首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hyperphosphorylation and deposition of tau into neurofibrillary tangles is a hallmark of Alzheimer disease (AD). Alternative splicing of tau exon 10 generates tau isoforms containing three or four microtubule binding repeats (3R-tau and 4R-tau), which are equally expressed in adult human brain. Dysregulation of exon 10 causes neurofibrillary degeneration. Here, we report that cyclic AMP-dependent protein kinase, PKA, phosphorylates splicing factor SRSF1, modulates its binding to tau pre-mRNA, and promotes tau exon 10 inclusion in cultured cells and in vivo in rat brain. PKA-Cα, but not PKA-Cβ, interacts with SRSF1 and elevates SRSF1-mediated tau exon 10 inclusion. In AD brain, the decreased level of PKA-Cα correlates with the increased level of 3R-tau. These findings suggest that a down-regulation of PKA dysregulates the alternative splicing of tau exon 10 and contributes to neurofibrillary degeneration in AD by causing an imbalance in 3R-tau and 4R-tau expression.  相似文献   

3.
Tau exon 10, which encodes the second microtubule-binding repeat, is regulated by alternative splicing. Its alternative splicing generates Tau isoforms with three- or four-microtubule-binding repeats, named 3R-tau and 4R-tau. Adult human brain expresses equal levels of 3R-tau and 4R-tau. Imbalance of 3R-tau and 4R-tau causes Tau aggregation and neurofibrillary degeneration. In the present study, we found that splicing factor SRp55 (serine/arginine-rich protein 55) promoted Tau exon 10 inclusion. Knockdown of SRp55 significantly promoted Tau exon 10 exclusion. The promotion of Tau exon 10 inclusion by SRp55 required the arginine/serine-rich region, which was responsible for the subnucleic speckle localization. Dyrk1A (dual specificity tyrosine-phosphorylated and regulated kinase 1A) interacted with SRp55 and mainly phosphorylated its proline-rich domain. Phosphorylation of SRp55 by Dyrk1A suppressed its ability to promote Tau exon 10 inclusion. Up-regulation of Dyrk1A as in Down syndrome could lead to neurofibrillary degeneration by shifting the alternative splicing of Tau exon 10 to an increase in the ratio of 3R-tau/4R-tau.  相似文献   

4.
The human CD45 gene encodes five isoforms of a transmembrane tyrosine phosphatase that differ in their extracellular domains as a result of alternative splicing of exons 4-6. Expression of the CD45 isoforms is tightly regulated in peripheral T cells such that resting cells predominantly express the larger CD45 isoforms, encoded by mRNAs containing two or three variable exons. In contrast, activated T cells express CD45 isoforms encoded by mRNAs lacking most or all of the variable exons. We have previously identified the sequences within CD45 variable exon 4 that control its level of inclusion into spliced mRNAs. Here we map the splicingregulatory sequences within CD45 variable exons 5 and 6. We show that, like exon 4, exons 5 and 6 each contain an exonic splicing silencer (ESS) and an exonic splicing enhancer (ESE), which together determine the level of exon inclusion in na?ve cells. We further demonstrate that the primary activation-responsive silencing motif in exons 5 and 6 is homologous to that in exon 4 and, as in exon 4, binds specifically to the protein heterogeneous nuclear ribonucleoprotein L. Together these studies reveal common themes in the regulation of the CD45 variable exons and provide a mechanistic explanation for the observed physiological expression of CD45 isoforms.  相似文献   

5.
6.
The human CD44 gene encodes multiple isoforms of a transmembrane protein that differ in their extracellular domains as a result of alternative splicing of its variable exons. Expression of CD44 is tightly regulated according to the type and physiological status of a cell, with expression of high molecular weight isoforms by inclusion of variable exons and low molecular weight isoforms containing few or no variable exons. Human CD44 variable exon 3 (v3) can follow a specific alternative splicing route different from that affecting other variable exons. Here we map and functionally describe the splicing enhancer element within CD44 exon v3 which regulates its inclusion in the final mRNA. The v3 splicing enhancer is a multisite bipartite element consisting of a tandem nonamer, the XX motif, and an heptamer, the Y motif, located centrally in the exon. Each of the three sites of this multisite enhancer partially retains its splicing enhancing capacity independently from each other in CD44 and shows full enhancing function in gene contexts different from CD44. We further demonstrate that these motifs act cooperatively as at least two motifs are needed to maintain exon inclusion. Their action is differential with respect to the splice-site target abutting v3. The first X motif acts on the 3' splice site, the second X motif acts on both splice sites (as a bidirectional exonic splicing enhancer), and the Y motif acts on the 5' splice site. We also show that the multisite v3 splicing enhancer is functional irrespective of flanking intron length and spatial organization within v3.  相似文献   

7.
8.
9.
Mutations in the human tau gene cause frontotemporal dementia and Parkinsonism associated with chromosome 17 (FTDP-17). One of the major disease mechanisms in FTDP-17 is the increased inclusion of tau exon 10 during pre-mRNA splicing. Here we show that modified oligonucleotides directed against the tau exon 10 splice junctions suppress inclusion of tau exon 10. The effect is mediated by the formation of a stable pre-mRNA-oligonucleotide hybrid, which blocks access of the splicing machinery to the pre-mRNA. Correction of tau splicing occurs in a tau minigene system and in endogenous tau RNA in neuronal pheochromocytoma cells and is specific to exon 10 of the tau gene. Antisense oligonucleotide-mediated exclusion of exon 10 has a physiological effect by increasing the ratio of protein lacking the microtubule-binding domain encoded by exon 10. As a consequence, the microtubule cytoskeleton becomes destabilized and cell morphology is altered. Our results demonstrate that alternative splicing defects of tau as found in FTDP-17 patients can be corrected by application of antisense oligonucleotides. These findings provide a tool to study specific tau isoforms in vivo and might lead to a novel therapeutic strategy for FTDP-17.  相似文献   

10.
11.
12.
13.
RBM4 participates in cell differentiation by regulating tissue-specific alternative pre-mRNA splicing. RBM4 also has been implicated in neurogenesis in the mouse embryonic brain. Using mouse embryonal carcinoma P19 cells as a neural differentiation model, we observed a temporal correlation between RBM4 expression and a change in splicing isoforms of Numb, a cell-fate determination gene. Knockdown of RBM4 affected the inclusion/exclusion of exons 3 and 9 of Numb in P19 cells. RBM4-deficient embryonic mouse brain also exhibited aberrant splicing of Numb pre-mRNA. Using a splicing reporter minigene assay, we demonstrated that RBM4 promoted exon 3 inclusion and exon 9 exclusion. Moreover, we found that RBM4 depletion reduced the expression of the proneural gene Mash1, and such reduction was reversed by an RBM4-induced Numb isoform containing exon 3 but lacking exon 9. Accordingly, induction of ectopic RBM4 expression in neuronal progenitor cells increased Mash1 expression and promoted cell differentiation. Finally, we found that RBM4 was also essential for neurite outgrowth from cortical neurons in vitro. Neurite outgrowth defects of RBM4-depleted neurons were rescued by RBM4-induced exon 9–lacking Numb isoforms. Therefore our findings indicate that RBM4 modulates exon selection of Numb to generate isoforms that promote neuronal cell differentiation and neurite outgrowth.  相似文献   

14.
Tau protein, which binds to and stabilizes microtubules, is critical for neuronal survival and function. In the human brain, tau pre-mRNA splicing is regulated to maintain a delicate balance of exon 10-containing and exon 10-skipping isoforms. Splicing mutations affecting tau exon 10 alternative splicing lead to tauopathies, a group of neurodegenerative disorders including dementia. Molecular mechanisms regulating tau alternative splicing remain to be elucidated. In this study, we have developed an expression cloning strategy to identify splicing factors that stimulate tau exon 10 inclusion. Using this expression cloning approach, we have identified a previously unknown tau exon 10 splicing regulator, RBM4 (RNA binding motif protein 4). In cells transfected with a tau minigene, RBM4 overexpression leads to an increased inclusion of exon 10, whereas RBM4 down-regulation decreases exon 10 inclusion. The activity of RBM4 in stimulating tau exon 10 inclusion is abolished by mutations in its RNA-binding domain. A putative intronic splicing enhancer located in intron 10 of the tau gene is required for the splicing stimulatory activity of RBM4. Immunohistological analyses reveal that RBM4 is expressed in the human brain regions affected in tauopathy, including the hippocampus and frontal cortex. Our study demonstrates that RBM4 is involved in tau exon 10 alternative splicing. Our work also suggests that down-regulating tau exon 10 splicing activators, such as RBM4, may be of therapeutic potential in tauopathies involving excessive tau exon 10 inclusion.  相似文献   

15.
16.
17.
18.
Thousands of human genes contain introns ending in NAGNAG (N any nucleotide), where both NAGs can function as 3' splice sites, yielding isoforms that differ by inclusion/exclusion of three bases. However, few models exist for how such splicing might be regulated, and some studies have concluded that NAGNAG splicing is purely stochastic and nonfunctional. Here, we used deep RNA-Seq data from 16 human and eight mouse tissues to analyze the regulation and evolution of NAGNAG splicing. Using both biological and technical replicates to estimate false discovery rates, we estimate that at least 25% of alternatively spliced NAGNAGs undergo tissue-specific regulation in mammals, and alternative splicing of strongly tissue-specific NAGNAGs was 10 times as likely to be conserved between species as was splicing of non-tissue-specific events, implying selective maintenance. Preferential use of the distal NAG was associated with distinct sequence features, including a more distal location of the branch point and presence of a pyrimidine immediately before the first NAG, and alteration of these features in a splicing reporter shifted splicing away from the distal site. Strikingly, alignments of orthologous exons revealed a ~15-fold increase in the frequency of three base pair gaps at 3' splice sites relative to nearby exon positions in both mammals and in Drosophila. Alternative splicing of NAGNAGs in human was associated with dramatically increased frequency of exon length changes at orthologous exon boundaries in rodents, and a model involving point mutations that create, destroy, or alter NAGNAGs can explain both the increased frequency and biased codon composition of gained/lost sequence observed at the beginnings of exons. This study shows that NAGNAG alternative splicing generates widespread differences between the proteomes of mammalian tissues, and suggests that the evolutionary trajectories of mammalian proteins are strongly biased by the locations and phases of the introns that interrupt coding sequences.  相似文献   

19.
20.
Mutations that stimulate exon 10 inclusion into the human tau mRNA cause frontotemporal dementia with parkinsonism, associated with chromosome 17 (FTDP-17), and other tauopathies. This suggests that the ratio of exon 10 inclusion to exclusion in adult brain is one of the factors to determine biological functions of the tau protein. To investigate the underlying splicing mechanism and identify potential therapeutic targets for tauopathies, we generated a series of mini-gene constructs with intron deletions from the full length of tau exons 9-11 mini-gene construct. RT-PCR results demonstrate that there is a minimum distance requirement between exon 10 and 11 for correct splicing of the exon 10. In addition, SRp20, a member of serine-arginine (SR) protein family of splicing factors was found to facilitate exclusion of exon 10 in a dosage-dependent manner. Significantly, SRp20 also induced exon 10 skipping from pre-mRNAs containing mutations identified in FTDP-17 patients. Based on those results, we generated a cell-based system to measure inclusion to exclusion of exon 10 in the tau mRNA using the luciferase reporter. The firefly luciferase was fused into exon 11 in frame, and a stop code was also created in exon 10. Inclusion of exon 10 prevents luciferase expression, whereas exclusion of exon 10 generates luciferase activity. To minimize baseline luciferase expression, our reporter construct also contains a FTDP-17 mutation that increases exon 10 inclusion. We demonstrate that the splicing pattern of our reporter construct mimics that of endogenous tau gene. Co-transfection of SRp20 and SRp55, two SR proteins that promote exon 10 exclusion, increases production of luciferase. We conclude that this cell-based system can be used to identify biological substances that modulate exon 10 splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号