首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major problem in the insulin therapy of patients with diabetes type 2 (T2DM) is the increased occurrence of hypoglycemic events which, if left untreated, may cause confusion or fainting and in severe cases seizures, coma, and even death. To elucidate the potential contribution of the liver to hypoglycemia in T2DM we applied a detailed kinetic model of human hepatic glucose metabolism to simulate changes in glycolysis, gluconeogenesis, and glycogen metabolism induced by deviations of the hormones insulin, glucagon, and epinephrine from their normal plasma profiles. Our simulations reveal in line with experimental and clinical data from a multitude of studies in T2DM, (i) significant changes in the relative contribution of glycolysis, gluconeogenesis, and glycogen metabolism to hepatic glucose production and hepatic glucose utilization; (ii) decreased postprandial glycogen storage as well as increased glycogen depletion in overnight fasting and short term fasting; and (iii) a shift of the set point defining the switch between hepatic glucose production and hepatic glucose utilization to elevated plasma glucose levels, respectively, in T2DM relative to normal, healthy subjects. Intriguingly, our model simulations predict a restricted gluconeogenic response of the liver under impaired hormonal signals observed in T2DM, resulting in an increased risk of hypoglycemia. The inability of hepatic glucose metabolism to effectively counterbalance a decline of the blood glucose level becomes even more pronounced in case of tightly controlled insulin treatment. Given this Janus face mode of action of insulin, our model simulations underline the great potential that normalization of the plasma glucagon profile may have for the treatment of T2DM.  相似文献   

2.
3.
Background: The study was aimed to investigate the potential therapeutic effect of Mori folium aqueous extracts (MFAE) on type 2 diabetes mellitus (T2DM) in vivo.Methods and results: A rat model of T2DM was established with the combination of high sugar and high-fat diet (HSFD) and streptozotocin (STZ). The T2DM rats were administrated with low (2 g.kg−1) and high (5 g.kg−1) doses of MFAE for 60 consecutive days. The biochemical indices of glucose metabolism disorders, insulin resistance and oxidative stress were observed. The results indicated that MFAE significantly promoted the synthesis of hepatic glycogen, reduced the levels of fasting blood glucose and fasting blood insulin, and improved the insulin sensitivity index (ISI). MFAE administration also remarkably increased the levels of superoxide dismutase (SOD) and reduced the levels of malondialdehyde (MDA).Conclusion: MFAE showed a therapeutic effect on T2DM with the bioative effect of improve glucose metabolism disorders, decrease insulin resistance, and ameliorate the antioxidative ability.  相似文献   

4.
Nonalcoholic fatty liver disease (NAFLD) is closely associated with insulin resistance (IR) and type 2 diabetes mellitus (T2DM), which are all complex metabolic disorders. Selenoprotein S (SelS) is an endoplasmic reticulum (ER) resident selenoprotein involved in regulating ER stress and has been found to participate in the occurrence and development of IR and T2DM. However, the potential role and mechanism of SelS in NAFLD remains unclear. Here, we analyzed SelS expression in the liver of high-fat diet (HFD)-fed mice and obese T2DM model (db/db) mice and generated hepatocyte-specific SelS knockout (SelSH-KO) mice using the Cre-loxP system. We showed that hepatic SelS expression levels were significantly downregulated in HFD-fed mice and db/db mice. Hepatic SelS deficiency markedly increased ER stress markers in the liver and caused hepatic steatosis via increased fatty acid uptake and reduced fatty acid oxidation. Impaired insulin signaling was detected in the liver of SelSH-KO mice with decreased phosphorylation levels of insulin receptor substrate 1 (IRS1) and protein kinase B (PKB/Akt), which ultimately led to disturbed glucose homeostasis. Meanwhile, our results showed hepatic protein kinase Cɛ (PKCɛ) activation participated in the negative regulation of insulin signaling in SelSH-KO mice. Moreover, the inhibitory effect of SelS on hepatic steatosis and IR was confirmed by SelS overexpression in primary hepatocytes in vitro. Thus, we conclude that hepatic SelS plays a key role in regulating hepatic lipid accumulation and insulin action, suggesting that SelS may be a potential intervention target for the prevention and treatment of NAFLD and T2DM.Subject terms: Metabolic syndrome, Obesity  相似文献   

5.
Insulin resistance plays a key role in the development and progression of type 2 diabetes mellitus (T2DM). Recent studies found that insulin resistance was associated with the dysfunction of KH-type splicing regulatory protein (KSRP) expression and AKT pathway, and that oxymatrine possesses an antidiabetic effect. The aim of the present study was to investigate whether the protection of oxymatrine against T2DM was associated with the modulation of the KSRP expression and AKT pathway. Sprague-Dawley rats were fed a high-fat diet and injected with streptozotocin intraperitoneally to induce T2DM, which led to an increase in blood glucose levels and insulin resistance, and a decrease in insulin sensitivity and glycogen synthesis concomitant with KSRP downregulation, PTEN upregulation, and AKT phosphorylation deficiency. The administration of oxymatrine decreased blood glucose levels and insulin resistance, increased insulin sensitivity, and improved glycogen synthesis in the liver of T2DM rats, through a reversal in the expression of KSRP, PTEN, and AKT. On the basis of these observations, we concluded that oxymatrine can protect T2DM rats from insulin resistance through the regulation of the KSRP, PETN, and AKT expression in the liver.  相似文献   

6.
Azelaic acid (AzA), a C9 linear α,ω-dicarboxylic acid, is found in whole grains namely wheat, rye, barley, oat seeds and sorghum. The study was performed to investigate whether AzA exerts beneficial effect on hepatic key enzymes of carbohydrate metabolism in high fat diet (HFD) induced type 2 diabetic C57BL/6J mice. C57BL/6J mice were fed high fat diet for 10 weeks and subjected to intragastric administration of various doses (20 mg, 40 mg and 80 mg/kg BW) of AzA daily for the subsequent 5 weeks. Rosiglitazone (RSG) was used as reference drug. Body weight, food intake, plasma glucose, plasma insulin, blood haemoglobin (Hb), blood glycosylated haemoglobin (HbA1c), liver glycolytic enzyme (hexokinase), hepatic shunt enzyme (glucose-6-phosphate dehydrogenase), gluconeogenic enzymes(glucose-6-phosphatase and fructose-1,6-bisphosphatase), liver glycogen, plasma and liver triglycerides were examined in mice fed with normal standard diet (NC), high fat diet (HFD), HFD with AzA (HFD + AzA) and HFD with rosiglitazone (HFD + RSG). Among the three doses, 80 mg/kg BW of AzA was able to positively regulate plasma glucose, insulin, blood HbA1c and haemoglobin levels by significantly increasing the activity of hexokinase and glucose-6-phosphate dehydrogenase and significantly decreasing the activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase thereby increasing the glycogen content in the liver. From this study, we put forward that AzA could significantly restore the levels of plasma glucose, insulin, HbA1c, Hb, liver glycogen and carbohydrate metabolic key enzymes to near normal in diabetic mice and hence, AzA may be useful as a biomaterial in the development of therapeutic agents against high fat diet induced T2DM.  相似文献   

7.
The effects of supramaximal exercise on blood glucose, insulin, and catecholamine responses were examined in 7 healthy male physical education students (mean +/- SD: age = 21 +/- 1.2 years; VO2max = 54 +/- 6 ml X kg-1 X min-1) in response to the following three dietary conditions: a normal mixed diet (N); a 24-h low carbohydrate (CHO) diet intended to reduce liver glycogen content (D1); and a 24-h low CHO diet preceded by a leg muscle CHO overloading protocol intended to reduce hepatic glycogen content with increased muscle glycogen store (D2). Exercise was performed on a bicycle ergometer at an exercise intensity of 130% VO2max for 90 s. Irrespective of the dietary manipulation, supramaximal exercise was associated with a similar significant (p less than 0.01) increase in the exercise and recovery plasma glucose values. The increase in blood glucose levels was accompanied by a similar increase in insulin concentrations in all three groups despite lower resting insulin levels in conditions D1 and D2. Lactate concentrations were higher during the early phase of the recovery period in the D2 as compared to the N condition. At cessation of exercise, epinephrine and norepinephrine were greatly elevated in all three conditions. These results indicate that the increase in plasma glucose and insulin associated with very high intensity exercise, persists in spite of dietary manipulations intended to reduce liver glycogen content or increase muscle glycogen store.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Ectopic deposition of lipids in liver and other extrahepatic tissues alters their function and occurs once adipose tissue fat storage capacity is exceeded. We investigated sexual dimorphism in the effects of dietary obesity on the liver insulin signaling pathway, as well as its connection to differences in hepatic fat accumulation. Ten-week-old Wistar rats of both sexes were fed a standard diet or a high-fat diet for 26 weeks. Insulin, adipokine levels, and glucose tolerance were measured. Lipid content, PPARα mRNA expression and protein levels of insulin receptor subunit β (IRβ), IR substrate 2 (IRS-2), Ser/Thr kinase A (Akt), and pyruvate dehydrogenase kinase isozyme 4 (PDK4) were measured in liver. In control rats, serum parameters and hepatic levels of IRβ, IRS-2, and Akt proteins pointed to a profile of better insulin sensitivity in females. In response to dietary treatment, female rats exhibited a greater increase in body mass and adiposity and lower liver fat accumulation than males, but maintained better glucose tolerance. The reduced insulin signaling capacity in the liver of obese female rats seems to prevent lipid accumulation and probably lipotoxicity-associated hepatic disorders.  相似文献   

9.
Our aim was to test whether pharmacological inhibition of cycloxygenase-2 (COX-2) reverses non-alcoholic steatohepatitis (NASH) in type 2 diabetes mellitus (T2DM) rats via suppression of the non-canonical Wnt signaling pathway expression. Twenty-four male Sprague-Dawley rats were randomly distributed to two groups and were fed with a high fat and sucrose (HF-HS) diet or a normal chow diet, respectively. After four weeks, rats fed with a HF-HS diet were made diabetic with low-dose streptozotocin. At the 9th week the diabetic rats fed with a HF-HS diet or the non-diabetic rats fed with a normal chow diet were further divided into two subgroups treated with vehicle or celecoxib (a selective COX-2 inhibitor, 10 mg/Kg/day, gavage) for the last 4 weeks, respectively. At the end of the 12th week, rats were anesthetized. NASH was assessed by histology. Related cytokine expression was measured at both the protein and gene levels through immunohistochemistry (IHC), Western blot and real-time PCR. T2DM rats fed with a HF-HS diet developed steatohepatitis and insulin resistance associated with elevated serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), insulin levels and the non-alcoholic fatty liver disease (NAFLD) activity score (NAS). The expression of Wnt5a, JNK1, NF-κB p65, and COX-2 were all significantly increased in the T2DM-NASH group compared with the control and control-cele group. Hepatic injury was improved by celecoxib in T2DM-NASH-Cele group indicated by reduced serum ALT and AST levels and hepatic inflammation was reduced by celecoxib showed by histology and the NAFLD activity score (NAS). Serum related metabolic parameters, HOMA-IR and insulin sensitivity index were all improved by celecoxib. The expression of Wnt5a, JNK1, NF-κB p65, and COX-2 expression were all suppressed by celecoxib in T2DM-NASH-Cele group. The results of the present study indicated that celecoxib ameliorated NASH in T2DM rats via suppression of the non-canonical Wnt5a/JNK1 signaling pathway expression.  相似文献   

10.
Overconsumption of fructose, as a highly lipogenic sugar, may profoundly affect hepatic metabolism and has been associated with many components of the metabolic syndrome, particularly with insulin resistance and Type 2 diabetes. In this study, we proposed that high fructose diet may enhance lipogenesis and decrease insulin sensitivity in the liver through dysregulation of glucocorticoid signaling. Therefore, we examined the effects of long-term consumption of 10% fructose solution on triglyceridemia, liver histology and intracellular corticosterone level, as well as on 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) and hexose-6-phosphate dehydrogenase (H6PDH) mRNA and protein levels in the rat liver. Glucocorticoid action was assessed by glucocorticoid receptor (GR) expression and intracellular redistribution. We also analyzed the expression of enzymes involved in gluconeogenesis and lipogenesis, phosphoenolpyruvate carboxykinase (PEPCK) and lipin-1. The results have shown that fructose-rich diet led to increase in 11βHSD1 and H6PDH protein levels, while hepatic corticosterone concentration remained unchanged. Concomitantly, GR was increasingly accumulated in the cytoplasm, whereas its nuclear level was unchanged and accompanied by diminished PEPCK mRNA level. Elevation of lipin-1 in the liver microsomes suggested that fructose diet led to an increase in lipogenesis and consequently to hypertriglyceridemia. The observed increase of insulin receptor supstrate-1 phosphorylation on Ser307 represents a hallmark of impaired insulin signaling in the liver of fructose-fed rat and probably is a consequence of the alterations in 11βHSD1 and lipin-1 levels. Overall, our findings suggest that fructose-rich diet may perturb hepatic prereceptor glucocorticoid metabolism and lipogenesis, resulting in hypertriglyceridemia and attenuated hepatic insulin sensitivity.  相似文献   

11.
12.

Background & Aims

In recent years, nonalcoholic steatohepatitis (NASH) has become a considerable healthcare burden worldwide. Pathogenesis of NASH is associated with type 2 diabetes mellitus (T2DM) and insulin resistance. However, a specific drug to treat NASH is lacking. We investigated the effect of the selective sodium glucose cotransporter 2 inhibitor (SGLT2I) ipragliflozin on NASH in mice.

Methods

We used the Amylin liver NASH model (AMLN), which is a diet-induced model of NASH that results in obesity and T2DM. AMLN mice were fed an AMLN diet for 20 weeks. SGLT2I mice were fed an AMLN diet for 12 weeks and an AMLN diet with 40 mg ipragliflozin/kg for 8 weeks.

Results

AMLN mice showed steatosis, inflammation, and fibrosis in the liver as well as obesity and insulin resistance, features that are recognized in human NASH. Ipragliflozin improved insulin resistance and liver injury. Ipragliflozin decreased serum levels of free fatty acids, hepatic lipid content, the number of apoptotic cells, and areas of fibrosis; it also increased lipid outflow from the liver.

Conclusions

Ipragliflozin improved the pathogenesis of NASH by reducing insulin resistance and lipotoxicity in NASH-model mice. Our results suggest that ipragliflozin has a therapeutic effect on NASH with T2DM.  相似文献   

13.
Alpha- and beta-cells dysfunction is implicated in the development of Type 2 diabetes mellitus (T2DM). We aimed to evaluate whether alpha- and beta-cell dysfunction may precede prediabetes (PreDM) and T2DM development. Furthermore, we explored the role of two healthy diets (Mediterranean and low-fat diets) modulating these processes. We included 462 patients from the CORDIOPREV study without T2DM at baseline, of which 272 were PreDM. During follow-up, 107 patients developed T2DM (T2DM-incident group), 30 developed PreDM (PreDM-incident group), 86 regressed to normoglycemia (PreDM-regression group) and 29 patients remained without PreDM or T2DM criteria (control group), according to the American Diabetes Association diagnosis criteria. We measured glucose, insulin, glucagon and GLP-1 plasma levels in the OGTT performed at baseline and after 2 years of follow-up. Patients were randomized to consume two healthy diets, a Mediterranean (>35%) and a low-fat (<30%). At baseline we already observed higher levels of glucagon and glucagon/insulin (G/I) ratio in the T2DM-incident group compared with PreDM-incident and control groups. T2DM Risk Assessment by COX analysis using G/I ratio at 30 min after an OGTT was able to assess the T2DM risk with an HR of 2.514. The two dietary models differentially influenced the PreDM regression. Specifically, the consumption of Mediterranean diet was associated with a decrease in G/I ratio (P=.034), whereas the low-fat diet reduced insulin levels (P=.002). Our results suggest that alpha-cell dysfunction precedes the T2DM development. This process seems to be independent of diet consumed. However the PreDM regression might be differentially modulated by diets.  相似文献   

14.
Abnormal regulation of glucose and impaired carbohydrate utilization that result from a defective or deficient insulin are the key pathogenic events in type 2 diabetes mellitus (T2DM). Experimental and clinical studies have shown the antidiabetic effects of Pycnogenol® (PYC). However, the protective effects of PYC on the liver, a major metabolic organ which primarily involves in glucose metabolism and maintains the normal blood glucose level in T2DM model have not been studied. The present study evaluated the beneficial effect of PYC, French maritime pine bark extract, on hyperglycemia and oxidative damage in normal and diabetic rats. Diabetes was induced by feeding rats with a high-fat diet (HFD; 40%) for 2 weeks followed by an intraperitoneal (IP) injection of streptozotocin (STZ; 40 mg/kg; body weight). An IP dose of 10 mg/kg PYC was given continually for 4 weeks after diabetes induction. At the end of the 4-week period, blood was drawn and the rats were then sacrificed, and their livers dissected for biochemical and histopathological assays. In the HFD/STZ group, levels of glycosylated hemoglobin (HbA1c), significantly increased, while hepatic glycogen level decreased. PYC supplementation significantly reversed these parameters. Moreover, supplementation with PYC significantly ameliorated thiobarbituric reactive substances, malonaldehyde, protein carbonyl, glutathione and antioxidant enzymes [glutathione-S-transferase, catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase] in the liver of HFD/STZ rats. These results were supported with histopathological examinations. Although detailed studies are required for the evaluation of the exact protective mechanism of PYC against diabetic complications, these preliminary experimental findings demonstrate that PYC exhibits antidiabetic effects in a rat model of type 2 DM by potentiating the antioxidant defense system. These finding supports the efficacy of PYC for diabetes management.  相似文献   

15.
Type 2 diabetes mellitus (T2DM) is the most prevalent and serious metabolic disease affecting people worldwide. T2DM results from insulin resistance of the liver, muscle, and adipose tissue. In this study, we used proteomic and bioinformatic methodologies to identify novel hepatic membrane proteins that are related to the development of hepatic insulin resistance, steatosis, and T2DM. Using FT‐ICR MS, we identified 95 significantly differentially expressed proteins in the membrane fraction of normal and T2DM db/db mouse liver. These proteins are primarily involved in energy metabolism pathways, molecular transport, and cellular signaling, and many of them have not previously been reported in diabetic studies. Bioinformatic analysis revealed that 16 proteins may be related to the regulation of insulin signaling in the liver. In addition, six proteins are associated with energy stress‐induced, nine proteins with inflammatory stress‐induced, and 14 proteins with endoplasmic reticulum stress‐induced hepatic insulin resistance. Moreover, we identified 19 proteins that may regulate hepatic insulin resistance in a c‐Jun amino‐terminal kinase‐dependent manner. In addition, three proteins, 14–3‐3 protein beta (YWHAB), Slc2a4 (GLUT4), and Dlg4 (PSD‐95), are discovered by comprehensive bioinformatic analysis, which have correlations with several proteins identified by proteomics approach. The newly identified proteins in T2DM should provide additional insight into the development and pathophysiology of hepatic steatosis and insulin resistance, and they may serve as useful diagnostic markers and/or therapeutic targets for these diseases.  相似文献   

16.
Livers from male rats fed a standard commercial diet supplemented with 8% (w/w) marine fish or safflower oils were perfused for 70 min with undiluted blood in the presence and absence of insulin. Lipogenesis, as measured by the incorporation of 3H2O into liver and perfusate fatty acids, was inhibited by the feeding of fish oil. Net triacylglycerol secretion was also depressed by this dietary treatment. Infusion of insulin stimulated triacylglycerol secretion and the incorporation of newly synthesised fatty acids into liver and perfusate lipids with dietary safflower oil but not with fish oil. Hepatic cholesterol synthesis was also depressed by feeding fish oil. Net ketogenesis was raised by feeding fish oil and was depressed by insulin with both safflower and fish oil. Blood glucose was raised in the fish oil group but with both dietary oils the hormone exerted a significant hypoglycaemic effect. The data are discussed with respect to the observations that in vivo dietary fish oil (but not safflower oil) opposes the hypertriglyceridaemia arising from the hepatic overproduction of very-low-density lipoproteins.  相似文献   

17.
大脑胰岛素不仅可调节血糖,而且可改善记忆和认知,而大脑胰岛素缺乏常导致Alzheimer病(Alzheimer’s disease, AD)的发生. 本研究检测了正常及2型糖尿病(type 2 diabetes, T2D)大鼠外周及大脑胰岛素信号传导途径,以探讨T2D时由于大脑胰岛素异常导致AD发病的可能性.以同龄正常SD大鼠为对照(CTL组),高糖、高脂、高蛋白饮食加链脲佐菌素(streptozotocin, STZ)腹腔注射建造T2D大鼠模型(T2D组).葡萄糖氧化酶法检测血浆血糖,放免法检测脑脊液及血浆胰岛素,免疫印迹技术检测大脑海马tau蛋白上部分位点磷酸化水平,大脑及肝脏、肌肉组织胰岛素信号传导途径中磷脂酰肌醇3 激酶(phosphatidylinositol 3 kinase, PI3K)/ 蛋白激酶B(protein kinase B,Akt)、糖原合成激酶3β(glycogen synthase kinase 3β, GSK 3β)活性. 结果显示:和对照组相比,T2D大鼠血浆葡萄糖水平及胰岛素水平显著升高,脑脊液胰岛素水平显著降低,大脑海马组织tau蛋白上所检测位点均呈过度磷酸化改变,海马及外周组织(肝脏、肌肉)胰岛素信号传导途径PI3K/Akt活性均显著下降,GSK 3β活性升高. 研究结果表明:2型糖尿病大鼠大脑胰岛素缺乏及其信号传导途径下调可能是导致阿尔茨海默病发病的重要原因.  相似文献   

18.
BackgroundOur previous study revealed that microRNA-125a-5p plays a crucial role in regulating hepatic glycolipid metabolism by targeting STAT3 in type 2 diabetes mellitus (T2DM). Dioscin, a major active ingredient in Dioscoreae nipponicae rhizomes, displays various pharmacological activities, but its role in T2DM has not been reported.PurposeThe aim of this study was to investigate the effect of dioscin on T2DM and elucidate its potential mechanism.MethodsThe effect of dioscin on glycolipid metabolic disorder in insulin-induced HepG2 cells, palmitic acid-induced AML12 cells, high-fat diet- and streptozotocin- induced T2DM rats, and spontaneous T2DM KK-Ay mice were evaluated. Then, the possible mechanisms of dioscin were comprehensively evaluated.ResultsDioscin markedly alleviated the dysregulation of glycolipid metabolism in T2DM by reducing hyperglycemia and hyperlipidemia, improving insulin resistance, increasing hepatic glycogen content, and attenuating lipid accumulation. When the mechanism was investigated, dioscin was found to markedly elevate miR-125a-5p level and decrease STAT3 expression. Consequently, dioscin increased phosphorylation levels of STAT3, PI3K, AKT, GSK-3β, and FoxO1 and decreased gene levels of PEPCK, G6Pase, SREBP-1c, FAS, ACC, and SCD1, leading to an increase in glycogen synthesis and a decrease in gluconeogenesis and lipogenesis. The effects of dioscin on regulating miR-125a-5p/STAT3 pathway were verified by miR-125a-5p overexpression and STAT3 overexpression.ConclusionsDioscin showed potent anti-T2DM activity by improving the inhibitory effect of miR-125a-5p on STAT3 signaling to alleviate glycolipid metabolic disorder of T2DM.  相似文献   

19.
There is growing evidence that obesity associated with type 2 diabetes mellitus (T2DM) and aging are risk factors for the development of Alzheimer’s disease (AD). However, the molecular mechanisms through which obesity interacts with β-amyloid (Aβ) to promote cognitive decline remains poorly understood. Memantine (MEM), a N-methyl-d-aspartate receptor antagonist, is currently used for the treatment of AD. Nonetheless, few studies have reported its effects on genetic preclinical models of this neurodegenerative disease exacerbated with high-fat diet (HFD)-induced obesity. Therefore, the present research aims to elucidate the effects of MEM on familial AD HFD-induced insulin resistance and learning and memory impairment. Furthermore, it aspires to determine the possible underlying mechanisms that connect AD to T2DM. Wild type and APPswe/PS1dE9 mice were used in this study. The animals were fed with either chow or HFD until 6 months of age, and they were treated with MEM-supplemented water (30 mg/kg) during the last 12 weeks. Our study demonstrates that MEM improves the metabolic consequences produced by HFD in this model of familial AD. Behavioural assessments confirmed that the treatment also improves animals learning abilities and decreases memory loss. Moreover, MEM treatment improves brain insulin signalling upregulating AKT, as well as cyclic adenosine monophosphate response element binding (CREB) expression, and modulates the amyloidogenic pathway, which, in turn, reduced the accumulation of Aβ. Moreover, this drug increases the activation of molecules involved with insulin signalling in the liver, such as insulin receptor substrate 2 (IRS2), which is a key protein regulating hepatic resistance to insulin. These results provide new insight into the role of MEM not only in the occurrence of AD treatment, but also in its potential application on peripheral metabolic disorders where Aβ plays a key role, as is the case of T2DM.  相似文献   

20.
Extensive studies have been performed on the role of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in metabolic diseases. Our previous study reported glucose could directly regulate hexose-6-phosphate dehydrogenase (H6PDH) and 11β-HSD1. Recently, we further investigated the interplay of H6PDH and 11β-HSD1 and their roles in hepatic gluconeogenesis and insulin resistance to elucidate the importance of H6PDH and 11β-HSD1 in pathogenesis of type 2 diabetes mellitus (T2DM). T2DM rats model and H6PDH or 11β-HSD1 siRNA transfected in CBRH-7919 cells were used to explore the effect of H6PDH and 11β-HSD1 in T2DM. The results showed that the expression and activity of H6PDH and 11β-HSD1 in livers of diabetic rats were increased, with the expressions of PEPCK and G6Pase or liver corticosterone increased apparently. It also showed that H6PDH siRNA and 11β-HSD1 siRNA could inhibit the protein expression and enzyme activity by each other. With H6PDH siRNA, the enhancement of gluconeogenesis was blocked and insulin resistance stimulated by corticosterone was reduced. H6PDH and 11β-HSD1 might be the effective and prospective targets for T2DM and metabolic syndromes, based on the interplay between these two enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号