首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

The aim of this study was to determine the effects of sub-chronic aluminum chloride (AlCl3) on spermatogenesis and testicular enzymatic activity in male rats.

Main methods

Forty Wistar male rats were randomly divided into four groups: control group (CG, 0), low-dose group (LG, 64.18 mg/kg BW AlCl3), mid-dose group (MG, 128.36 mg/kg BW AlCl3) and high-dose group (HG, 256.72 mg/kg BW AlCl3). The rats were orally administered with AlCl3 for 120 days. At the end of the experiment, the contents of Al, Fe, Cu and Zn, the enzyme activities of testicular acid phosphatase (ACP), succinate dehydrogenase (SDH), lactate dehydrogenase (LDH), lactate dehydrogenase isoenzyme (LDH-x), the sperm count and the sperm malformation rate were examined.

Key findings

The results showed that the Al and Cu contents, sperm count and the enzyme activities of testicular ACP, SDH, LDH and LDH-x decreased, while the Zn and Fe contents and sperm malformation rate increased in AlCl3-treated rats.

Significance

It suggests that sub-chronic AlCl3 disorders the balance of trace element and decreases the spermatogenesis and the activities of testicular enzymes, indicating that AlCl3 has adverse effect on the testicular function in male rats.  相似文献   

2.
3.
BackgroundHeat stress is a condition that is due to extreme heat exposure. It occurs when the body cannot keep its temperature healthy in response to a hot climate and associated with oxidative stress. Testicular hyperthermia can induce apoptosis of sperm cells, affect sperm production and decrease sperm concentration, leading to sperm disorder, for this reason, we examined the protective impact of pycnogenol that it has a wide range of biological benefits, including antioxidant, anti-inflammatory and anti-cancer activities against the oxidative alterations that happen in testicular and brain tissues due to heat stress in rats.Study designForty-eight Wistar male rats, approximately around 6 weeks age were allocated randomly into four groups (12 in each) of control, HS (subjected to heat stress and supplemented orally with 50 mg of pycnogenol/kg b. w./day dissolved in saline for 21 days), and pycnogenol (rats supplemented orally with 50 mg of pycnogenol/kg b. w./day dissolved in saline for 21 days).ResultsData revealed a promising role of pycnogenol as an antioxidant, natural product to successfully reverse the heat-induced oxidative alterations in testicular and brain tissues of rats through significant upregulation of superoxide dismutase-2, catalase, reduced glutathione, and anti-apoptotic gene, while downregulating pro-apoptotic, and heat shock protein70. Pycnogenol treatment also reversed the reproductive hormone level and spermatogenesis to their normal values.ConclusionPycnogenol as a natural protective supplement could recover these heat stress-induced oxidative changes in testes and hypothalamus.  相似文献   

4.

Background

The present study elucidates the protective potential of bromelain against dichlorvos intoxication in mice brains. Dichlorvos induces the oxidative stress by disproportionating the balance between free radicals generation and their scavenging in neurons which leads to neuronal degeneration.

Methods

In this study, mice were divided into four groups-group I (control), group II (dichlorvos treated), group III (bromelain treated) and group IV (exposed to both bromelain and dichlorvos both).

Results

Dichlorvos treatment increased the levels of thiobarbituric acid reactive substances (TBARS) and protein carbonyl content (PCC) which indicate the increased oxidative stress. Meanwhile, brain endogenous antioxidants and cholinesterases level was decreased after dichlorvos exposure. Levels of TBARS and PCC decreased whereas cholinesterases level was recorded to be elevated after bromelain exposure.

Conclusion

Bromelain offered neuroprotection by decreasing oxidative stress and augmenting cholinesterases in mice brains. This study highlights the invulnerability of bromelain against oxidative and cholinergic deficits in mice brains.
  相似文献   

5.
PurposeAluminum trichloride (AlCl3) exposure was proven to encourage some behavioral deficits and eventually induces anxiety and depression in rodents animals. Therefore, this experiment aimed to scout about the effects of pomegranate juice on anxiety- and depression-like behaviors caused by AlCl3 in male mice.MethodsSix groups of male mice were administrated orally for 35 days by PJ and AlCl3. The control group (G-I) received tap water, while the PJ groups (G-II and G-III) were treated with 20 % and 40 % PJ, respectively. The AlCl3 group (G-IV) was treated with 400 mg/kg/day of AlCl3, and the last two groups (G-V and G-VI) were treated with AlCl3 and 20 % PJ or 40 % PJ, respectively. Then, the open-field (O-F), elevated plus maze (EPM), tail suspension (TS), forced swimming (FS), and light/dark box (L/DB) tests were applied for anxiety- and depression-like behavior studies. In addition, neurotransmitters and oxidative parameters in the brain were evaluated. The plasma cortisol was measured at the end of the experiment.ResultsBehavioral analyses showed that PJ inhibited AlCl3-induced depressive and anxiogenic effects in the O-F, EPM, TS, FS, L/DB tests. In addition, neurochemical results indicated that PJ at 20 % concentration minimized the AlCl3 toxicity on dopamine (DOP), serotonin (SER), and acetylcholinesterase (AChE) levels in the for-brain of male mice. Moreover, PJ moderated the AlCl3 effects by decreasing the level of thiobarbituric acid reactive substances (TBARS), and enhancing catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST) and glutathione (GSH) activities. The plasma cortisol increased in male mice treated with AlCl3 and in a group treated with a high dose of PJ.ConclusionOur results proposed that the anxiety- and depression-like behaviors induced by AlCl3 exposure in male mice can be ameliorated by PJ treatment, probably through the inhibition of oxidative damage and minimizing the changes in neurotransmitters and hormonal activity.  相似文献   

6.
7.
Summary

The influence of acetaminophen (APAP) treatment (400 mg/kg) on Kupffer cell function was studied in the isolated perfused liver by colloidal carbon infusion, concomitantly with parameters related to oxidative stress (thiobarbituric acid reactants (TBARS) formation and glutathione (GSH) content) and tissue injury (sinusoidal efflux of lactate dehydrogenase (LDH)). APAP led to increased rates of hepatic TBARS formation, GSH depletion, and higher sinusoidal LDH efflux compared to control values, without changes in the basal rate of O2 consumption. In addition, APAP significantly enhanced the rate of carbon uptake by perfused livers and the associated carbon-induced O2 consumption, with carbon-induced LDH effluxes being increased by 411% over control values or by 124% compared to basal LDH release in APAP-treated rats. APAP-induced changes in liver TBARS formation and GSH levels were attenuated by gadolinium chloride (GdCl3) pretreatment, whereas those in carbon uptake, carbon-induced respiration, and LDH efflux were abolished. GdCl3 pretreatment decreased liver O2 consumption irrespectively of APAP treatment, an effect that seems to be due to depression of mitochondrial respiration. It is concluded that APAP intoxication enhances Kupffer cell function as assessed in the intact liver, which may represent an important source of reactive O2 species and chemical mediators conditioning the increased oxidative stress status and the tissue injury which developed.  相似文献   

8.
Objectives: Exposure to 2,5-hexanedione (2,5-HD) is well known to be associated with reproductive dysfunctions in both humans and animals. However, the role of oxidative stress in 2,5-HD-induced toxicity in testes and sperm has not yet been studied.

Methodology: The present study investigated the influence of 2,5-HD on antioxidant systems in the testes and epididymal sperm of rats following exposure to 0, 0.25, 0.5, and 1% 2,5-HD in drinking water for 21 consecutive days.

Results: Administration of 0.5% 2,5-HD significantly (P?<?0.05) decreased epididymis weight, whereas 1% 2,5-HD-treated rats showed significantly decreased body weight, testis, and epididymis weights compared with the control group. Exposure to 2,5-HD caused a significant dose-dependent increase in the activities of superoxide dismutase, catalase, and glutathione peroxidase in both testes and sperm compared with the control group. Moreover, 2,5-HD-exposed rats showed significant decrease in glutathione-S-transferase activity and glutathione level with concomitant significant elevation in the levels of hydrogen peroxide and malondialdehyde in both testes and sperm. Testicular and epididymal atrophy with significant, dose-dependent, decrease in epididymal sperm number, sperm motility, and viability were observed in 2,5-HD-treated rats.

Conclusion: 2,5-HD exposure impaired testicular function and sperm characteristics by disruption of the antioxidant systems and consequently, increased oxidative stress in the treated rats.  相似文献   

9.
Aluminum (Al) is considered to be a potentially toxic metal and inhibits cartilage formation. Transforming growth factor β1 (TGF-β1) and bone morphogenetic protein 2 (BMP-2) are cartilage stimulatory growth factors, which play important roles in regulating the cartilage formation. To investigate the effects of aluminum trichloride (AlCl3) on the regulation of cartilage formation. Eighty Wistar rats were orally exposed to 0 (control group), 0.4 g/L (low-dose group), 0.8 g/L (mid-dose group) and 1.6 g/L (high-dose group) AlCl3 for 120 days, respectively. The rats body weight were decreased, the cartilage histological structure were disrupted, the cartilage and serum contents of Al and the serum level of C-telopeptide of type II collagen were all increased, the serum level of type II collagen (Col II) and alkaline phosphatase (ALP), and the mRNA expressions of TGF-β1, BMP-2, ALP and Col II were all decreased in the AlCl3-treated groups compared with those in control group. These results indicate that AlCl3 inhibits the cartilage formation through inhibition of the cartilage stimulatory growth factors expressions.  相似文献   

10.
Objectives: Exposure to 4-vinylcyclohexene diepoxide (VCD) was reported to induce testicular germ cell toxicity in rodents. However, there is paucity of information on the precise biochemical and molecular mechanisms of VCD-induced male reproductive toxicity.

Methodology: This study investigated the influence of VCD on testicular and epidydimal functions following oral exposure of Wistar rats to VCD at 0, 100, 250 and 500?mg/kg for 28 consecutive days.

Results: Administration of VCD significantly decreased the body weight gain and organo-somatic indices of the testes and epididymis. When compared with the control, VCD significantly decreased superoxide dismutase and catalase activities in the testes whereas it significantly decreased superoxide dismutase activity but increased catalase activity in the epididymis. Moreover, while glutathione peroxidase activity and glutathione level remain unaffected, exposure of rats to VCD significantly increased glutathione S-transferase activity as well as hydrogen peroxide and malondialdehyde levels in testes and epididymis of the treated rats. The spermiogram of VCD-treated rats showed significant decrease in epididymal sperm count, sperm progressive motility, testicular sperm number and daily sperm production when compared with the control. Administration of VCD significantly decreased circulatory concentrations of follicle-stimulating hormone, luteinizing hormone and testosterone along with testicular and epididymal degeneration in the treated rats. Immunohistochemical analysis showed significantly increased cyclooxygenase-2, inducible nitric oxide synthase, caspase-9 and caspase-3 protein expressions in the testes of VCD-treated rats.

Conclusion: Exposure to VCD induces testicular and epidydimal dysfunctions via endocrine suppression, disruption of antioxidant enzymes activities, increase in biomarkers of oxidative stress, inflammation and apoptosis in rats.  相似文献   

11.
Helmy MM  Senbel AM 《Life sciences》2012,90(13-14):489-494
AimsThe present study aims to elucidate the role of oxidative stress in erectile dysfunction associated with aging and to investigate the effect of treatment with vitamin E in this respect.Main methodsRats were divided into four groups: young (3-month-old), aged rats (18-month-old), aged rats given 80 IU of vitamin E/rat/day for 21-days, aged rats given 5 mg/kg of sildenafil/day for 21-days. Intracavernosal pressure/mean arterial pressure (ICP/MAP), nitric oxide production, TBARS, GSH levels and SOD activity in corpus cavernosum were measured.Key findingsSignificant decrease in ICP/MAP was observed in aged rats at both low and high frequency of stimulation. Significant increase in ICP/MAP was observed in aged rats treated with vitamin E over the range of 0.8 to 5 Hz but young control values were not restored. Percentage potentiation of ICP/MAP than aged group at 0.8 Hz was 326 ± 41.3% and 897 ± 72.2% for vitamin E and sildenafil respectively. Decreased levels of NO2/NO3 and SOD activity in the penile tissue observed with aging were elevated back to control by either vitamin E or sildenafil. Penile concentration of TBARS was 20.86 ± 0.83 for aged rats vs. 11.39 ± 0.79 nmol/g tissue for young controls. Both vitamin E and sildenafil reduced penile TBARS in aged rats.SignificanceThis study proves that antioxidant therapy with vitamin E ameliorates the age-associated erectile dysfunction. Sildenafil may exert some antioxidant properties which add to the advantages of its long-term use. The effect of combinations of low-dose sildenafil and vitamin E on age-associated erectile dysfunction merits to be studied.  相似文献   

12.
The present investigation was conducted to assess the effects of subacute aluminum (Al) exposure on testicular zinc (Zn), copper (Cu), and iron (Fe) distribution in mice. Animals were intraperitoneally exposed to 0, 13, or 35 mg Al/kg body weight/d for a period of 14 d. Al concentrations in serum and testis in Al-treated animals were significantly higher than those of controls. The serum concentrations of Fe were lower, whereas serum Zn and Cu showed a pattern comparable to that of controls. The accumulation of testicular Fe and Cu remarkably increased in Al-exposed groups, whereas the Zn concentration in testis was significantly reduced only at the highest dose of Al exposure. The values of testicular thiobarbituric acid reactive substances (TBARS) were also increased after Al administration, indicating increased lipid peroxidation and oxidative stress. In addition, when the testicular Al was increased, the testis-specific angiotensin-converting enzyme (testis ACE) was noted. The results of this study indicated that part of the effect of Al intoxication on testis might contribute to abnormal metabolism of other minerals, such as Fe, Zn, and/or Cu. It was also suggested that reduced testis ACE activity presumably plays an important role in oxidative damage of Al-induced testicular toxicity.  相似文献   

13.
BackgroundAluminium (Al) overload has toxic effects on multiple organ systems, especially the nervous system. Al accumulation in the brain, especially the hippocampus, is an important factor contributing to Alzheimer’s disease (AD). Deferiprone (DFP), a metal chelator, is used as a potential treatment for AD. In this study, we investigated the combined effect of taurine and DFP on Al chelation and hippocampal apoptosis in Al-exposed rats, as well as the underlying mechanisms of these effects to explore a possible therapy for AD.MethodsMale Wistar rats were divided into seven groups: negative control group (administered saline), Al-exposure group (administered AlCl3 and saline), and five experimental groups (administered AlCl3 and taurine, varying doses of DFP, or taurine with varying doses of DFP). After 8 weeks of treatment, the rats were sacrificed, and the terminal deoxyribonucleotidyl transferase (TDT)-mediated dUTP-digoxigenin nick end labelling (TUNEL) assay was used to detect hippocampal apoptotic cells. Real-time quantitative PCR was used to assess the expression of the Bcl2 and Bax genes, and a western blotting assay was used to evaluate BCL2, BAX, and cleaved caspase-3 levels.ResultsCompared to the negative control group, the number of apoptotic cells in the hippocampus increased, Bcl2 expression significantly decreased, and BAX and cleaved caspase-3 levels increased in the Al-exposure group. The combination of taurine and DFP exerted a protective effect by inhibiting hippocampal cell apoptosis through the BCL2, BAX, and caspase-3 signalling pathways. Compared with the taurine-administered group, the group administered taurine with DFP showed a significantly increased Bcl2 and decreased Bax expression.ConclusionThe combination of taurine and DFP is a potential candidate for the treatment of AD induced by Al exposure.  相似文献   

14.
15.
BackgroundMolybdenum, as a trace element, has various pharmacological effects, including antioxidant, antiviral, anti-allergic, anti-osteoporosis, anti-tumor, anti-inflammatory, anti-diabetic, anti-obesity, and free radical-scavenging activities. This study aimed at investigating the sodium molybdate impacts on cadmium chloride (CdCl2)-induced testicular toxicity in adult Wistar rats.MethodsThe impacts of oral administration of sodium molybdate (0.05, 0.1, 0.2, and 0.4 mg/kg) was evaluated in healthy and infertile animals. Animals were randomly assigned to nine groups, including healthy control, sodium molybdate alone, infertile control (3 mg/kg of CdCl2), and sodium molybdate plus CdCl2. Following 30 days of administration, animals were sacrificed for biochemical and histopathological assays.ResultsThe results indicated that administration of sodium molybdate to infertile rats significantly mitigated the cadmium impacts on sperm appearance, concentration, and motility parameters. Also, sodium molybdate reduced the production of malondialdehyde (MDA) and enhanced antioxidant enzymes activities in the testicular homogenates in rats; these findings were supported by histopathological examinations. Treatment with sodium molybdate significantly increased aquaporin-9 (AQP9) expression in the testicular tissues of infertile rats.ConclusionsThe current findings suggested that sodium molybdate performs as a strong protective agent from CdCl2-related testicular toxicity in rats.  相似文献   

16.
Mangiferin is a phytochemical primarily present in the stem, leaves and bark of Mangifera indica. It offers neuroprotection mainly through inhibition of oxidative stress, and decreasing proinflammatory cytokines level in the brain. Aluminium has been reported to cause oxidative stress-associated damage in the brain. In the present investigation, protective effect of mangiferin against aluminium chloride (AlCl3)-induced neurotoxicity and cognitive impairment was studied in male Swiss albino mice. AlCl3 (100 mg/kg) was administered once daily through oral gavage for 42 days. Mangiferin (20 and 40 mg/kg, p.o.) was given to mice for last 21 days of the study. We found cognitive dysfunction in AlCl3-treated group, which was assessed by Morris water maze test, and novel object recognition test. AlCl3-treated group showed elevated level of oxidative stress markers, proinflammatory cytokines level and lowered hippocampal brain-derived neurotrophic factor (BDNF) content. Mangiferin (40 mg/kg) prevented the cognitive deficits, hippocampal BDNF depletion, and biochemical anomalies induced by AlCl3-treatment. In conclusion, our data demonstrated that mangiferin offers neuroprotection in AlCl3-induced neurotoxicity and it may be a potential therapeutic approach in the treatment of oxido-nitrosative stress and inflammation-associated neurotoxicity.  相似文献   

17.
We investigated whether acute iron intoxication causes oxidative DNA damage, measured in terms of 7-hydro-8-oxo-2′-deoxyguanosine, 8-oxodG, in nuclear DNA in testes and epididymal sperm cells in vivo and in vitro in rats. In addition, we investigated levels of the modified nucleoside in liver and kidney and measured its urinary excretion.

Sperm cells were isolated from the epididymides and the testes cells were isolated after homogenisation. In vitro, the sperm and testes cells were incubated with increasing concentrations of FeCl2 ranging from 0 to 600 μM. The median (range) levels of 8-oxodG/105 dG in the epididymal sperm cells increased from 0.48 (0.42–0.90) to 15.1 (11.4–17.6) (p < 0.05), whereas the level rose from 0.63 (0.22–0.81) to 8.8 (4.5–11.6) (p < 0.05) at 0 and 600 μM, respectively, in the testicular cells.

In vivo groups of 7–8 rats received 0, 200 or 400 mg iron/kg as dextran i.p. After 24h, epididymal sperm cells, testes, kidneys and liver were collected for analysis. Kidney and sperm DNA showed a significant increase in 8-oxodG in the iron-treated animals. The median (range) values of the 8-oxodG/105 dG in the epididymal sperm cells rose from 0.66 (0.38–1.09) to 1.12 (0.84–5.88) (p < 0.05) at 0 and 400 mg iron/kg, respectively, whereas the values in the testes and liver showed no significant change. In the kidneys the 8-oxodG/105 dG median (range) values were 0.98 (0.73–1.24), 1.21 (1.13–1.69) and 1.34 (1.12–1.66) after 0, 200 and 400 mg iron/kg, respectively (p < 0.05).

The 8-oxodG-excretion rate was measured in 24 h urine before and after iron treatment. The rate of urinary 8-oxodG excretion increased from 129 (104–179) pmol/24 h before treatment to 147 (110–239) pmol/24h after treatment in the group receiving 400 mg iron/kg (p < 0.05).

The results indicate that acute iron intoxication may increase oxidative damage to sperm and kidney DNA.  相似文献   

18.
The purpose of this study was to ascertain whether vitamin C supplementation during chronic exercise training alters rat brain antioxidant content. Female Wistar albino rats were exercised on a treadmill for 30 min/day for 6.5 weeks and were administered daily intraperitoneal injections of vitamin C (20 mg/kg). After the training period, chronically exercised rats showed no significant changes in total brain thiobarbituric acid reactive substances (TBARS) levels. In contrast, rats supplemented with vitamin C during the training period showed significantly elevated brain TBARS levels. If such results were extrapolated to man, where vitamin supplementation is a common practice, this would indicate that vitamin C supplementation may not protect brain tissue against exercise-induced oxidative damage, in such circumstances, this water-soluble antioxidant behaves as a pro-oxidant. (Mol Cell Biochem xxx: 135–138, 2005)  相似文献   

19.
Objective: The purpose of this study was to investigate the effects of chromium picolinate (CrPic) supplementation associated with aerobic exercise using measures of oxidative stress in rats exposed to air pollution.

Methods: Sixty-one male Wistar rats were divided into eight groups: residual oil fly ash (ROFA) exposure and sedentary (ROFA-SED); ROFA exposure, sedentary and supplemented (ROFA-SED-CrPic); ROFA exposure and trained (ROFA-AT); ROFA exposure, supplemented and trained (ROFA-AT-CrPic); sedentary (Sal-SED); sedentary and supplemented (Sal-SED-CrPic); trained (Sal-AT); and supplemented and trained (Sal-AT-CrPic). Rats exposed to ROFA (air pollution) received 50?µg of ROFA daily via intranasal instillation. Supplemented rats received CrPic (1?mg/kg/day) daily by oral gavage. Exercise training was performed on a rat treadmill (5×/week). Oxidative parameters were evaluated at the end of protocols.

Results: Trained groups demonstrated lower gain of body mass (P?P?P?P?=?.0014), although CAT activity did not differ among groups (P?=?.4487).

Conclusion: Air pollution exposure did not lead to alterations in oxidative markers in lungs and heart, and exercise training was responsible for decreasing oxidative stress of the gastrocnemius.  相似文献   

20.
BackgroundAluminum is an environmental neurotoxin widely exposed to animals and humans. Studies have shown that Alzheimer's disease (AD) is characterized by abnormally phosphorylated tau and Aβ deposition, aluminum exposure can lead to abnormal phosphorylated tau and Aβ deposition. Numerous epidemiological data and studies have confirmed that ApoEε4 is a risk factor for AD. However, whether there is an interaction effect between aluminum and ApoEε4 has yet to be verified.MethodsSH-SY5Y cells were exposed with AlCl3 and transfected with ApoEε4 respectively. The experimental groups included the blank control group, the low dose group (200 μM AlCl3), the medium dose group (400 μM AlCl3), the high dose group (800 μM AlCl3), empty plasmid group, ApoEε4 group and 400 μM AlCl3+ApoEε4 group. The cell viability was determined by CCK-8 kit after transfection for 48 h.The contents of total tau proteins, tau-181, tau-231, tau-262, tau-396 and Aβ42, were determined by ELISA kit. The interaction between AlCl3 and ApoEε4 was analyzed by factorial design.ResultsWith the increase of aluminum exposure, SH-SY5Y cell viability decreased, and the expression of the total tau, tau-181, tau-231, tau-262, tau-396 and Aβ content increased. The viability of cells transfected with ApoEε4 is significantly lower than control group, and the expressions of total tau, tau-181, tau-231, tau-262, tau-396 and Aβ in ApoEε4 transfected cells were significantly higher than control group. The viability of cells treated with AlCl3 plus ApoEε4 was lower than those treated with, either AlCl3, or ApoEε4. The expression of total tau, tau-181, tau-231, tau-262, tau-396 and Aβ in the cells treated with AlCl3 plus ApoEε4 were significantly higher than those in other groups (p < 0.05). Moreover, analyzing data based on the factorial design, there was existed an interaction between AlCl3 and ApoEε4 (p < 0.05).ConclusionAl and ApoEε4 gene can cause morphological changes of SH-SY5Y cells, reduce cell activity, and have obvious cytotoxic effects, and increase the phosphorylation levels of tau and the deposition of Aβ increases. In the presence of both Al and ApoEε4 genes, the two factors interact with each other and show a synergistic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号