首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundHuman exposure to mercury leads to a variety of pathologies involving numerous organ systems including the immune system. A paucity of epidemiological studies and suitable diagnostic criteria, however, has hampered collection of sufficient data to support a causative role for mercury in autoimmune diseases. Nevertheless, there is evidence that mercury exposure in humans is linked to markers of inflammation and autoimmunity. This is supported by experimental animal model studies, which convincingly demonstrate the biological plausibility of mercury as a factor in the pathogenesis of autoimmune disease.Scope of the reviewIn this review, we focus on ability of mercury to elicit inflammatory and autoimmune responses in both humans and experimental animal models.Major conclusionsAlthough subtle differences exist, the inflammatory and autoimmune responses elicited by mercury exposure in humans and experimental animal models show many similarities. Proinflammatory cytokine expression, lymphoproliferation, autoantibody production, and nephropathy are common outcomes. Animal studies have revealed significant strain dependent differences in inflammation and autoimmunity suggesting genetic regulation. This has been confirmed by the requirement for individual genes as well as genome wide association studies. Importantly, many of the genes required for mercury-induced inflammation and autoimmunity are also required for idiopathic systemic autoimmunity. A notable difference is that mercury-induced autoimmunity does not require type I IFN. This observation suggests that mercury-induced autoimmunity may arise by both common and specific pathways, thereby raising the possibility of devising criteria for environmentally associated autoimmunity.General significanceMercury exposure likely contributes to the pathogenesis of autoimmunity.  相似文献   

2.
Exposure to environmental mercury has been proposed to play a part in autism. Mercury is selectively taken up by the human locus ceruleus, a region of the brain that has been implicated in autism. We therefore looked for the presence of mercury in the locus ceruleus of people who had autism, using the histochemical technique of autometallography which can detect nanogram amounts of mercury in tissues. In addition, we sought evidence of damage to locus ceruleus neurons in autism by immunostaining for hyperphosphorylated tau. No mercury was found in any neurons of the locus ceruleus of 6 individuals with autism (5 male, 1 female, age range 16–48 years). Mercury was present in locus ceruleus neurons in 7 of 11 (64 %) age-matched control individuals who did not have autism, which is significantly more than in individuals with autism. No increase in numbers of locus ceruleus neurons containing hyperphosphorylated tau was detected in people with autism. In conclusion, most people with autism have not been exposed early in life to quantities of mercury large enough to be found later in adult locus ceruleus neurons. Human locus ceruleus neurons are sensitive indicators of mercury exposure, and mercury appears to remain in these neurons indefinitely, so these findings do not support the hypothesis that mercury neurotoxicity plays a role in autism.  相似文献   

3.
Environmental factors including drugs, mineral oils and heavy metals such as lead, gold and mercury are triggers of autoimmune diseases in animal models or even in occupationally exposed humans. After exposure to subtoxic levels of mercury (Hg), genetically susceptible strains of mice develop an autoimmune disease characterized by the production of highly specific anti-nucleolar autoantibodies, hyperglobulinemia and nephritis. However, mice can be tolerized to the disease by a single low dose administration of Hg. Lymphocyte Activation Gene-3 (LAG-3) is a CD4-related, MHC-class II binding molecule expressed on activated T cells and NK cells which maintains lymphocyte homeostatic balance via various inhibitory mechanisms. In our model, administration of anti-LAG-3 monoclonal antibody broke tolerance to Hg resulting in autoantibody production and an increase in serum IgE level. In addition, LAG-3-deficient B6.SJL mice not only had increased susceptibility to Hg-induced autoimmunity but were also unresponsive to tolerance induction. Conversely, adoptive transfer of wild-type CD4+ T cells was able to partially rescue LAG-3-deficient mice from the autoimmune disease. Further, in LAG-3-deficient mice, mercury elicited higher amounts of IL-6, IL-4 and IFN-γ, cytokines known to play a critical role in mercury-induced autoimmunity. Therefore, we conclude that LAG-3 exerts an important regulatory effect on autoimmunity elicited by a common environmental pollutant.  相似文献   

4.
The causes of autism and neurodevelopmental disorders are unknown. Genetic and environmental risk factors seem to be involved. Because of an observed increase in autism in the last decades, which parallels cumulative mercury exposure, it was proposed that autism may be in part caused by mercury. We review the evidence for this proposal. Several epidemiological studies failed to find a correlation between mercury exposure through thimerosal, a preservative used in vaccines, and the risk of autism. Recently, it was found that autistic children had a higher mercury exposure during pregnancy due to maternal dental amalgam and thimerosal-containing immunoglobulin shots. It was hypothesized that children with autism have a decreased detoxification capacity due to genetic polymorphism. In vitro, mercury and thimerosal in levels found several days after vaccination inhibit methionine synthetase (MS) by 50%. Normal function of MS is crucial in biochemical steps necessary for brain development, attention and production of glutathione, an important antioxidative and detoxifying agent. Repetitive doses of thimerosal leads to neurobehavioral deteriorations in autoimmune susceptible mice, increased oxidative stress and decreased intracellular levels of glutathione in vitro. Subsequently, autistic children have significantly decreased level of reduced glutathione. Promising treatments of autism involve detoxification of mercury, and supplementation of deficient metabolites.  相似文献   

5.
After exposure to subtoxic doses of heavy metals such as mercury, H-2s mice develop an autoimmune syndrome consisting of the rapid production of IgG autoantibodies that are highly specific for nucleolar autoantigens and a polyclonal increase in serum IgG1 and IgE. In this study, we observe that HgCl2 administration in susceptible mice results in the elevated production of B cell-activating factor of the TNF family ((BAFF) also known as BLyS, TALL-1, zTNF-4, THANK, and TNSF13B), a B cell growth factor belonging to the TNF family. A transmembrane activator and calcium-modulating and cyclophilin ligand interactor (TACI)-Ig fusion protein (which neutralizes both BAFF and a proliferation-inducing ligand (APRIL), another TNF family member) inhibited Hg-induced autoantibody or serum IgE production. These results are discussed in the context of the inhibitory effect of TACI-Ig on B cell maturation at the transitional stage.  相似文献   

6.
BackgroundMercury, in particular its most toxic form methylmercury, poses a risk to public health. Dietary methylmercury exposure is mainly by fish, and it can vary with fish contamination and by dietary habits of the population. This study aimed to quantify total mercury levels in different fish from Brazil and to estimate Brazilian exposure to methylmercury by fish consumption.MethodsTotal mercury occurrence was investigated in 18 different fish species by atomic absorption spectrometry with thermal decomposition and gold amalgamation. Dietary exposure to methylmercury was estimated by a deterministic method for different groups considering consumption by sex, different Brazilian geographical regions and habitat (rural or urban).ResultsCarnivorous fish showed higher levels of mercury (0.01 to 0.93 mg/kg) compared to non-strictly carnivorous fish (<0.01 to 0.30 mg/kg). Farmed fishes showed significantly lower levels compared to wild fish. Mean Brazilian fish consumption achieves FAO/WHO health recommendation of about two portions of fish per week. However, there is a large difference between fish consumption at urban and rural homes and among Brazilian geographic regions. These differences in consumption impacted estimated methylmercury intake that was higher in the Northern (1.85 μg/kg bw week) and in the Northeastern (0.72 μg/kg bw week) regions and also by rural population (1.08 μg/kg bw week). These values were compared with the toxicological reference dose for neurotoxicity of 1.6 μg/kg bw week.ConclusionEven though total levels of mercury in fish were lower than Brazilian and international legislations, in the Northern Brazilian region methylmercury intake overpassed the toxicological reference dose for neurotoxicity and in rural areas it achieved 68% of this reference dose.  相似文献   

7.
Anti-lymphocyte autoantibodies are a well-recognized component of the autoimmune repertoire in human systemic lupus erythematosus (SLE) and have been postulated to have pathogenic consequences. Early studies indicated that IgM anti-lymphocyte autoantibodies mainly recognized T cells and identified CD45, a protein tyrosine phosphatase of central significance in the modulation of lymphocyte function, as the main antigenic target on T cells. However, more recent work indicates that lupus autoantibodies can also recognize B cells and that CD45 may also represent their antigenic target. In particular, IgM Abs encoded by V(H)4.34 appear to have special tropism for B cells, and strong, but indirect evidence suggests that they may recognize a B cell-specific CD45 isoform. Because V(H)4.34 Abs are greatly expanded in SLE, in the present study we investigated the antigenic reactivity of lupus sera V(H)4.34 IgG Abs and addressed their contribution to the anti-lymphocyte autoantibody repertoire in this disease. Our biochemical studies conclusively demonstrate that lupus IgG V(H)4.34 Abs target a developmentally regulated B220-specific glycoform of CD45, and more specifically, an N-linked N-acetyllactosamine determinant preferentially expressed on naive B cells that is sterically masked by sialic acid on B220-positive memory B cells. Strikingly, our data also indicate that this reactivity in SLE sera is restricted to V(H)4.34 Abs and can be eliminated by depleting these Abs. Overall, our data indicate that V(H)4.34 Abs represent a major component of the lupus IgG autoantibody repertoire and suggest that the carbohydrate moiety they recognize may act as a selecting Ag in SLE.  相似文献   

8.
BackgroundMercury is an established environmental toxicant reported to cause reproductive disorders in women, however, its direct action on myometrial activity is yet to be understood. Earlier we have reported the underlying mechanism of mercury-induced myometrial contractions following in vitro exposure; however, no such information on the effect of mercury on myometrial activity following in vivo exposure is available, therefore, the present study was undertaken.ObjectivePresent study was designed to evaluate the effect of mercury on myometrial activity following in vivo exposure of rats and unravel the possible underlying mechanism.MethodsFemale Wistar rats were orally exposed to mercury (5, 50 and 500 μg/L in drinking water) for 28 days to investigate the toxicodynamics of mercuric chloride (HgCl2)-induced alterations in myometrial activity. Response of the isolated myometrial strips to different spasmogens was recorded using polyphysiograph. Blood and uterine calcium, mercury, iron and zinc levels were estimated by atomic absorption spectrophotometry. Blood biochemicals and serum hormonal profiles (estradiol, progesterone) were also determined.ResultsNo systemic toxicity of mercury was observed in any of the treatment groups (5, 50 and 500 μg/L) in terms of alterations in body weight, organ weights, blood biochemical parameters including hormonal profile. Interestingly, mercury at 5 μg/L concentration significantly increased the receptor-dependent (PGF-induced) and receptor-independent (CaCl2-induced and high K+-depolarizing solution-induced) myometrial contractions and it was coupled with corresponding increase in the uterine calcium levels. However, mercury at higher dose levels (50 and 500 μg/L) did not significantly alter the myometrial response.ConclusionOur results evidently suggest that mercury at low level (5 μg/L) produced detrimental effect on myometrial activity by altering calcium entry into the smooth muscle and/or the release of calcium from intracellular stores without causing any apparent systemic toxicity in rats.  相似文献   

9.
ProjectThere is limited literature concerning the effect of urinary flow rate on mercury excretion at low-level exposure. The aim of the present study is to examine the influence of urinary flow rate on mercury excretion in children. Also of interest is the influence of flow rate on creatinine excretion and creatinine-corrected mercury, which arisearises with spot urine samples.ProcedureA substudy of the New England Children's Amalgam Trial collected pairs of urine samples from children aged 10–16 years: a timed overnight collection and a spot daytime sample collected the following day. These samples were analyzed for mercury and creatinine concentration. Regression analysis was used to model the effect of urinary flow rate in the timed overnight samples. A paired t-test compared concentrations and creatinine-corrected mercury between overnight and daytime samples.ResultsCreatinine excretion rate (mg/h) increased significantly with urinary flow rate (mL/h), whereas creatinine concentration (g/L) decreased with flow rate. We found a non-significant increase in mercury excretion rate (ng/h) with flow rate, and mercury concentration decreased with flow rate. Mercury and creatinine concentrations were significantly higher in the overnight compared to daytime samples. For creatinine-corrected mercury, no significant impact of urinary flow rate was found.ConclusionsAlthough the creatinine excretion rate, and probably the mercury excretion rate, increased with urinary flow rate, the mercury/creatinine ratio seemed relatively unaffected by urinary flow rate.  相似文献   

10.
11.
After exposure to subtoxic doses of heavy metals such as mercury, H-2(s) mice develop an autoimmune syndrome consisting of the rapid production of IgG autoantibodies that are highly specific for nucleolar autoantigens and a polyclonal increase in serum IgG1 and IgE. In this study, we explore the role of two inhibitory immunoreceptors, CTLA-4 and FcgammaRIIB, in the regulation of mercury-induced autoimmunity. In susceptible mice treated with mercuric chloride (HgCl(2)), administration of a blocking anti-CTLA-4 Ab resulted in a further increase in anti-nucleolar autoantibodies and in total serum IgG1 levels. Furthermore, in some DBA/2 mice, which are normally resistant to heavy metal-induced autoimmunity, anti-CTLA-4 treatment leads to the production of anti-nucleolar Abs, thereby overcoming the genetic restriction of the disease. In mice deficient for the FcgammaRIIB, HgCl(2) administration did not trigger autoantibody production, but resulted in an increase in IgE serum levels. Taken together, these results indicate that different inhibitory mechanisms regulate various manifestations of this autoimmune syndrome.  相似文献   

12.
Roe  Kevin 《Neurochemical research》2022,47(5):1150-1165

Autism spectrum disorders have been linked to genetics, gut microbiota dysbiosis (gut dysbiosis), neurotoxin exposures, maternal allergies or autoimmune diseases. Two barriers to ingested neurotoxin transport into the central nervous system of a fetus or child are the gastrointestinal wall of the mother or child and the blood–brain barrier of the fetus or child. Inflammation from gut dysbiosis or inflammation from a disease or other agent can increase the gastrointestinal wall and the blood–brain barrier permeabilities to enable neurotoxins to reach the brain of a fetus or child. Postnatal gut dysbiosis is a particular inflammation risk for autism spectrum disorders caused by neurotoxin transport into a child's brain. An extensive gut dysbiosis or another source of inflammation such as a disease or other agent in combination with neurotoxins, including aluminum, mercury, lead, arsenic, cadmium, arsenic, organophosphates, and neurotoxic bacterial toxins and fungal toxins resulting from the gut dysbiosis, can elevate neurotoxin levels in a fetal or child brain to cause neurodevelopmental damage and initiate an autism spectrum disorder. The neurotoxins aluminum and mercury are especially synergistic in causing neurodevelopmental damage. There are three plausible causational pathways for autism spectrum disorders. They include inflammation and neurotoxin loading into the fetal brain during the prenatal neurodevelopment period, inflammation and neurotoxin loading into the brain during the postnatal neurodevelopment period or a two-stage loading of neurotoxins into the brain during both the prenatal and postnatal neurodevelopment periods.

  相似文献   

13.
Autoantibodies targeting brain antigens can mediate a wide range of neurological symptoms ranging from epileptic seizures to psychosis to dementia. Although earlier experimental work indicated that autoantibodies can be directly pathogenic, detailed studies on disease mechanisms, biophysical autoantibody properties, and target interactions were hampered by the availability of human material and the paucity of monospecific disease-related autoantibodies. The emerging generation of patient-derived monoclonal autoantibodies (mAbs) provides a novel platform for the detailed characterization of immunobiology and autoantibody pathogenicity in vitro and in animal models. This Feature Review focuses on recent advances in mAb generation and discusses their potential as powerful scientific tools for high-resolution imaging, antigenic target identification, atomic-level structural analyses, and the development of antibody-selective immunotherapies.  相似文献   

14.
This article reviews recent advances in understanding the role of myelin proteolipid protein (PLP) in autoimmune demyelination. It is drawn largely from work published within the last years and discusses the immunology of PLP in the historical context of what has been learned from extensive studies on the immune response to myelin basic protein (MBP). Despite the, fact that PLP is the major protein constituent of mammalian myelin, its role in autoimmune demyelination has not been widely recognized. The lack of understanding about the immunology of PLP is a direct result of the biochemical characteristics of the protein. PLP is a highly hydrophobic membrane protein with limited aqueous solubility. The hydrophobicity of PLP has thwarted, immunologic studies of the intact protein. Recent work has circumvented the technical obstacles of studying the intact protein by using soluble synthetic PLP peptides. This approach has rapidly resulted in a more definitive understanding of the immune response to PLP. Presently, the data indicate that:i) PLP is a major central nervous system (CNS) specific encephalitogen;ii) CD4+T cell reactivity to discrete PLP peptide determinants can mediate the development of acute chronic relapsing, and chronic progressive experimental autoimmune encephalomyelitis (EAE); andiii) T cell reactivity to multiple PLP determinants occurs in patients with multiple sclerosis (MS), the major human CNS demyleinating disease.Special Issue dedicated to Dr. Majorie B. Lees.  相似文献   

15.
Mercury compounds exert toxic effects via interaction with many vital enzymes involved in antioxidant regulation, such as selenoenzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx). Selenium supplementation can reactivate the mercury-inhibited TrxR and recover the cell viability in vitro. To gain an insight on how selenium supplementation affects mercury toxicity in vertebrates, we investigated the effects of selenium on the mercury accumulation and TrxR and GPx activities in a fish model. Juvenile zebra-seabreams were exposed either to methylmercury (MeHg) or inorganic mercury (Hg(2+)) in the presence or absence of sodium selenite (Se) for 28 days followed by 14 days of depuration. Mercury accumulation was found to be 10-fold higher under MeHg exposure than under Hg(2+) exposure. Selenium supplementation caused a half decrease of the accumulation of MeHg but did not influence Hg(2+) accumulation. Exposure to both mercurials led to a decrease of the activity of TrxR (<50% of control) in all organs. Se supplementation coincident with Hg(2+) exposure protected the thioredoxin system in fish liver. However, supplementation of Se during the depuration phase had no effects. The activity of GPx was only affected in the brain of fishes upon the exposure to MeHg and coexposure to MeHg and Se. Selenium supplementation has a limited capacity to prevent mercury effects in brain and kidney. These results demonstrate that Se supplementation plays a protective role in a tissue-specific manner and also highlight the importance of TrxR as a main target for mercurials in vivo.  相似文献   

16.
Are toxic biometals destroying your children’s future?   总被引:1,自引:0,他引:1  
Donald A. Drum 《Biometals》2009,22(5):697-700
Cadmium, arsenic, lead, and mercury have been linked to autism, attention deficit disorder, mental retardation and death of children. Mercury in thimerosal found in many vaccines and flu shots contributes significantly to these problems. Decomposition of the thimerosal can produce more toxic compounds, either methylethylmercury or diethylmercury, in the body. These compounds have a toxicity level similar to dimethylmercury. Within the human body, a mitochondrial disorder may release the more toxic form of mercury internally. Young children and pregnant women must minimize internal exposure to the vaccines and flu shots containing mercury.  相似文献   

17.
Li WH  Zhao J  Li HY  Liu H  Li AL  Wang HX  Wang J  He K  Liang B  Yu M  Shen BF  Zhang XM 《Proteomics》2006,6(17):4781-4789
The identification of panels of tumor antigens that elicit an antibody response may have utility in cancer screening, diagnosis and in establishing prognosis. However, autoantibodies normally exist in sera of healthy individuals and are enormously diversified. To explore the reservoir of autoantibody in healthy population, we performed a proteomics investigation of autoantibody profiles in the sera of 36 healthy Chinese individuals from Beijing, which may provide valuable reference information to the identification of disease-specific autoantibodies. The results showed that autoantibody profiles varied individually, but some autoantibodies were identified at a high frequency in the healthy population. The autoantibodies against alpha-enolase and those against heterogeneous nuclear ribonucleoprotein L were positive in more than 50% of the sera samples. The autoantibodies identified in more than 20% of samples included those against annexin II, F-actin capping protein beta subunit and calreticulin. Some of these autoantibodies have been previously reported to be involved in autoimmune conditions and cancers. Autoantibodies in the healthy population are important as a foundation from which disease-specific autoantibodies can be defined. Thus our report on autoantibodies in healthy individuals may be useful as a reference for defining new autoantibody biomarkers.  相似文献   

18.
Immunoblots of a two-dimensional PAGE-separated HL-60 cell proteomic map and mass spectrometry were combined to characterize proteins targeted by autoantibodies produced by male (New Zealand White x BXSB)F(1) (WB) mice that develop lupus and anti-phospholipid syndrome. Analysis of sera sequentially obtained from seven individual mice at different ages showed that six proteins, vimentin, heat shock protein 60, UV excision-repair protein RAD23, alpha-enolase, heterogeneous nuclear ribonucleoprotein L, and nucleophosmin, were the targets of the B cell autoimmune response, and that autoantibodies to them were synthesized sequentially in an orderly pattern that recurred in all the male WB mice analyzed: anti-vimentin first and anti-nucleophosmin last, with anti-RAD23 and anti-heat shock protein 60, then anti-alpha-enolase and anti-heterogeneous nuclear ribonucleoprotein L Abs occuring concomitantly. Anti-vimentin reactivity always appeared before anti-cardiolipin and anti-DNA Abs, suggesting that vimentin is the immunogen initiating the autoimmune process. The pattern of HL-60 proteins recognized by female WB sera differed from that of male sera, indicating that the Y chromosome-linked autoimmune acceleration gene is not an accelerator but a strong modifier of the autoimmune response. Thus, 1) combining two-dimensional PAGE and mass spectrometry constitutes a powerful tool to identify the set of Ags bound by autoantibodies present in a single serum and the whole autoantibody pattern of an autoimmune disease; 2) the diversification of the autoimmune response in male WB mice occurs in a predetermined pattern consistent with Ag spreading, and thus provides a useful model to further our understanding of the development of the autoantibody response in lupus.  相似文献   

19.
The autoantigenic polymyositis/scleroderma (PM/Scl) complex was recently shown to be the human homologue of the yeast exosome, which is an RNA-processing complex. Our aim was to assess whether, in addition to targeting the known autoantigens PM/Scl-100 and PM/Scl-75, autoantibodies also target recently identified components of the PM/Scl complex. The prevalence of autoantibodies directed to six novel human exosome components (hRrp4p, hRrp40p, hRrp41p, hRrp42p, hRrp46p, hCsl4p) was determined in sera from patients with idiopathic inflammatory myopathy (n = 48), scleroderma (n = 11), or the PM/Scl overlap syndrome (n = 10). The sera were analyzed by enzyme-linked immunosorbent assays and western blotting using the affinity-purified recombinant proteins. Our results show that each human exosome component is recognized by autoantibodies. The hRrp4p and hRrp42p components were most frequently targeted. The presence of autoantibodies directed to the novel components of the human exosome was correlated with the presence of the anti-PM/Scl-100 autoantibody in the sera of patients with idiopathic inflammatory myopathy (IIM), as was previously found for the anti-PM/Scl-75 autoantibody. Other clear associations between autoantibody activities were not found. These results further support the conception that the autoimmune response may initially be directed to PM/Scl-100, whereas intermolecular epitope spreading may have caused the autoantibody response directed to the associated components.  相似文献   

20.
BackgroundIodine is a key component of the thyroid hormones thyroxine (T4) and triiodothyronine (T3), which are crucial for proper growth and development of the human body. In particular, a great body of literature has been published on the link between thyroid hormones and brain development and functioning. However, there is a lack of knowledge on the iodine levels in the human brain. The aim of this work was to determine the brain iodine levels and to contribute to the establishment of “reference” levels for iodine in the different anatomical and functional regions of normal (i.e., subjects without neurological or psychiatric diseases) human brain.MethodsThe iodine levels were determined in 14 brain regions of 52 dead subjects without evidence of neurological or psychiatric disease (n = 728 samples). Iodine was extracted from brain samples using a standard procedure and determined by inductively coupled plasma – mass spectrometry (ICP-MS).ResultsFour subjects presented abnormally high brain iodine levels (26.0 ± 14.2 μg/g) and were excluded from the overall data analysis. The average brain iodine levels for the remaining 48 subjects was 0.14 ± 0.13 μg/g dry weight. Iodine showed very heterogeneous distribution across the different brain regions, with the frontal cortex, caudate nucleus and putamen showing the highest levels. Interestingly, these brain regions are closely related to cognitive function. Iodine levels also showed a tendency to increase with age. The high levels observed in four subjects seemed to be related to previous exposure to iodine-based contrast agents widely used in radiology and computed tomography exams.ConclusionsThis paper provides important data on iodine levels at different brain regions in “normal” people, which can be used to interpret eventual imbalances in subjects with mental disorders and neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号