首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Antimicrobial peptide P18 markedly inhibited the expression of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1beta) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells, whereas magainin 2 did not inhibit these activities. P18 dose-dependently reduced nitric oxide (NO) production by LPS-stimulated RAW 264.7 macrophage cells, with complete inhibition at 20 microg P18 ml(-1). In contrast, P18 had no effect on NO production and the expression of iNOS mRNA and iNOS protein by interferon-gamma (IFN-gamma)-stimulated RAW264.7 cells, suggesting P18 selectively inhibits LPS-stimulated inflammatory responses in macrophages. An LAL assay showed that P18 has strong LPS-neutralizing activity, indicating that P18 inhibits the inflammatory responses in LPS-stimulated macrophages by direct binding to LPS. Collectively, our results indicate that P18 has promising therapeutic potential as a novel anti-inflammatory as well as antimicrobial agent.  相似文献   

3.
Flavonoids including the aglycones, hesperetin (HT; 5,7,3'-trihydroxy-4'-methoxy-flavanone), and naringenin (NE; 5,7,4'-trihydroxy flavanone) and glycones, hesperidin (HD; 5,7,3'-trihydroxy-4'-methoxy-flavanone 7-rhamnoglucoside) and naringin (NI; 5,7,4'-trihydroxy flavanone 7-rhamno glucoside), were used to examine the importance of rutinose at C7 on the inhibitory effects of flavonoids on lipopolysaccharide (LPS)-induced nitric oxide production in macrophages. Both HT and NE, but not their respective glycosides HD and NI, induced heme oxygenase 1 (HO-1) protein expression in the presence or absence of LPS and showed time and dose-dependent inhibition of LPS-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in RAW264.7, J774A.1, and thioglycolate-elicited peritoneal macrophages. Additive inhibitory effect of an HO-1 inducer hemin and NE or NI on LPS-induced NO production and iNOS expression was identified, and HO enzyme inhibitor tin protoporphyrin (SnPP) attenuated the inhibitory effects of HT, NE, and hemin on LPS-induced NO production. Both NE and HT showed no effect on iNOS mRNA and protein stability in RAW264.7 cells. Removal of rutinose at C7 of HD and NI by enzymatic digestion using hesperidinase (HDase) and naringinase (NIase) produce inhibitory activity on LPS-induced NO production, according to the production of the aglycones, HT and NE, by high-performance liquid chromatography (HPLC) analysis. Furthermore, the amount of NO produced by LPS or lipoteichoic acid (LTA) was significantly reduced in HO-1-overexpressing cells (HO-1/RAW264.7) compared to that in parental cells (RAW264.7). Results of the present study provide scientific evidence to suggest that rutinose at C7 is a negative moiety in flavonoid inhibition of LPS-induced NO production, and that HO-1 is involved in the inhibitory mechanism of flavonoids on LPS-induced iNOS and NO production.  相似文献   

4.
Inflammation is an essential host defense system particularly in response to infection and injury; however, excessive or undesirable inflammatory responses contribute to acute and chronic human diseases. A high-throughput screening effort searching for anti-inflammatory compounds from medicinal plants deduced that the methanolic extract of Juniperus rigida S. et L. (Cupressaceae) inhibited significantly nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Activity-guided fractionation and isolation yielded 13 phenolic compounds, including one new phenylpropanoid glycosides, 3,4-dimethoxycinnamyl 9-O-β-D-glucopyranoside (1). Among the isolated compounds, phenylpropanoid glycosides with p-hydroxy group (2, 4) and massoniaside A (7), (+)-catechin (10), amentoflavone (11) effectively inhibited LPS-induced NO production in RAW264.7 cells.  相似文献   

5.
Antioxidant and anti-inflammatory activities were found from Crocodylus siamensis (C. siamensis) blood. The 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging, nitric oxide scavenging, hydroxyl radical scavenging and linoleic peroxidation assays were used to investigate the antioxidant activities of the crocodile blood. Results show that crocodile blood components had antioxidant activity, especially hemoglobin (40.58 % nitric oxide radical inhibition), crude leukocyte extract (78 % linoleic peroxidation inhibition) and plasma (57.27 % hydroxyl radical inhibition). Additionally, the anti-inflammatory activity of the crocodile blood was studied using murine macrophage (RAW 264.7) as a model. The results show that hemoglobin, crude leukocyte extract and plasma were not toxic to RAW 264.7 cells. Also they showed anti-inflammatory activity by reduced nitric oxide (NO) and interleukin 6 (IL-6) productions from lipopolysaccharide (LPS)-stimulated cells. The NO inhibition percentages of hemoglobin, crude leukocyte extract and plasma were 31.9, 48.24 and 44.27 %, respectively. However, only crude leukocyte extract could inhibit IL-6 production. So, the results of this research directly indicate that hemoglobin, crude leukocyte extract and plasma of C. siamensis blood provide both antioxidant and anti-inflammatory activities, which could be used as a supplementary agent in pharmaceutical products.  相似文献   

6.
A seco-triterpenoid, sentulic acid (SA) isolated from Sandoricum koetjape Merr attenuated nitric oxide (NO) production following co-stimulation with lipopolysaccharide (LPS) and interferon-gamma (IFNγ) in RAW264.7 macrophage cells. The mRNA expression levels of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), IFNγ, interleukin (IL)-6, and IL-12 in LPS/IFNγ co-stimulated RAW264.7 cells also decreased upon SA treatment. To determine the molecular mechanisms underlying the inhibitory effect of SA on LPS/IFNγ-induced NO production in RAW264.7 cells, we further analyzed Toll-like receptor (TLR) signaling by western blotting. The expression of TLR4 and IFN signaling molecules in cells treated with SA was significantly suppressed compared to that in cells not treated with SA. Additionally, SA inhibited the binding of LPS to the TLR4 receptor in RAW264.7 cells stimulated with Alexa Fluor 488-conjugated LPS. These results demonstrate that SA attenuates NO production after LPS/IFNγ co-stimulation in RAW264.7 cells by inhibiting the binding of LPS to TLR4. Our findings suggest that SA is beneficial for the treatment of inflammatory diseases.  相似文献   

7.
8.
Diospyros lotus is traditionally used for the treatment of diabetes, diarrhea, tumor, and hypertension. The purpose of this study was to investigate the anti-inflammatory effect and underlying molecular mechanisms of myricetin in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Myricetin dose-dependently suppressed the production of pro-inflammatory mediators (NO, iNOS, PGE2, and COX-2) in LPS-stimulated RAW264.7 macrophages. Myricetin administration decreased the production of NO, iNOS, TNF-α, IL-6, and IL-12 in mice. Myricetin decreased NF-κB activation by suppressing the degradation of IκBα, nuclear translocation of p65 subunit of NF-κB, and NF-κB DNA binding activity in LPS-stimulated RAW264.7 macrophages. Moreover, myricetin attenuated the phosphorylation of STAT1 and the production of IFN-β in LPS-stimulated RAW264.7 macrophages. Furthermore, myricetin induced the expression of HO-1 through Nrf2 translocation. In conclusion, these results suggest that myricetin inhibits the production of pro-inflammatory mediators through the suppression of NF-κB and STAT1 activation and induction of Nrf2-mediated HO-1 expression in LPS-stimulated RAW264.7 macrophages.  相似文献   

9.
10.
Three undescribed glycoside constituents, macrophyllosides E-G and a pair of iridoid glycosides genticrasides A/B, together with eleven known glycoside compounds were isolated from the roots of Gentiana crassicaulis Duthie ex Burk. Their structures were identified by means of spectra analysis and data comparison with previous literatures. Interestingly, the glucose moieties in macrophylloside E and F possess free anomeric hydroxy groups. Genticrasides A/B, identified as a pair of iridoid originated lactones, have not been reported from Gentianaceae family up to now. The anti-inflammatory effects of selected compounds were also evaluated through the nitric oxide (NO) production inhibition in lipopolysaccharides (LPS)-induced RAW264.7 macrophage cells. In which, macrophyllosides G and D showed NO inhibitory activities with rates of 76.14±4.02 % and 52.44±8.29 % at 100 μg/mL.  相似文献   

11.
Dioscorealide B (DB), a naphthofuranoxepin has been purified from an ethanolic extract of the rhizome of Dioscorea membranacea Pierre ex Prain & Burkill which has been used to treat inflammation and cancer in Thai Traditional Medicine. Previously, DB has been reported to have anti‐inflammatory activities through reducing nitric oxide (NO) and tumor necrosis factor‐α (TNF‐α) production in lipopolysaccharides (LPS)‐induced RAW 264.7 macrophage cells. In this study, the mechanisms of DB on LPS‐induced NO production and cytokine expression through the activation of nuclear factor‐κB (NF‐κB) and ERK1/2 are demonstrated in RAW 264.7 cells. Through measurement with Griess's reagent, DB reduced NO level with an IC50 value of 2.85 ± 0.62 µM that was due to the significant suppression of LPS‐induced iNOS mRNA expression as well as IL‐1β, IL‐6, and IL‐10 mRNA at a concentration of 6 µM. At the signal transduction level, DB significantly inhibited NF‐κB binding activity, as determined using pNFκB‐Luciferase reporter system, which action resulted from the prevention of IκBα degradation. In addition, DB in the range of 1.5–6 µM significantly suppressed the activation of the ERK1/2 protein. In conclusion, the molecular mechanisms of DB on the inhibition of NO production and mRNA expression of iNOS, IL‐1β, IL‐6, and IL‐10 were due to the inhibition of the upstream kinases activation, which further alleviated the NF‐κB and MAPK/ERK signaling pathway in LPS‐induced RAW264.7 macrophage cells. J. Cell. Biochem. 109: 1057–1063, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
14.
Coicis semen (=the hulled seed of Coix lacryma‐jobi L. var. ma‐yuen (Rom.Caill. ) Stapf ; Gramineae), commonly known as adlay and Job's tears, is widely used in traditional medicine and as a nutritious food. Bioassay‐guided fractionation of the AcOEt fraction of unhulled adlays, using measurement of nitric oxide (NO) production on lipopolysaccharide (LPS)‐stimulated RAW 264.7 macrophage cells, led to the isolation and identification of two new stereoisomers, (+)‐(7′S,8′R,7″S,8″R)‐guaiacylglycerol βO‐4′‐dihydrodisinapyl ether ( 1 ) and (+)‐(7′S,8′R,7″R,8″R)‐guaiacylglycerol βO‐4′‐dihydrodisinapyl ether ( 2 ), together with six known compounds, 3 – 8 . Compounds 3 and 4 exhibited inhibitory activities on LPS‐induced NO production with IC50 values of 1.4 and 3.7 μM , respectively, and suppressed inducible nitric oxide synthase (iNOS) and cyclooxygenase‐2 (COX‐2) protein expressions in RAW 264.7 macrophage cells. Simple high‐performance liquid chromatography with ultraviolet detection (HPLC/UV) was used to compare the AcOEt fraction of unhulled adlays responsible for the anti‐inflammatory activity in RAW 264.7 cells and the inactive AcOEt fraction of hulled adlays.  相似文献   

15.
探讨羊角拗茎的化学成分及其抗炎活性,采用硅胶、Sephadex LH-20等色谱分离技术分离纯化羊角拗茎乙醇提取物的乙酸乙酯萃取物中的化合物,通过质谱和核磁共振等波谱技术对其结构进行鉴定,确定出了13个化合物,包括常春藤皂苷元(1)、(-)-loliolide(2)、(3S,5R,6S,7E)-3,5,6-trihydroxy-7-megastigmen-9-one(3)、(3R,6R,7E)-3-hydroxy-4,7-megastigmadien-9-one(4)、松脂素(5)、表松脂素(6)、4,4′-dihydroxy-3,3′-dimethoxybenzophenone(7)、6-羟基柚皮素(8)、东莨菪素(9)、6-羟基-7,8-二甲氧基香豆素(10)、吲唑(11)、香草酸(12)、对羟基苯甲酸(13)。其中化合物1~4和6~13为首次从羊角拗中分离得到。采用LPS诱导小鼠单核巨噬细胞RAW 264.7体外细胞炎症模型测试结果表明,化合物5能显著抑制NO的产生,IC50值为18.09±1.09μM。  相似文献   

16.
The biological properties of ailanthoidol, a neolignan from Zanthoxylum ailanthoides or Salvia miltiorrhiza Bunge, which is used in Chinese traditional herbal medicine, have not been evaluated. Here, we report that ailanthoidol inhibits inflammatory reactions in macrophages and protects mice from endotoxin shock. Our in vitro experiments showed that ailanthoidol suppressed the generation of nitric oxide (NO) and prostaglandin E(2) , as well as the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 induced by lipopolysaccharide (LPS) in RAW264.7 cells. Similarly, ailanthoidol inhibited the production of inflammatory cytokines induced by LPS in RAW264.7 cells, including interleukin (IL)-1β and IL-6. In an animal model, ailanthoidol protected BALB/c mice from LPS-induced endotoxin shock, possibly through inhibition of the production of inflammatory cytokines and NO. Collectively, ailanthoidol inhibited the production of inflammatory mediators and may be a potential target for treatment of various inflammatory diseases.  相似文献   

17.
BackgroundCombination drug therapy has become an effective strategy for inflammation control. The anti‑inflammatory capacities of silibinin and thymol have each been investigated on its own, but little is known about the synergistic anti-inflammatory effects of these two compounds.PurposeThis study aims to investigate the synergistic anti-inflammatory effects of silibinin and thymol when administered in combination to lipopolysaccharide (LPS)-induced RAW264.7 cells.MethodsRAW264.7 cells were pre-treated with silibinin and thymol individually or in combination for 2 h before LPS stimulation. Cell viability was detected by the MTT assay. Nitric oxide (NO) production was measured by Griess reagent. Reactive oxygen species (ROS) was evaluated by 2’,7’-dichlorofluorescein-diacetate. ELISA was used to detect tumour necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Western blot was performed to analyse the protein expression of LPS-induced RAW264.7 cells.ResultsWe observed a synergistic anti-inflammatory effect of silibinin and thymol when administered in combination to LPS-induced RAW264.7 cells. Silibinin combined with thymol (40 μM and 120 μM respectively, with the molar ratio 1:3) had more potent effects on the inhibition of NO, TNF-α, and IL-6 than those exerted by individual administration of these compounds in LPS-induced RAW264.7 cells. The combination of silibinin and thymol (40 μM and 120 μM respectively, with the molar ratio 1:3) strongly inhibited ROS and cyclooxygenase-2 (COX-2). More importantly, the combination of silibinin and thymol (40 μM and 120 μM respectively, with the molar ratio 1:3) was also successful in inhibiting nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) activities. Our results suggest that the synergistic anti-inflammatory effects of silibinin with thymol were associated with the inhibition of NF-κB and MAPK signalling pathways.ConclusionThe combination of silibinin and thymol (40 μM and 120 μM, respectively, with the molar ratio 1:3) could inhibit inflammation by suppressing NF-κB and MAPK signalling pathways in LPS-induced RAW264.7 cells.  相似文献   

18.
Polysaccharides isolated from Phellinus baumii (PBP) significantly enhanced both lipopolysaccharide (LPS)-induced B lymphocyte proliferation and concanavalin A (Con A)-induced T lymphocyte proliferation. However, PBP (12.5–100 μg ml−1) significantly suppressed the LPS-induced nitric oxide (NO) production in RAW264.7 cells in a concentration-dependent manner. The maximal inhibition of PBP on NO production was 37.5% at 100 μg ml−1. These results provide useful in vitro information to explain the immunostimulating activity and anti-inflammatory activity of PBP.  相似文献   

19.
An investigation on the chemical constituents in the root barks of Litsea glutinosa was performed for the first time. Three new lignan glycosides named Litseasins A–C (1–3), together with a known one (4), were obtained. The structures of the new compounds were established through extensive spectroscopic analyses including HR-ESI–MS, NMR, and circluar dichroism (CD). The new compounds were evaluated for their anti-inflammatory activities on lipopolysaccharide (LPS)-induce nitric oxide (NO) production in RAW264.7 murine macrophage cells. However, these compounds showed no inhibition on LPS-induced NO productions.  相似文献   

20.
Inflammation is a critical defensive mechanism mainly arising due to the production of prostaglandins via cyclooxygenase enzymes. This study aimed to examine the anti-inflammatory activity of fatty acid glucoside (FAG), which is isolated from Ficus benghalensis against lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The cytotoxic activity of the FAG on RAW 264.7 macrophages was evaluated with an MTT assay. The levels of PGE2 and NO and the activity of iNOS, COX-1, and COX-2 enzymes in LPS-stimulated RAW 264.7 cells were evaluated. The gene expression of IL-6, TNF-α, and PGE2 was investigated by qRT-PCR. The expression of epidermal growth factor receptor (EGFR), Akt, and PI3K proteins was examined using Western blotting analysis. Furthermore, molecular docking of the new FAG against EGFR was investigated. A non-cytotoxic concentration of FAG increased NO release and iNOS activity, inhibited COX-1 and COX-2 activities, and reduced PGE2 levels in LPS-stimulated RAW 264.7 cells. It diminished the expression of TNF-α, IL-6PGE2, EGFR, Akt, and PI3K. Furthermore, the molecular docking study proposed the potential direct binding of FAG with EGFR with a high affinity. This study showed that FAG is a natural EGFR inhibitor, NO-releasing, and COX-inhibiting anti-inflammatory agent via EGFR/Akt/PI3K pathway inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号