首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This study investigated the effects of mild calorie restriction (CR) (5%) on body weight, body composition, energy expenditure, feeding behavior, and locomotor activity in female C57BL/6J mice. Mice were subjected to a 5% reduction of food intake relative to baseline intake of ad libitum (AL) mice for 3 or 4 weeks. In experiment 1, body weight was monitored weekly and body composition (fat and lean mass) was determined at weeks 0, 2, and 4 by dual energy X‐ray absorptiometry. In experiment 2, body weight was measured every 3 days and body composition was determined by quantitative magnetic resonance weekly, and energy expenditure, feeding behavior, and locomotor activity were determined over 3 weeks in a metabolic chamber. At the end of both experiments, CR mice had greater fat mass (P < 0.01) and less lean mass (P < 0.01) compared with AL mice. Total energy expenditure (P < 0.05) and resting energy expenditure (P < 0.05) were significantly decreased in CR mice compared with AL mice over 3 weeks. CR mice ate significantly more food than AL mice immediately following daily food provisioning at 1600 hours (P < 0.01). These findings showed that mild CR caused increased fat mass, decreased lean mass and energy expenditure, and altered feeding behavior in female C57BL/6J mice. Locomotor activity or brown adipose tissue (BAT) thermogenic capacity did not appear to contribute to the decrease in energy expenditure. The increase in fat mass and decrease in lean mass may be a stress response to the uncertainty of food availability.  相似文献   

2.
In this study, we investigated the metabolic phenotype of PKCtheta knockout mice (C57BL/6J) on chow diet and high-fat diet (HFD). The knockout (KO) mice are normal in growth and reproduction. On the chow diet, body weight and food intake were not changed in the KO mice; however, body fat content was increased with a corresponding decrease in body lean mass. Energy expenditure and spontaneous physical activity were decreased in the KO mice. On HFD, energy expenditure and physical activity remained low in the KO mice. The body weight and fat content were increased rapidly in the KO mice. At 8 wk on HFD, severe insulin resistance was detected in the KO mice with hyperinsulinemic euglycemic clamp and insulin tolerance test. Insulin action in both hepatic and peripheral tissues was reduced in the KO mice. Plamsa free fatty acid was increased, and expression of adiponectin in the adipose tissue was decreased, in the KO mice on HFD. This study suggests that loss of PKCtheta reduces energy expenditure and increases the risk of dietary obesity and insulin resistance in mice.  相似文献   

3.
Retrospective and prospective studies show that lean mass or strength is positively associated with metabolic health. Mice deficient in myostatin, a growth factor that negatively regulates skeletal muscle mass, have increased muscle and body weights and are resistant to diet-induced obesity. Their leanness is often attributed to higher energy expenditure in the face of normal food intake. However, even obese animals have an increase in energy expenditure compared to normal weight animals suggesting this is an incomplete explanation. We have previously developed a computational model to estimate energy output, fat oxidation and respiratory quotient from food intake and body composition measurements to more accurately account for changes in body composition in rodents over time. Here we use this approach to understand the dynamic changes in energy output, intake, fat oxidation and respiratory quotient in muscular mice carrying a dominant negative activin receptor IIB expressed specifically in muscle. We found that muscular mice had higher food intake and higher energy output when fed either chow or a high-fat diet for 15 weeks compared to WT mice. Transgenic mice also matched their rate of fat oxidation to the rate of fat consumed better than WT mice. Surprisingly, when given a choice between high-fat diet and Ensure® drink, transgenic mice consumed relatively more calories from Ensure® than from the high-fat diet despite similar caloric intake to WT mice. When switching back and forth between diets, transgenic mice adjusted their intake more rapidly than WT to restore normal caloric intake. Our results show that mice with myostatin inhibition in muscle are better at adjusting energy intake and output on diets of different macronutrient composition than WT mice to maintain energy balance and resist weight gain.  相似文献   

4.
The secretion of leptin is dually regulated. In fasting animals, plasma leptin concentrations reflect body fat stores, whereas the incremental leptin response to fasting or refeeding most likely reflects insulin-mediated energy flux and metabolism within adipocytes. Impaired secretion of leptin in either pathway could result in obesity. We therefore measured plasma leptin concentrations in fasted animals and plasma leptin concentrations after an intravenous glucose infusion in a rat model of obesity. Young Sprague-Dawley (S-D) and Fischer 344 (F344) rats had similar percent body fat and fasting glucose and fasting leptin concentrations. However, F344 animals had higher insulin concentrations and leptin responses to intravenous glucose than did the S-D animals. The animals were then fed a control or high-fat diet for 6 wk. High-fat fed animals gained more weight and body fat than did the control fed animals. Control and high-fat fed F344 animals gained approximately 40% (P < 0.0001) more weight and >100% (P < 0.01) more body fat than did the S-D animals. Fasting leptin concentrations and leptin concentrations after intravenous glucose infusions and feeding were more than double (P < 0.05) in F344 animals compared with S-D animals. Whether an animal is fed a control or high-fat diet had little effect on the leptin response to intravenous glucose. In conclusion, young, lean F344 animals, before the onset of obesity, demonstrated a greater acute leptin response to intravenous glucose than similarly lean S-D animals. After a 6-wk diet, F344 animals had a greater percent increase in body weight and insulin resistance and exhibited higher fasting leptin concentrations and a greater absolute leptin response to intravenous glucose compared with the S-D animals. The chronic diet (control or high fat) had little impact on the acute leptin response to intravenous glucose. F344 animals exhibit leptin resistance in young, lean animals and after aging and fat accumulation.  相似文献   

5.
Chao PT  Yang L  Aja S  Moran TH  Bi S 《Cell metabolism》2011,13(5):573-583
Hypothalamic neuropeptide Y (NPY) has been implicated in control of energy balance, but the physiological importance of NPY in the dorsomedial hypothalamus (DMH) remains unclear. Here we report that knockdown of NPY expression in the DMH by adeno-associated virus-mediated RNAi reduced fat depots in rats fed regular chow and ameliorated high-fat diet-induced hyperphagia and obesity. DMH NPY knockdown resulted in development of brown adipocytes in inguinal white adipose tissue through the sympathetic nervous system. This knockdown increased uncoupling protein 1 expression in both inguinal fat and interscapular brown adipose tissue (BAT). Consistent with the activation of BAT, DMH NPY knockdown increased energy expenditure and enhanced the thermogenic response to a cold environment. This knockdown also increased locomotor activity, improved glucose homeostasis, and enhanced insulin sensitivity. Together, these results demonstrate critical roles of DMH NPY in body weight regulation through affecting food intake, body adiposity, thermogenesis, energy expenditure, and physical activity.  相似文献   

6.
Keipert S  Voigt A  Klaus S 《Aging cell》2011,10(1):122-136
Little is known about how diet and energy metabolism interact in determination of lifespan under ad libitum feeding. From 12 weeks of age until death, male and female wild-type (WT) and transgenic (TG) mice with increased skeletal muscle mitochondrial uncoupling (HSA-mUCP1 mice) were fed one of three different semisynthetic diets differing in macronutrient ratio: control (high-carbohydrate/low-fat-HCLF) and two high-fat diets: high-carbohydrate/high-fat (HCHF), and low-carbohydrate/high-fat (LCHF). Compared to control and LCHF, HCHF feeding rapidly and significantly increased body fat content in WT. Median lifespan of WT was decreased by 33% (HCHF) and 7% (LCHF) compared to HCLF. HCHF significantly increased insulin resistance (HOMA) of WT from 24 weeks on compared to control. TG mice had lower lean body mass and increased energy expenditure, insulin sensitivity, and maximum lifespan (+10%) compared to WT. They showed a delayed development of obesity on HCHF but reached similar maximum adiposity as WT. TG median lifespan was only slightly reduced by HCHF (-7%) and unaffected by LCHF compared to control. Correlation analyses showed that decreased longevity was more strongly linked to a high rate of fat gain than to adiposity itself. Furthermore, insulin resistance was negatively and weight-specific energy expenditure was positively correlated with longevity. We conclude that (i) dietary macronutrient ratios strongly affected obesity development, glucose homeostasis, and longevity, (ii) that skeletal muscle mitochondrial uncoupling alleviated the detrimental effects of high-fat diets, and (iii) that early imbalances in energy homeostasis leading to increased insulin resistance are predictive for a decreased lifespan.  相似文献   

7.
8.
The strongest BMI–associated GWAS locus in humans is the FTO gene. Rodent studies demonstrate a role for FTO in energy homeostasis and body composition. The phenotypes observed in loss of expression studies are complex with perinatal lethality, stunted growth from weaning, and significant alterations in body composition. Thus understanding how and where Fto regulates food intake, energy expenditure, and body composition is a challenge. To address this we generated a series of mice with distinct temporal and spatial loss of Fto expression. Global germline loss of Fto resulted in high perinatal lethality and a reduction in body length, fat mass, and lean mass. When ratio corrected for lean mass, mice had a significant increase in energy expenditure, but more appropriate multiple linear regression normalisation showed no difference in energy expenditure. Global deletion of Fto after the in utero and perinatal period, at 6 weeks of age, removed the high lethality of germline loss. However, there was a reduction in weight by 9 weeks, primarily as loss of lean mass. Over the subsequent 10 weeks, weight converged, driven by an increase in fat mass. There was a switch to a lower RER with no overall change in food intake or energy expenditure. To test if the phenotype can be explained by loss of Fto in the mediobasal hypothalamus, we sterotactically injected adeno-associated viral vectors encoding Cre recombinase to cause regional deletion. We observed a small reduction in food intake and weight gain with no effect on energy expenditure or body composition. Thus, although hypothalamic Fto can impact feeding, the effect of loss of Fto on body composition is brought about by its actions at sites elsewhere. Our data suggest that Fto may have a critical role in the control of lean mass, independent of its effect on food intake.  相似文献   

9.
MethodsTo investigate this hypothesis, we performed RYGB or sham operations on leptin-deficient ob/ob mice maintained on regular chow. To investigate whether leptin is involved in post-RYGB weight maintenance, we challenged post-surgical mice with high fat diet.ResultsRYGB reduced total body weight, fat and lean mass and caused reduction in calorie intake in ob/ob mice. However, it failed to improve glucose tolerance, glucose-stimulated plasma insulin, insulin tolerance, and fasting plasma insulin. High fat diet eliminated the reduction in calorie intake observed after RYGB in ob/ob mice and promoted weight regain, although not to the same extent as in sham-operated mice. We conclude that leptin is required for the effects of RYGB on glucose homeostasis but not body weight or composition in mice. Our data also suggest that leptin may play a role in post-RYGB weight maintenance.  相似文献   

10.
Endogenous modulators of the central melanocortin system, such as the agouti-related protein (AgRP), should hold a pivotal position in the regulation of energy intake and expenditure. Despite this, AgRP-deficient mice were recently reported to exhibit normal food intake, body weight gain, and energy expenditure. Here we demonstrate that 2- to 3-month-old Agrp null mice do in fact exhibit subtle changes in response to feeding challenges (fasting and MCR agonists) but, of more significance and magnitude, exhibit reduced body weight and adiposity after 6 months of age. This age-dependent lean phenotype is correlated with increased metabolic rate, body temperature, and locomotor activity and increased circulating thyroid hormone (T4 and T3) and BAT UCP-1 expression. These results provide further proof of the importance of the AgRP neuronal system in the regulation of energy homeostasis.  相似文献   

11.
High-protein diets induce alterations in metabolism that may prevent diet-induced obesity. However, little is known as to whether different protein sources consumed at normal levels may affect diet-induced obesity and associated co-morbidities. We fed obesity-prone male C57BL/6J mice high-fat, high-sucrose diets with protein sources of increasing endogenous taurine content, i.e., chicken, cod, crab and scallop, for 6 weeks. The energy intake was lower in crab and scallop-fed mice than in chicken and cod-fed mice, but only scallop-fed mice gained less body and fat mass. Liver mass was reduced in scallop-fed mice, but otherwise no changes in lean body mass were observed between the groups. Feed efficiency and apparent nitrogen digestibility were reduced in scallop-fed mice suggesting alterations in energy utilization and metabolism. Overnight fasted plasma triacylglyceride, non-esterified fatty acids, glycerol and hydroxy-butyrate levels were significantly reduced, indicating reduced lipid mobilization in scallop-fed mice. The plasma HDL-to-total-cholesterol ratio was higher, suggesting increased reverse cholesterol transport or cholesterol clearance in scallop-fed mice in both fasted and non-fasted states. Dietary intake of taurine and glycine correlated negatively with body mass gain and total fat mass, while intake of all other amino acids correlated positively. Furthermore taurine and glycine intake correlated positively with improved plasma lipid profile, i.e., lower levels of plasma lipids and higher HDL-to-total-cholesterol ratio. In conclusion, dietary scallop protein completely prevents high-fat, high-sucrose-induced obesity whilst maintaining lean body mass and improving the plasma lipid profile in male C57BL/6J mice.  相似文献   

12.
Golden spiny mice, which inhabit rocky deserts and do not store food, must therefore employ physiological means to cope with periods of food shortage. Here we studied the physiological means used by golden spiny mice for conserving energy during food restriction and refeeding and the mechanism by which food consumption may influence thermoregulatory mechanisms and metabolic rate. As comparison, we studied the response to food restriction of another rocky desert rodent, Wagner's gerbil, which accumulates large seed caches. Ten out of 12 food-restricted spiny mice (resistant) were able to defend their body mass after an initial decrease, as opposed to Wagner's gerbils (n = 6). Two of the spiny mice (nonresistant) kept losing weight, and their food restriction was halted. In four resistant and two nonresistant spiny mice, we measured heart rate, body temperature, and oxygen consumption during food restriction. The resistant spiny mice significantly (P < 0.05) reduced energy expenditure and entered daily torpor. The nonresistant spiny mice did not reduce their energy expenditure. The gerbils' response to food restriction was similar to that of the nonresistant spiny mice. Resistant spiny mice leptin levels dropped significantly (n = 6, P < 0.05) after 24 h of food restriction, and continued to decrease throughout food restriction, as did body fat. During refeeding, although the golden spiny mice gained fat, leptin levels were not correlated with body mass (r(2) = 0.014). It is possible that this low correlation allows them to continue eating and accumulate fat when food is plentiful.  相似文献   

13.
The aim of the present study was to investigate the short- and long-term effects of a high-fat Western diet (WD) on intake, storage, expenditure, and fecal loss of energy as well as effects on locomotor activity and thermogenesis. WD for only 24 h resulted in a marked physiological shift in energy homeostasis, including increased body weight gain, body fat, and energy expenditure (EE) but an acutely lowered locomotor activity. The acute reduction in locomotor activity was observed after only 3-5 h on WD. The energy intake and energy absorption were increased during the first 24 h, lower after 72 h, and normalized between 7 and 14 days on WD compared with mice given chow diet. Core body temperature and EE was increased between 48 and 72 h but normalized after 21 days on WD. These changes paralleled plasma T(3) levels and uncoupling protein-1 expression in brown adipose tissue. After 21 days of WD, energy intake and absorption, EE, and body temperature were normalized. In contrast, the locomotor activity was reduced and body weight gain was increased over the entire 21-day study period on WD. Calculations based on the correlation between locomotor activity and EE in 2-h intervals at days 21-23 indicated that a large portion of the higher body weight gain in the WD group could be attributed to the reduced locomotor activity. In summary, an acute and persisting decrease in locomotor activity is most important for the effect of WD on body weight gain and obesity in mice.  相似文献   

14.

Objective

Acute administration of cannabinoid CB1 receptor agonists, or the ingestion of cannabis, induces short-term hyperphagia. However, the incidence of obesity is lower in frequent cannabis users compared to non-users. Gut microbiota affects host metabolism and altered microbial profiles are observed in obese states. Gut microbiota modifies adipogenesis through actions on the endocannabinoid system. This study investigated the effect of chronic THC administration on body weight and gut microbiota in diet-induced obese (DIO) and lean mice.

Methods

Adult male DIO and lean mice were treated daily with vehicle or THC (2mg/kg for 3 weeks and 4 mg/kg for 1 additional week). Body weight, fat mass, energy intake, locomotor activity, whole gut transit and gut microbiota were measured longitudinally.

Results

THC reduced weight gain, fat mass gain and energy intake in DIO but not lean mice. DIO-induced changes in select gut microbiota were prevented in mice chronically administered THC. THC had no effect on locomotor activity or whole gut transit in either lean or DIO mice.

Conclusions

Chronic THC treatment reduced energy intake and prevented high fat diet-induced increases in body weight and adiposity; effects that were unlikely to be a result of sedation or altered gastrointestinal transit. Changes in gut microbiota potentially contribute to chronic THC-induced actions on body weight in obesity.  相似文献   

15.
Consumption of a high-fat diet decreases hypothalamic neuropeptide Y (NPY) and increases proopiomelanocortin (POMC) and brown adipose uncoupling protein (UCP)-1 mRNA in obesity-resistant SWR/J but not obesity-prone C57Bl/6J mice. Although leptin was elevated in both strains in response to a high-fat diet, its role in the development of diet-induced obesity has remained unclear since insulin and other factors that affect similar tissue targets are altered. Thus, we administered recombinant leptin by subcutaneous infusion to chow-fed mice to mimic the changes in plasma leptin across its broad physiologic range. We observed strain differences in responsiveness to reduced and elevated leptin levels. A reduction in leptin during fasting evoked a greater response in C57Bl/6J mice by decreasing energy expenditure and thyroxin, increasing corticosterone and stimulating food intake and weight gain during refeeding. However, C57Bl/6J mice were less responsive to an increase in leptin in the fed state. Conversely, the leptin-mediated response to fasting was blunted in SWR/J mice, whereas an increase in leptin profoundly reduced food intake and body weight in SWR/J mice fed ad libitum. Sensitivity to fasting in C57Bl/6J mice was associated with higher hypothalamic NPY mRNA and reduced POMC and UCP-1 mRNA expression, while the robust response to high leptin levels in SWR/J mice was associated with suppression of NPY mRNA. These results indicate that differences in leptin responsiveness between strains might occur centrally or peripherally, leading to alteration in the patterns of food intake, thermogenesis and energy storage.  相似文献   

16.
Existing mouse models of Roux-en-Y gastric bypass (RYGB) surgery are not comparable to human RYGB in gastric pouch volume for a large or absent gastric volume. The aim of this study was to develop and characterize a mouse RYGB model that closely replicates gastric pouch size of human RYGB surgery of about 5% of total gastric volume. We established this model in diet-induced obese (DIO) mice of C57BL/6J. This surgery resulted in a sustained 30% weight loss, entirely accounted for by decreased fat mass but not lean mass, compared to sham-operated mice on the high fat diet. Compared to sham-operated mice, energy expenditure corrected for total body weight was significantly increased by about 25%, and substrate utilization was shifted toward higher carbohydrate utilization at 8 weeks after RYGB when body weight had stabilized at the lower level. The energy expenditure persisted and carbohydrate utilization was even more pronounced when the mice were fed chow diet. Although significantly increased during daytime, overall locomotor activity was not significantly different. In response to cold exposure, RYGB mice exhibited an improved capacity to maintain the body temperature. In insulin tolerance test, exogenous insulin-induced suppression of plasma glucose levels was significantly greater in RYGB mice at 4 weeks after surgery. Paradoxically, food intake measured at 5 weeks after surgery was significantly increased, possibly in compensation for increased fecal energy loss and energy expenditure. In conclusion, this new model is a viable alternative to existing murine RYGB models and the model matches human RYGB surgery in anatomy. This model will be useful for studying molecular mechanisms involved in the beneficial effects of RYGB on body weight and glucose homeostasis.  相似文献   

17.
Objectives: To study energy expenditure before and 3 hours after a high‐fat load in a large cohort of obese subjects (n = 701) and a lean reference group (n = 113). Research Methods and Procedures: Subjects from seven European countries underwent a 1‐day clinical study with a liquid test meal challenge containing 95% fat (energy content was 50% of estimated resting energy expenditure). Fasting and 3‐hour postprandial energy expenditures, as well as metabolites and hormones, were determined. Results: Obese subjects had a reduced postprandial energy expenditure after the high‐fat load, independent of body composition, age, sex, research center, and resting energy expenditure, whereas within the obese group, thermogenesis increased again with increasing BMI category. Additionally, insulin resistance, habitual physical activity, postprandial plasma triacylglycerols, and insulin were all independently positively related to the postprandial energy expenditure. Resting energy expenditure, adjusted for fat‐free mass, increased with degree of obesity, a difference that disappeared after adjustment for fat mass. Furthermore, insulin resistance, fasting plasma free fatty acids, and cortisol were positively associated, whereas fasting plasma leptin and insulin‐like growth factor‐1 were negatively associated, with resting energy expenditure. Discussion: The 3‐hour fat‐induced thermogenic response is reduced in obesity. It remains to be determined whether this blunted thermogenic response is a contributory factor or an adaptive response to the obese state.  相似文献   

18.
α-Melanocyte-stimulating hormone (α-MSH) is a critical regulator of energy metabolism. Prolyl carboxypeptidase (PRCP) is an enzyme responsible for its degradation and inactivation. PRCP-null mice (PRCP(gt/gt)) showed elevated levels of brain α-MSH, reduced food intake, and a leaner phenotype compared with wild-type controls. In addition, they were protected against diet-induced obesity. Here, we show that PRCP(gt/gt) animals have improved metabolic parameters compared with wild-type controls under a standard chow diet (SD) as well as on a high-fat diet (HFD). Similarly to when they are exposed to SD, PRCP(gt/gt) mice exposed to HFD for 13 wk showed a leaner phenotype due to decreased fat mass, increased energy expenditure, and locomotor activity. They also showed improved insulin sensitivity and glucose tolerance compared with WT controls and a significant reduction in fasting glucose levels. These improvements occured before changes in body weight and composition were evident, suggesting that the beneficial effect of PRCP ablation is independent of the adiposity levels. In support of a reduced gluconeogenesis, liver PEPCK and G-6-Pase mRNA levels were reduced significantly in PRCP(gt/gt) compared with WT mice. A significant decrease in liver weight and hepatic triglycerides were also observed in PRCP(gt/gt) compared with WT mice. Altogether, our data suggest that PRCP is an important regulator of energy and glucose homeostasis since its deletion significantly improves metabolic parameters in mice exposed to both SD and HFD.  相似文献   

19.
20.
Free fatty acid receptor 2 (Ffar2), also known as GPR43, is activated by short-chain fatty acids (SCFA) and expressed in intestine, adipocytes, and immune cells, suggesting involvement in lipid and immune regulation. In the present study, Ffar2-deficient mice (Ffar2-KO) were given a high-fat diet (HFD) or chow diet and studied with respect to lipid and energy metabolism. On a HFD, Ffar2-KO mice had lower body fat mass and increased lean body mass. The changed body composition was accompanied by improved glucose control and lower HOMA index, indicating improved insulin sensitivity in Ffar2-KO mice. Moreover, the Ffar2-KO mice had higher energy expenditure accompanied by higher core body temperature and increased food intake. The liver weight and content of triglycerides as well as plasma levels of cholesterol were lower in the Ffar2-KO mice fed a HFD. A histological examination unveiled decreased lipid interspersed in brown adipose tissue of the Ffar2-KO mice. Interestingly, no significant differences in white adipose tissue (WAT) cell size were observed, but significantly lower macrophage content was detected in WAT from HFD-fed Ffar2-KO compared with wild-type mice. In conclusion, Ffar2 deficiency protects from HFD-induced obesity and dyslipidemia at least partly via increased energy expenditure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号