are characterized by significantly lower Cu and Zn levels by 6% and 8%, whereas serum I concentration exceeded the control values by 7%. A tendency to increased serum Mn and Se levels was also observed in patients with cerebral palsy. Serum citrulline, leucine, tyrosine, and valine levels were 15 %, 23 %, 15 %, and 11 % lower than those in healthy controls. Nearly twofold lower levels of serum proline were accompanied by a 44 % elevation of hydroxyproline concentrations when compared to the control values. In multiple regression model serum I, Zn, and hydroxyproline levels were found to be independently associated with the presence of cerebral palsy. Correlation analysis demonstrated a significant correlation between Cu, Mn, Se, I, and Zn levels with hydroxyproline and citrulline concentrations.ConclusionThe observed alterations in trace element and amino acid metabolism may contribute to neurological deterioration in cerebral palsy. However, the cross-sectional design of the study does not allow to estimate the causal trilateral relationships between cerebral palsy, altered trace element, and amino acid metabolism.  相似文献   

15.
Using inductively coupled plasma mass spectrometry (ICP-MS) based analytical procedures, the concentration of several trace elements (Mn, As, Pb, Co, Ni, Cu, Zn and Se) was determined in human milk samples collected from a group of healthy lactating Portuguese women (n=44), both on the 2nd day postpartum (i.e., colostrum; n=34) and at 1 month postpartum (i.e., mature milk; n=19). Blood samples (n=44), collected on the 2nd day after parturition, were also analyzed for the same trace elements. No major correlations were observed between the levels of the analyzed trace elements in blood and colostrum samples. All the studied elements, except for Co, Pb and Ni, showed a significant trend for a decrease in concentration in milk during the first month of lactation. This trend was more pronounced for Zn and Se, whose levels decreased to approximately 23% and 44% of their initial mean concentration, respectively. With the exception of Co (r=0.607) and Zn (r=0.487), no significant correlations were observed when comparing the levels of each trace element between samples of colostrum and mature milk. Several inter-element correlations were found within each type of milk sample. The most significant were: (i) Se vs Cu (r=0.828) and Se vs Co (r=0.605) in colostrum samples and (ii) Ni vs Pb (r=0.756), Ni vs Mn (r=0.743) and Se vs Co (r=0.714) in mature milk samples. An inverse correlation between Zn and Se was also found in both types of milk sample; however, it only reached statistical significance for mature milk (r=-0.624).  相似文献   

16.
Obesity is a multifactorial disease developing following impairment of the energy balance. The endocrine system is known to be affected by the condition. Serum thyroid hormones and trace element levels have been shown to be affected in obese children. Changes in serum thyroid hormones may result from alterations occurring in serum trace element levels. The aim of this study was to evaluate whether or not changes in serum thyroid hormone levels in children with exogenous obesity are associated with changes in trace element levels. Eighty-five children diagnosed with exogenous obesity constituted the study group, and 24 age- and sex-matched healthy children made up the control group. Serum thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), thyroglobulin (TG), selenium (Se), zinc (Zn), copper (Cu), and manganese (Mn) levels in the study group were measured before and at the third and sixth months of treatment, and once only in the control group. Pretreatment fT4 levels in the study group rose significantly by the sixth month (p?=?0.006). Zn levels in the patient group were significantly low compared to the control group (p?=?0.009). Mn and Se levels in the obese children before and at the third and sixth months of treatment were significantly higher than those of the control group (p?=?0.001, p?=?0.001). In conclusion, fT4, Zn, Cu, Mn, and Se levels are significantly affected in children diagnosed with exogenous obesity. The change in serum fT4 levels is not associated with changes in trace element concentrations.  相似文献   

17.
Concentrations of trace elements in newborns, infants, and adults may be significantly different from each other. Serum trace element reference ranges for different age groups are of value for diagnostic purposes. Inductively coupled plasma-mass spectrometry was applied to the determination of the 21 trace elements Ba, Be, Bi, Ca, Cd, Co, Cs, Cu, La, Li, Hg, Mg, Mn, Mo, Pb, Rb, Sb, Sn, Sr, TI, and Zn in a total of 117 sera of individuals representing different age groups. After microwave-assisted acid digestion with high-purity reagents, 20 umbilical cord sera, 5 sera of fully breast-fed infants, 6 sera of formula-fed infants, 66 sera of patients suffering internal diseases, and 20 sera of healthy blood donors were analyzed for trace elements. One serum and two whole-blood reference materials were analyzed for quality control. Experimental concentrations were in good agreement with certified values. Umbilical cord serum concentrations of the essential elements Ca, Co, Cu, and Mg and of the nonessential and toxic elements Ba, Be, Li, Pb, and Sb were elevated compared to the elemental concentrations in the sera of infants and adults. Serum levels of Ba, Ca, Co, Mn, Pb, and Sb of infants were much higher and serum Cu was significantly lower than in adults. Serum Cu increased significantly with age (newborns: 353 microg/L; infants: 755 microg/L; healthy adults: 810 microg/L), whereas for other trace elements no age-dependence could be established.  相似文献   

18.
Background and aimBee pollen is recognized to be a source of different nutrients, including minerals. As a food supplement, its quality and safety due to concentrations of essential macro- and microelements, and harmful trace elements has to be verified. Fast and simple element analysis of bee-collected pollen can be regarded as an important part of its quality assurance and control. The present study aimed at developping a new method for determination of selected elements (Ca, Cu, Fe, Mg, Mn, Zn) of bee pollen based on solvent extraction and completely avoiding a high temperature treatment with concentrated reagents. In addition, in vitro gastrointestinal digestion was used to assess bioavailability of elements from this food supplement.MethodsBee pollen samples were dried and pulverized. Total concentrations of Ca, Cu, Fe, Mg, Mn, and Zn were determined by flame atomic absorption spectrometry (FAAS) in sample solutions obtained by wet digestion (WD) in concentrated HNO3 or alternatively by solvent extraction (SE) with diluted solutions of HNO3. Gastrointestinal digestion was mimicked using simulated solutions of gastric and intestinal juices followed by determination of Ca, Cu, Fe, Mg, Mn and Zn concentrations in the bioaccessible fraction by FAAS.ResultsA new simple and fast method for determination of total concentrations of Ca, Cu, Fe, Mg, Mn, and Zn in bee pollen was developed and validated. The method combined room temperature, two-hour SE with 0.5 mol L−1 HNO3 with FAAS measurements versus simple standard solutions. It provided precision within 1–5 % and trueness better than 8%, and was shown to be suitable for fast analysis of different polyfloral bee pollens. In vitro gastrointestinal digestion revealed that elements were well (70–85 % for Ca, Mg) and fairly (27–43 % for Cu, Fe, Mn, and Zn) bioaccessible from bee pollen. By pouring with water and swelling overnight, bioaccessibility of studied elements from such prepared bee pollen was increased on average by less than 15 % (Mn), 20 % (Ca, Cu, Fe, Zn) or 30 % (Mn).ConclusionsAvoiding long-lasting, high-temperature wet digestion with concentrated reagents, the proposed sample treatment along with FAAS provided precise and true results of total concentrations of Ca, Cu, Fe, Mg, Mn, and Zn in bee pollen. The method was simple and fast, and enabled to analyze a higher number of samples. Simulated gastrointestinal digestion of bee pollen have shown for the first time that Ca and Mg are the most bioaccessible from this bee product. Bioaccessibility of Cu, Fe, Mg, and Zn from bee pollen are close to or lower than 40 %.  相似文献   

19.
The effects of hypoxia on the levels of essential macroelements and trace elements (K, Na, Ca, Mg, Cu, Zn, Fe, and Mn) in the heart muscles of Wistar rats and plateau pikas (Ochotona curzoniae) were studied by atomic absorption spectrometry. Unlike the rat, the plateau pika is tolerant to hypoxia. The levels of K, Na, and the trace element Mn were not significantly changed in rat or pika hearts after exposure to hypoxia for 1, 10, or 25 d at simulated altitudes of 5000 and 7000 m. Other minerals (Ca, Mg, Cu, Zn, and Fe) were significantly affected by hypoxia and the levels followed different time-courses under different hypoxic regimes in these two animals. There were marked differences between the rat and pika in myocardial accumulation of essential elements such as Ca, which was increased to high levels in the rat but not affected in the pika. The results suggest that hypoxia affects animal physiological mechanisms by regulating the levels of essential elements.  相似文献   

20.
BackgroundThe existing data demonstrate the potential role of trace elements in nasal mucociliary clearance, although the association between trace element and mineral status and ciliary function in children with chronic rhinosinusitis is insufficiently studied. Therefore, the objective of the present study is evaluation of trace element and mineral status and mucociliary function in pediatric CRS patients before and after functional endoscopic sinus surgery.MethodsThe present study involved 30 children with chronic rhinosinusitis without nasal polyps. During this follow-up the patients were examined preoperatively (point 0), underwent functional endoscopic sinus surgery, and were repeatedly examined at three months postoperatively (point 1). At both points the patients were subjected to quality-of-life assessment using SNOT-20 questionnaire; endoscopic and computer tomography examination of the nasal sinuses; evaluation of ciliary function and mucosal cytology using high-speed videomicroscopy; assessment of blood count and inflammatory markers; as well as analysis of trace element and mineral levels in whole blood, serum, and hair using inductively-coupled plasma mass-spectrometry.ResultsThe obtained data demonstrate that endoscopic sinus surgery significantly improved sinonasal pathology in children with chronic rhinosinusitis, as evidenced by significantly reduced Lund-Mackay, Lund-Kennedy, and SNOT-20 scores. At the same time, no significant improvement of ciliary functions or mucosal cytology was observed postoperatively. Trace element status assessment demonstrated that postoperative serum Zn, whole blood Mg and Cu were significantly lower as compared to preoperative values. In contrast, serum Mn and Cr, as well as whole blood Cr and hair Se were characterized by a significant increase at three months postoperatively. Multiple linear regression analysis demonstrated that serum Zn is significantly associated with the number of ciliated cells and cell viability, whereas serum Mn and whole blood Cu concentrations are inversely associated with cell viability and ciliary length, respectively. Hair Se was found to be associated with the number of neutrophils in the mucosa biopsy.ConclusionRedistribution of trace elements and minerals may at least partially mediate prolonged recovery of mucosal ciliary function in children with chronic rhinosinusitis in three months after functional sinus surgery, although the particular mechanisms of these alterations in trace element levels are to be discovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号