首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
植物甾醇微生物转化制备甾体药物中间体的研究进展   总被引:6,自引:0,他引:6  
微生物选择性降解植物甾醇侧链获取甾体药物合成的重要中间体雄甾-4-烯-3,17-二酮(4-AD)和雄甾-1,4-二烯-3,17-二酮(ADD)对于我国制药行业具有重要意义。现存文献资料对该领域缺乏全面系统的分析总结,从甾醇侧链微生物转化的机理、途径及其收率的影响因素等几个方面综述了近几年的研究进展,并对此领域的发展趋势进行了展望。  相似文献   

3.
在细菌中,mRNA降解具有重要的意义,它不仅可以再循环核苷酸,而且还可以根据生长条件的变化调控基因表达.细菌mRNA的降解机制可以分为3种:① mRNA的一般降解途径|② mRNA的质量控制途径|③ 小RNA介导的降解途径. 这些途径有些与真核生物的mRNA降解途径存在很大差异,有些在真核生物中消失了. 另外,mRNA降解途径还可以直接调控细菌致病因子的表达,这使得细菌mRNA的降解途径很有希望成为药物研发的新靶标,或疫苗制备的新平台,以应对越来越严重的细菌耐药性问题.本文综述了细菌mRNA的降解机制,并对其应用前景进行了展望.  相似文献   

4.
麦角甾醇是真菌细胞膜的主要固醇类物质,其生物合成是一个复杂的酶促反应过程, 其中C24(28)-甾醇还原酶是麦角甾醇合成途径中的关键酶,对C24(28)-甾醇还原酶功能的研究有助于阐明麦角甾醇对真菌极性生长的影响.本文对粗糙脉胞菌C24(28)-甾醇还原酶蛋白(Erg-2基因编码)序列的同源性分析表明,在子囊菌门的3个物种中,C24(28)-甾醇还原酶具有很高的保守性.根据同源重组基因敲除原理,通过电转化、分生孢子过膜以及PCR鉴定的方法获得了Erg-2基因缺失突变株(Erg-2KO),进一步利用斜面生长法并结合细胞壁染色进行突变株表型分析发现,与野生型相比,Erg-2KO(Ku70RIP背景)在生长初期菌丝生长缓慢,而后期与野生型无显著差异.这些结果表明,C24(28)-甾醇还原酶对N. crassa早期的生长和发育至关重要.  相似文献   

5.
植物叶片暂时淀粉主要分解途径包括如下过程:叶绿体中半结晶状淀粉粒在葡聚糖-水双激酶(GWD)和磷酸葡聚糖-水双激酶(PWD)作用下磷酸化,使淀粉粒结构松散;异淀粉酶(ISA3)作用于松散淀粉粒而释放出磷酸葡聚糖,再经磷酸葡聚糖磷酸酶(SEX4)水解去除磷酸而生成可溶性线性葡聚糖;葡聚糖在β-淀粉酶(BAM3)催化下水解生成麦芽糖后,再通过麦芽糖载体(MEX1)转运至细胞质.该文主要综述了以上转化过程中涉及的底物、生成物和催化酶类的研究进展情况,同时简述了植物叶片暂时淀粉分解的次要途径和抗逆性相关途径,并提出了该领域目前存在的问题和今后研究方向.  相似文献   

6.
李磊  胡海燕  田菲菲 《微生物学通报》2023,50(12):5588-5603
二苯醚类除草剂是一类广谱、高效、高选择性的除草剂,广泛应用于大豆、花生等农田一年生和多年生阔叶杂草的防除。由于该类除草剂不易降解,多年连续使用会导致其在土壤环境中的大量积累。本文概述了二苯醚类除草剂的基本结构及其对生物的影响,总结了降解二苯醚类除草剂的微生物种类、降解途径和降解过程中关键酶及其基因,分析了影响微生物降解二苯醚类除草剂的因素,对二苯醚类除草剂微生物降解未来的研究方向进行了展望,为深入研究二苯醚类除草剂的生物降解提供参考。  相似文献   

7.
Hydroxyphenylpyruvate reductase (HPPR) is an enzyme involved in the biosynthesis of rosmarinic acid in Lamiaceae reducing hydroxyphenylpyruvates in dependence of NAD(P)H to the corresponding hydroxyphenyllactates. The HPPR protein was purified from suspension cells of Coleus blumei accumulating high levels of rosmarinic acid by ammonium sulfate precipitation, anion exchange chromatography, hydroxylapatite chromatography, chromatography on 2',5'-ADP-Sepharose 4B and SDS-polyacrylamide gel electrophoresis. The protein was tryptically digested and the peptides sequenced. Sequence information was used to isolate a full-length cDNA-clone for HPPR (EMBL accession number AJ507733) by RT-PCR, screening of a C. blumei cDNA-library and 5'-RACE-PCR. The open reading frame of the HPPR-cDNA consists of 939 nucleotides encoding a protein of 313 amino acid residues. The sequence showed that HPPR belongs to the family of D-isomer-specific 2-hydroxyacid dehydrogenases. The HPPR-cDNA was heterologously expressed in Escherichia coli and the protein was shown to catalyse the NAD(P)H-dependent reduction of 4-hydroxyphenylpyruvate to 4-hydroxyphenyllactate and 3,4-dihydroxyphenylpyruvate to 3,4-dihydroxyphenyllactate.  相似文献   

8.
The degradation of cholesterol and related steroids by microbes follows fundamentally different strategies in aerobic and anaerobic environments. In anaerobic bacteria, the primary C26 of the isoprenoid side chain is hydroxylated without oxygen via a three-step cascade: (i) water-dependent hydroxylation at the tertiary C25, (ii) ATP-dependent dehydration to form a subterminal alkene, and (iii) water-dependent hydroxylation at the primary C26 to form an allylic alcohol. However, the enzymes involved in the ATP-dependent dehydration have remained unknown. Here, we isolated an ATP-dependent 25-hydroxy-steroid kinase (25-HSK) from the anaerobic bacterium Sterolibacterium denitrificans. This highly active enzyme preferentially phosphorylated the tertiary C25 of steroid alcohols, including metabolites of cholesterol and sitosterol degradation or 25-OH-vitamin D3. Kinetic data were in agreement with a sequential mechanism via a ternary complex. Remarkably, 25-HSK readily catalyzed the formation of γ-(18O)2-ATP from ADP and the C25-(18O)2-phosphoester. The observed full reversibility of 25-HSK with an equilibrium constant below one can be rationalized by an unusual high phosphoryl transfer potential of tertiary steroid C25-phosphoesters, which is ≈20 kJ mol−1 higher than that of standard sugar phosphoesters and even slightly greater than the β,γ-phosphoanhydride of ATP. In summary, 25-HSK plays an essential role in anaerobic bacterial degradation of zoo- and phytosterols and shows only little similarity to known phosphotransferases.  相似文献   

9.
When NADPH-cytochrome P-450 reductase isolated from rat liver microsomes was aerobically incubated with bleomycin, FeCl3, NADPH and DNA parallel NADPH and oxygen were consumed and malondialdehyde was formed. A similar parallelism of NADPH- and oxygen-consumption and malondialdehyde formation was observed when ceil nuclei isolated from rat liver were incubated under the same conditions. The formation of malondialdehyde which was identified by HPLC and which was most likely released from oxidative cleavage of deoxyribose of nuclear DNA required oxygen, bleomycin, FeCl3 and NADPH. This indicates that a nuclear NADPH-enzyme, presumably NADPH-cytochrome P-450 reductase, is able to redox cycle a bleomycin-iron-complex which in the reduced form can activate oxygen to a DNA-damaging reactive species. The data suggest that the activity of this enzyme in the cell nucleus could play an important role in the cytotoxicity of bleomycin in tumor cells.  相似文献   

10.
氧还蛋白Ref-1是一种双功能蛋白质,在细胞氧还调控和DNA无嘌呤/无嘧啶损伤修复中起重要作用。发寻找与它相互作用的蛋白Rips(Rer-1 interacting proterns),用Ref-1氧还功能域进行了酵母双杂交库的筛选,得到了5种阳性克隆。其中Rip3经测序证实为泛蛋白连接酶Ubc9。Hela细胞中共过表达Ubc9可以明显抑制Ref-1对AP-1报告系统的增强作用。Western印迹  相似文献   

11.
以亚硝酸盐水溶液为研究对象,研究了辐照剂量、亚硝酸盐初始浓度、Vc和NaCl含量对亚硝酸盐降解效果的影响.结果表明,辐照能有效降低水溶液中亚硝酸盐含量,亚硝酸盐降解率与辐照剂量呈正相关,与初始浓度呈负相关,Vc对辐照降解亚硝酸盐具有协同作用,NaCl对辐照降解亚硝酸盐具有抑制作用.亚硝酸盐水溶液经辐照后,硝态氮和铵态氮均有一定的增加,当辐照剂量为10.55 kGy,初始浓度为100 mg· L-1时,硝态氮含量由14.857 mg·L-1增加到17.270 mg·L-1,铵态氮含量由0.013 mg·L-1增加到0.041 mg·L-1.  相似文献   

12.
Ribonucleotide reductase is a key enzyme for DNA biosynthesis. The enzymes isolated from animal and plant cells possess a stable tyrosyl free radical which is essential for catalysis. Fungal ribonucleotide reductases are little known; the partially characterized enzyme from yeast cells proved exceptionally shortlived, and a free radical could not as yet be demonstrated. We here show that a doublet ESR signal centered at g = 2.0046 can be measured below 60°K in rapidly purified protein samples which is very similar to the ESR spectra of the tyrosine radicals present in other eukaryotic ribonucleotide reductases in structure, microwave saturation, and quenching by hydroxyurea. Because generation of these radicals requires oxygen, anaerobic yeast cultures were also studied. No change in ribonucleotide reductase was observed at 50ppm residual oxygen in the gas phase, but cell proliferation ceased entirely under complete anaerobiosis.  相似文献   

13.
《Free radical research》2013,47(4-5):281-286
Ribonucleotide reductase is a key enzyme for DNA biosynthesis. The enzymes isolated from animal and plant cells possess a stable tyrosyl free radical which is essential for catalysis. Fungal ribonucleotide reductases are little known; the partially characterized enzyme from yeast cells proved exceptionally shortlived, and a free radical could not as yet be demonstrated. We here show that a doublet ESR signal centered at g = 2.0046 can be measured below 60°K in rapidly purified protein samples which is very similar to the ESR spectra of the tyrosine radicals present in other eukaryotic ribonucleotide reductases in structure, microwave saturation, and quenching by hydroxyurea. Because generation of these radicals requires oxygen, anaerobic yeast cultures were also studied. No change in ribonucleotide reductase was observed at 50ppm residual oxygen in the gas phase, but cell proliferation ceased entirely under complete anaerobiosis.  相似文献   

14.
Abstract: In experimental diabetic neuropathy, defective arachidonic acid metabolism characterized by a decrease in the proportion of glycerophospholipid arachidonoyl-containing molecular species (ACMS) occurs and has been implicated in the pathogenesis of the disorder. In this study, we evaluated the suitability of a tumor-derived human Schwann cell line (NF1T) as a model to investigate the mechanism underlying the loss of ACMS. NF1T cells grown in 30 versus 5.5 m M glucose undergo a marked reduction in ACMS in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol, in a manner resembling that of diabetic nerve. The depletion of ACMS can be reversed on transferring the cells from 30 m M glucose to medium containing physiological levels of glucose. Cells maintained in 5.5 m M glucose plus 25 m M mannitol or sorbitol did not exhibit decreased ACMS levels, indicating that osmotic effects were not responsible for ACMS depletion. However, growth in 25 m M fructose elicited a reduction of ACMS similar to that produced by 30 m M glucose. Excessive glucose flux through the polyol pathway has been implicated in the neural and vascular abnormalities associated with diabetes. Therefore, we examined the effects of polyol pathway inhibitors, including two aldose reductase inhibitors, zopolrestat and sorbinil, and a sorbitol dehydrogenase inhibitor (SDI), CP166,572, on ACMS levels in NF1T cells cultured in elevated glucose concentrations. At 200 µ M , zopolrestat fully and sorbinil partially corrected ACMS depletion. The SDI at concentrations up to 100 µ M failed to affect diminished ACMS levels. Neither zopolrestat nor the SDI restored ACMS levels reduced in the presence of elevated fructose concentrations. These findings suggest that enhanced flux through the polyol pathway and, in particular, elevated aldose reductase activity may play a significant role in the reduction of ACMS levels in the cells brought about by elevated glucose levels.  相似文献   

15.
In many plant species, prolonged application of ammonium (NH4+) as a source of nitrogen results in physiological and morphological disorders (‘ammonium toxicity’). In the mustard (Sinapis alba L.) seedling we have previously observed particularly severe symptoms of ammonium toxicity in the absence of external nitrate (NO3-) or with increasing NH4+/NO3- ratios. In the present investigation we have studied the symptoms of this ‘toxicity’in more depth, i.e. at the morphological, plastidic, enzyme and mRNA levels, in an effort to elucidate the causation of the syndrome. It could be confirmed that the syndrome is specific for ammonium and is not caused by a surplus of nitrogen. The syndrome is caused neither by pH changes in the medium nor by non-specific osmotic effects. Furthermore, the syndrome is not causally related to the fact that nitrate reductase (NR; EC 1.6.6.1.) is induced by ammonium. Development of the syndrome requires neither photosynthesis nor intact plastids. Nevertheless, the plastids are severely affected by ammonium application as is anthocyanin synthesis. Enzymes are differently affected. Among the plastidic enzymes, levels of ribulose-1,5-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39) and NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (NADP-GPD; EC 1.2.1.13) are strongly reduced and abundance of translatable mRNA of the small subunit of RuBPCase is decreased, whereas nitrite reductase (NIR; EC 1.7.7.1) is not affected. Among extraplastidic enzymes, the level of chalcone synthase (CHS; EC 2.3.1.74) is strongly reduced, the NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (NADGPD; EC 1.2.1.12) level is unaffected, whereas the isocitrate lyase (ICL; EC 4.1.3.1) level is strongly promoted. The fat → carbohydrate transformation seems to be impaired by ammonium: fat degradation is reduced, starch accumulation is strongly inhibited and the levels of glucose and fructose are decreased. It appears from the present data and from results obtained in a companion study (U. Hecht and H. Mohr, in preparation) that the ammonium toxicity syndrome is detectable as soon as ammonium accumulation occurs in the plant. However, the actual mechanism through which the excess ammonium affects metabolism remains unclear at present.  相似文献   

16.
在导入表达毕赤酵母(Pichia stipitis)木糖还原酶(xylose reductase,XR)和木糖醇脱氢酶(xylitol dehydrogenase,XDH)基因的重组酿酒酵母中,木糖还原酶活性主要依赖辅酶NADPH,木糖醇脱氢酶活性依赖辅酶 NAD+,两者的辅助因子不同导致细胞内电子氧化还原的不平衡,是造成木糖醇积累,影响木糖代谢和乙醇产量的主要原因之一.将经过基因工程改造获得的NADH高亲和力的木糖还原酶突变基因m1,与毕赤酵母木糖醇脱氢酶(PsXDH)基因xyl2共转染酿酒酵母AH109,以转染毕赤酵母木糖还原酶(PsXR)基因xyl1和xyl2重组质粒的酵母细胞为对照菌株,在SC/-Leu/-Trp营养缺陷型培养基中进行筛选,获得的阳性转化子分别命名为AH-M-XDH和AH-XR-XDH.重组酵母在限制氧通气条件下对木糖和葡萄糖进行共发酵摇瓶培养,HPLC检测发酵底物的消耗和代谢产物的产出情况.结果显示,与对照菌株AH-XR-XDH相比,AH-M-XDH的木糖利用率明显提高,乙醇得率增加了16%,木糖醇产生下降了41.4%.结果证实,通过基因工程改造的木糖代谢关键酶,可用于酿酒酵母发酵木糖生产乙醇,其能通过改善酿酒酵母细胞内氧化还原失衡的问题,提高木糖利用率和乙醇产率.  相似文献   

17.
Chorismate synthase, the seventh enzyme in the shikimate pathway, catalyzes the transformation of 5-enolpyruvylshikimate 3-phosphate to chorismate which is the last common precursor in the biosynthesis of numerous aromatic compounds in bacteria, fungi and plants. The enzyme has an absolute requirement for reduced FMN as a cofactor, although the 1,4-anti elimination of phosphate and the C(6proR)-hydrogen does not involve a net redox change. The role of the reduced FMN in catalysis has long been elusive. However, recent detailed kinetic and bioorganic approaches have fundamentally advanced our understanding of the mechanism of action, suggesting an initial electron transfer from tightly bound reduced flavin to the substrate, a process which results in C—O bond cleavage. Studies on chorismate synthases from bacteria, fungi and plants revealed that in these organisms the reduced FMN cofactor is made available in different ways to chorismate synthase: chorismate synthases in fungi – in contrast to those in bacteria and plants – carry a second enzymatic activity which enables them to reduce FMN at the expense of NADPH. Yet, as shown by the analysis of the corresponding genes, all chorismate synthases are derived from a common ancestor. However, several issues revolving around the origin of reduced FMN, as well as the possible regulation of the enzyme activity by means of the availability of reduced FMN, remain poorly understood. This review summarizes recent developments in the biochemical and genetic arena and identifies future aims in this field. Received: 22 June 1998 / Accepted: 7 August 1998  相似文献   

18.
In many organisms, glycogen gives rise to 1,5-anhydro-D-fructose (AF), which is reduced to 1,5-anhydro-D-glucitol (AG). AF reductase, which catalyzes the latter reaction, was purified from pig liver, but mouse ortholog has not yet been reported. In the database, aldo-keto reductase family 1, member E1 (AKR1E1) showed highest homology to pig enzyme. We confirmed that cloned AKR1E1 is mouse ortholog based on enzymatic properties of purified recombinant protein.  相似文献   

19.
The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides/antibiotics. During the last decade we have developed a yeast species, Saccharomyces kluyveri, as a model and tool to study the genes and enzymes of the pyrimidine catabolic pathway. In this report, we studied degradation of uracil and its putative degradation products in 38 yeasts and showed that this pathway was present in the ancient yeasts but was lost approximately 100 million years ago in the S. cerevisiae lineage.  相似文献   

20.
Xenobiotic reductase A (XenA) from Pseudomonas putida 86 catalyzes the NAD(P)H-dependent reduction of various α,β-unsaturated carbonyl compounds and is a member of the old yellow enzyme family. The reaction of XenA follows a ping-pong mechanism, implying that its active site has to accommodate and correctly position the various substrates to be oxidized (NADH/NADPH) and to be reduced (different α,β-unsaturated carbonyl compounds) to enable formal hydride transfers between the substrate and the isoalloxazine ring.The active site of XenA is lined by two tyrosine (Tyr27, Tyr183) and two tryptophan (Trp302, Trp358) residues, which were proposed to contribute to substrate binding. We analyzed the individual contributions of the four residues, using site-directed mutagenesis, steady-state and transient kinetics, redox potentiometry and crystal structure analysis. The Y183F substitution decreases the affinity of XenA for NADPH and reduces the rate of the oxidative half-reaction by two to three orders of magnitude, the latter being in agreement with its function as a proton donor in the oxidative half-reaction. Upon reduction of the flavin, Trp302 swings into the active site of XenA (in-conformation) and decreases the extent of the substrate-binding pocket. Its exchange against alanine induces substrate inhibition at elevated NADPH concentrations, indicating that the in-conformation of Trp302 helps to disfavor the nonproductive NADPH binding in the reduced state of XenA.Our analysis shows that while the principal catalytic mechanism of XenA, for example, type of proton donor, is analogous to that of other members of the old yellow enzyme family, its strategy to correctly position and accommodate different substrates is unprecedented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号