首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Tuberculosis (TB) is the leading cause of death worldwide due to bacterial infection. The scarcity of effective drugs to treat the disease and the compounded problems due to the development of resistance to the available therapeutics and TB-HIV synergism drive medicinal chemists to search for new anti-Mtb chemotypes. Towards this endeavor, the α-sulfonamidophosphonate moiety has been identified as new anti-Mtb chemotype through the scaffold hopping as the design strategy, development of an effective synthetic methodology using green chemistry tools, and evaluation of anti-TB activity of the synthesized compounds against Mtb (Mycobacterium tuberculosis) H37Rv. Out of the sixteen compounds, five have been found to have MIC values of 1.56 μg/mL and one 3.125 μg/mL. The five most active compounds are non-cytotoxic to RAW 264.7 (mouse leukemic monocyte macrophage) cell lines. The compounds are found to possess acceptable values of the various parameters for drug likeness in accordance with the Lipinski rule with the topological surface area (tPSA) of >70 that suggest eligibility of these new molecular entities for further consideration as potential drug candidates.  相似文献   

2.
Discovery of novel antimycobacterial compounds that work on distinctive targets and by diverse mechanisms of action is urgently required for the treatment of mycobacterial infections due to the emerging global health threat of tuberculosis. We have identified a new class of 5-ethyl or hydroxy (or methoxy) methyl-substituted pyrimidine nucleosides as potent inhibitors of Mycobacterium bovis, Mycobacterium tuberculosis (H37Ra, H37Rv) and Mycobacterium avium. A series of 2'-'up' fluoro (or hydroxy) nucleosides (1, 2, 4-6, 9, 10, 13, 16, 18, 21, 24) was synthesized and evaluated for antimycobacterial activity. Among 2'-fluorinated compounds, 1-(3-bromo-2,3-dideoxy-2-fluoro-β-d-arabinofuranosyl)-5-ethyluracil (13) exhibited promising activity against M. bovis and Mtb alone, and showed synergism when combined with isoniazid. The most active compound emerging from these studies, 1-(β-d-arabinofuranosyl)-4-thio-5-hydroxymethyluracil (21) inhibited Mtb (H37Ra) (MIC(50)=0.5 μg/mL) and M. bovis (MIC(50)=0.5 μg/mL) at low concentrations, and was ten times more potent against Mtb (H37Ra) than cycloserine (MIC(50)=5.0 μg/mL), a second line drug. It also showed an additive effect when combined with isoniazid. Compound 21 retained sensitivity against a rifampicin-resistant (H37Rv) strain of Mtb (MIC(50)=1 μg/mL) at concentrations similar to that for a rifampicin-sensitive (H37Rv) strain, suggesting that it has no cross-resistance to a first-line anti-TB drug. In addition, the replication of M. avium was also inhibited by 21 (MIC(50)=10 μg/mL). No cellular toxicity of 13 or 21 was observed up to the highest concentration tested (CC(50)>100 μg/mL). These observations offer promise for a new drug treatment regimen to augment and complement the current chemotherapy of TB.  相似文献   

3.
4.
A series of novel Mannich bases of chlorokojic acid (2-chloromethyl-5-hydroxy-4H-pyran-4-one) were synthesized and their biological activities were investigated. Anticonvulsant activity results according to phase-I tests of Antiepileptic Drug Development (ADD) Program revealed that compound 13 was the most effective one at 4?h against subcutaneous pentylenetetrazole (scPTZ)-induced seizure test. Antimicrobial activities were evaluated in vitro against bacteria and fungi by using broth microdilution method. The antitubercular activities against Mycobacterium tuberculosis and M. avium were discussed with Resazurin microplate assay (REMA). The antimicrobial activity results indicated that compounds 1 and 12 (MIC: 8–16 µg/mL) showed higher activity against Gram negative bacteria while compound 12 had MIC: 4–16 µg/mL against Gram positive bacteria. Compound 1 was the most active one with MIC values of 8–32 µg/mL against fungi. Mannich bases also exhibit significant antitubercular activity in a MIC range of 4 to 32 µg/mL, especially compound 18 against M. avium.  相似文献   

5.
近些年全球结核病疫情愈发严重,耐药性结核病使其雪上加霜。一个重要原因是结核病新药的匮乏以及结核分枝杆菌相关基础研究的不足。因此迫切需要开发新的技术以促进结核病系统生物学基础研究,并在此基础上研究新机制,发现新靶标,开发新药物。结核分枝杆菌功能蛋白质组芯片的出现旨在促进结核病相关研究工作。考虑到结核分枝杆菌高毒力、复制周期长和需要在生物安全三级实验室中开展研究等特点和难点,该工具为结核病相关研究人员提供了一个强有力的武器。目前这一技术手段的应用已经使我们对结核分枝杆菌-宿主相互作用、小分子-蛋白结合以及抗生素耐药性机制等关键生物过程有了更深入的了解。为了更好地帮助同行了解这一有效的工具,本文综述了结核分枝杆菌功能蛋白组芯片的几种主要应用,期望同行专家能更好地将其应用于结核病相关的基础研究中。  相似文献   

6.
Tuberculosis (TB) is a deadly bacterial infectious disease caused by intra-cellular pathogen Mycobacterium tuberculosis (Mtb). There were an estimated 1.4 million TB deaths in 2015 and an additional 0.4 million deaths resulting from TB among individuals with HIV. Drug-discovery for its cure is very slow in comparison with the causative organism’s fast pace of mutations conferring drug resistance. Moreover, the field of drug-discovery of anti-TB drugs is constantly being challenged by the drug resistant strains of Mtb. Several molecules/inhibitors are being tested across the pharmaceutical industry and research centres for their suitability as drug candidate. It takes immense effort, high costs and a whole lot of screening to bring a single molecule to the clinics for patient cure. In last 60 years, hundreds of molecules have been patented for their probable use to develop drug for treatment of TB. However, only one drug has been successfully approved that is bedaquiline (1-(6-bromo-2 -methoxy-quinolin-3-yl)-4-dimethylamino-2-naphtalen-1-yl-1-phenyl-butan-2-ol). This is a brief review about bedaquiline (BDQ), the only drug in last 45 years approved for curing drug-resistant pulmonary TB, its development, action mechanism and development of resistance against it.  相似文献   

7.
Although the BCG vaccine can prevent tuberculosis (TB) in infants, its ability to prevent adult pulmonary TB is reportedly limited. Therefore, development of a novel effective vaccine against pulmonary TB has become an international research priority. We have previously reported that intranasal vaccination of mice with a mycobacterial heparin‐binding hemagglutinin adhesin (HBHA) plus mucosal adjuvant cholera toxin (CT) enhances production of IFN‐γ and anti‐HBHA antibody and suppresses extrapulmonary bacterial dissemination after intranasal infection with BCG. In the present study, the effects of intranasal HBHA + CT vaccine on murine pulmonary Mycobacterium tuberculosis (Mtb) infection were examined. Intranasal HBHA + CT vaccination alone failed to reduce the bacterial burden in the infected lung. However, a combination vaccine consisting of s.c. BCG priming and an intranasal HBHA + CT booster significantly enhanced protective immunity against pulmonary Mtb infection on day 14 compared with BCG vaccine alone. Further, it was found that intranasal HBHA + CT vaccine enhanced not only IFN‐γ but also IL‐17A production by HBHA‐specific T cells in the lung after pulmonary Mtb infection. Therefore, this combination vaccine may be a good candidate for a new vaccine strategy against pulmonary TB.  相似文献   

8.
T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRβ deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3β sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection.  相似文献   

9.
Nicotinamide adenine dinucleotide (NAD+) synthetase catalyzes the last step in NAD+ biosynthesis. Depletion of NAD+ is bactericidal for both active and dormant Mycobacterium tuberculosis (Mtb). By inhibiting NAD+ synthetase (NadE) from Mtb, we expect to eliminate NAD+ production which will result in cell death in both growing and nonreplicating Mtb. NadE inhibitors have been investigated against various pathogens, but few have been tested against Mtb. Here, we report on the expansion of a series of urea-sulfonamides, previously reported by Brouillette et al. Guided by docking studies, substituents on a terminal phenyl ring were varied to understand the structure–activity-relationships of substituents on this position. Compounds were tested as inhibitors of both recombinant Mtb NadE and Mtb whole cells. While the parent compound displayed very weak inhibition against Mtb NadE (IC50 = 1000 µM), we observed up to a 10-fold enhancement in potency after optimization. Replacement of the 3,4-dichloro group on the phenyl ring of the parent compound with 4-nitro yielded 4f, the most potent compound of the series with an IC50 value of 90 µM against Mtb NadE. Our modeling results show that these urea-sulfonamides potentially bind to the intramolecular ammonia tunnel, which transports ammonia from the glutaminase domain to the active site of the enzyme. This hypothesis is supported by data showing that, even when treated with potent inhibitors, NadE catalysis is restored when treated with exogenous ammonia. Most of these compounds also inhibited Mtb cell growth with MIC values of 19–100 µg/mL. These results improve our understanding of the SAR of the urea-sulfonamides, their mechanism of binding to the enzyme, and of Mtb NadE as a potential antitubercular drug target.  相似文献   

10.
Tuberculosis (TB) is a serious infectious disease caused by a bacterial pathogen. Mortality from tuberculosis was estimated at 1.5 million deaths worldwide in 2013. Development of new TB drugs is needed to not only to shorten the medication period but also to treat multi-drug resistant and extensively drug-resistant TB. Mycobacterium tuberculosis (Mtb) grows slowly and only multiplies once or twice per day. Therefore, conventional drug screening takes more than 3 weeks. Additionally, a biosafety level-3 (BSL-3) facility is required. Thus, we developed a new screening method to identify TB drug candidates by utilizing luciferase-expressing recombinant Mycobacterium bovis bacillus Calmette-Guéren (rBCG). Using this method, we identified several candidates in 4 days in a non-BSL-3 facility. We screened 10,080 individual crude extracts derived from Actinomyces and Streptomyces and identified 137 extracts which possessed suppressive activity to the luciferase of rBCG. Among them, 41 compounds inhibited the growth of both Mtb H37Rv and the extensively drug-resistant Mtb (XDR-Mtb) strains. We purified the active substance of the 1904–1 extract, which possessed strong activity toward rBCG, Mtb H37Rv, and XDR-Mtb but was harmless to the host eukaryotic cells. The MIC of this substance was 0.13 μg/ml, 0.5 μg/ml, and 2.0–7.5 μg/ml against rBCG, H37Rv, and 2 XDR-strains, respectively. Its efficacy was specific to acid-fast bacterium except for the Mycobacterium avium intracellular complex. Mass spectrometry and nuclear magnetic resonance analyses revealed that the active substance of 1904–1 was cyclomarin A. To confirm the mode of action of the 1904-1-derived compound, resistant BCG clones were used. Whole genome DNA sequence analysis showed that these clones contained a mutation in the clpc gene which encodes caseinolytic protein, an essential component of an ATP-dependent proteinase, and the likely target of the active substance of 1904–1. Our method provides a rapid and convenient screen to identify an anti-mycobacterial drug.  相似文献   

11.
This study presents the synthesis, spectral analysis and antimicrobial evaluation of a new series of substituted 1,2,4-triazole (5a–i) and 1,3,4-thiadiazole derivatives (9a, c, g, h). New compounds were obtained by cyclization reaction of acyl thiosemicarbazide derivatives in the presence of alkaline and acidic media. All synthesized compounds were screened for their in vitro antimicrobial activities. Nine of the compounds had potential activity against Gram-positive bacteria (MIC?=?3.91–500 µg/mL). Some compounds showed good activity especially against: Micrococcus luteus ATCC 10240 (MIC?=?3.91?31.25 µg/mL), Bacillus subtilis ATCC 6633 (MIC?=?15.63? 62.5 µg/mL), and Staphylococcus aureus ATCC 25923 (MIC?=?15.63?125 µg/mL).  相似文献   

12.
C4-phenylthio β-lactams are a new family of antibacterial agents that have activity against two phylogenetically distant bacteria – Mycobacterium tuberculosis (Mtb) and Moraxella catarrhalis (M. cat). These compounds are effective against β-lactamase producing Mtb and M. cat unlike the clinically relevant β-lactam antibiotics. The structure-activity relationship for the C4 phenylthio β-lactams has not yet been completely defined. Earlier efforts in our laboratories established that the C4-phenylthio substituent is essential for antimicrobial activity, while the N1 carbamyl substituent plays a more subtle role. In this present study, we investigated the role that the stereochemistry at C4 plays in these compounds’ antibacterial activity. This was achieved by synthesizing and testing the antimicrobial activity of diastereomers with a chiral carbamyl group at N1. Our findings indicate that a strict stereochemistry for the C4-phenylthio β-lactams is not required to obtain optimal anti-Mtb and anti-M. cat activity. Furthermore, the structure–bioactivity profiles more closely relate to the electronic requirement of the phenylthiogroup. In addition, the MICs of Mtb are sensitive to growth medium composition. Select compounds showed activity against non-replicating and multi-drug resistant Mtb.  相似文献   

13.
Exposure to Mycobacterium tuberculosis (Mtb) aerosols is a major threat to tuberculosis (TB) researchers, even in bio-safety level-3 (BSL-3) facilities. Automation and high-throughput screens (HTS) in BSL3 facilities are essential for minimizing manual aerosol-generating interventions and facilitating TB research. In the present study, we report the development and validation of a high-throughput, 24-well ‘spot-assay’ for selecting bactericidal compounds against Mtb. The bactericidal screen concept was first validated in the fast-growing surrogate Mycobacterium smegmatis (Msm) and subsequently confirmed in Mtb using the following reference anti-tubercular drugs: rifampicin, isoniazid, ofloxacin and ethambutol (RIOE, acting on different targets). The potential use of the spot-assay to select bactericidal compounds from a large library was confirmed by screening on Mtb, with parallel plating by the conventional gold standard method (correlation, r2 = 0.808). An automated spot-assay further enabled an MBC90 determination on resistant and sensitive Mtb clinical isolates. The implementation of the spot-assay in kinetic screens to enumerate residual Mtb after either genetic silencing (anti-sense RNA, AS-RNA) or chemical inhibition corroborated its ability to detect cidality. This relatively simple, economical and quantitative HTS considerably minimized the bio-hazard risk and enabled the selection of novel vulnerable Mtb targets and mycobactericidal compounds. Thus, spot-assays have great potential to impact the TB drug discovery process.  相似文献   

14.
结核病是由结核分枝杆菌引起的慢性感染性疾病,经过呼吸道感染后侵犯机体器官,严重威胁全球公共卫生。传统结核诊疗手段存在诊断效率低、易误诊漏诊、易产生耐药、治疗效果和患者依从性差等瓶颈问题,亟需开发快速、准确的结核即时诊断(POC)方法和安全、高效的结核治疗方案,切实解决结核防治难题。本文总结了纳米材料在结核病诊疗领域的研究进展及应用前景,旨在为开发新一代安全、快速、有效的结核病诊疗方法提供参考。  相似文献   

15.

Rationale

Healthy household contacts (HHC) of individuals with Tuberculosis (TB) with Tuberculin Skin Test (TST) conversions are considered to harbor latent Mycobacterium tuberculosis (Mtb), and at risk for TB. The immunologic, clinical, and public health implications of TST reversions that occur following Isoniazid preventive therapy (IPT) remain controversial.

Objectives

To measure frequency of TST reversion following IPT, and variation in interferon-gamma (IFN-γ) responses to Mtb, in healthy Ugandan TB HHC with primary Mtb infection evidenced by TST conversion.

Methods

Prospective cohort study of healthy, HIV-uninfected, TST-negative TB HHC with TST conversions. Repeat TST was performed 12 months following conversion (3 months following completion of 9 month IPT course) to assess for stable conversion vs. reversion. Whole blood IFN-γ responses to Mtb antigen 85B (MtbA85B) and whole Mtb bacilli (wMtb) were measured in a subset (n = 27 and n = 42, respectively) at enrollment and TST conversion, prior to initiation of IPT.

Results

Of 122 subjects, TST reversion was noted in 25 (20.5%). There were no significant differences in demographic, clinical, or exposure variables between reverters and stable converters. At conversion, reverters had significantly smaller TST compared to stable converters (13.7 mm vs 16.4 mm, respectively; p = 0.003). At enrollment, there were no significant differences in IFN-γ responses to MtbA85B or wMTB between groups. At conversion, stable converters demonstrated significant increases in IFN-γ responses to Ag85B and wMtb compared to enrollment (p = 0.001, p<0.001, respectively), while there were no significant changes among reverters.

Conclusions

TST reversion following IPT is common following primary Mtb infection and associated with unique patterns of Mtb-induced IFN-γ production. We have demonstrated that immune responses to primary Mtb infection are heterogeneous, and submit that prospective longitudinal studies of cell mediated immune responses to Mtb infection be prioritized to identify immune phenotypes protective against development of TB disease.  相似文献   

16.
Microbial resistance to the available drugs poses a serious threat in modern medicine. We report the design, synthesis and in vitro antimicrobial evaluation of new functionalized 2,3-dihydrothiazoles and 4-thiazolidinones tagged with sulfisoxazole moiety. Compound 8d was most active against Bacillis subtilis (MIC, 0.007?µg/mL). Moreover, compounds 7cd and 8c displayed significant activities against B. subtilis and Streptococcus pneumoniae (MIC, 0.03–0.06?µg/mL and 0.06–0.12?µg/mL versus ampicillin 0.24?µg/mL and 0.12?µg/mL; respectively). Compounds 7a and 7cd were highly potent against Escherichia coli (MIC, 0.49–0.98?µg/mL versus gentamycin 1.95?µg/mL). On the other hand, compounds 7e and 9c were fourfolds more active than amphotericin B against Syncephalastrum racemosum. Molecular docking studies showed that the synthesized compounds could act as inhibitors for the dihydropteroate synthase enzyme (DHPS). This study is a platform for the future design of more potent antimicrobial agents.  相似文献   

17.
Mycobacterium tuberculosis catalase-peroxidase (Mtb KatG) is a bifunctional enzyme that possesses both catalase and peroxidase activities and is responsible for the activation of the antituberculosis drug isoniazid. Mtb KatG contains an unusual adduct in its distal heme-pocket that consists of the covalently linked Trp107, Tyr229, and Met255. The KatG(Y229F) mutant lacks this adduct and has decreased steady-state catalase activity and enhanced peroxidase activity. In order to test a potential structural role of the adduct that supports catalase activity, we have used resonance Raman spectroscopy to probe the local heme environment of KatG(Y229F). In comparison to wild-type KatG, resting KatG(Y229F) contains a significant amount of 6-coordinate, low-spin heme and a more planar heme. Resonance Raman spectroscopy of the ferrous-CO complex of KatG(Y229F) suggest a non-linear Fe-CO binding geometry that is less tilted than in wild-type KatG. These data provide evidence that the Met-Tyr-Trp adduct imparts structural stability to the active site of KatG that seems to be important for sustaining catalase activity.  相似文献   

18.
19.
In this study, a series of meta-diamide compounds containing ethyl acetate group and their derivatives were designed and synthesized. Their insecticidal activities against Plutella xylostella, Spodoptera frugiperda and Alfalfa sprouts were evaluated. Preliminary bioassays showed that some of the title compounds exhibited excellent insecticidal activities. Especially compound ethyl N-(3-((2-bromo-4-(perfluoropropan-2-yl)-6-(trifluoromethyl)phenyl)carbamoyl)-2-fluorophenyl)-N-(4-cyanobenzoyl)glycinate and ethyl N-(3-((2-bromo-4-(perfluoropropan-2-yl)-6-(trifluoromethyl)phenyl)carbamoyl)-2-fluorophenyl)-N-(6-fluoronicotinoyl)glycinate showed 100 % mortality at 0.1 mg/L against Plutella xylostella and Spodoptera frugiperda, same to broflanilide. Their LC50 against Plutella xylostella is 0.286 mg/L and 0.0218 mg/L, respectively. Moreover, compound ethyl N-(3-((2-bromo-4-(perfluoropropan-2-yl)-6-(trifluoromethyl)phenyl)carbamoyl)-2-fluorophenyl)-N-(6-fluoronicotinoyl)glycinate displayed faster control efficacy than broflanilide at 0.1 mg/L. The results indicated that meta-diamide compounds containing ethyl acetate group could be developed as novel and promising insecticides.  相似文献   

20.
  • Shikonin and its derivatives are important medicinal secondary metabolites accumulating in roots of Lithospermum erythrorhizon. Although some membrane proteins have been identified as transporters of secondary metabolites, the mechanisms underlying shikonin transport and accumulation in L. erythrorhizon cells still remain largely unknown.
  • In this study, we isolated a cDNA encoding LeMRP, an ATP‐binding cassette transporter from L. erythrorhizon, and further investigated its functions in the transport and biosynthesis of shikonin using the yeast transformation and transgenic hairy root methods, respectively. Real‐time PCR was applied for expression analyses of LeMRP and shikonin biosynthetic enzyme genes.
  • Functional analysis of LeMRP using the heterologous yeast cell expression system showed that LeMRP could be involved in shikonin transport. Transgenic hairy roots of L. erythrorhizon demonstrated that LeMRP overexpressing hairy roots produced more shikonin than the empty vector (EV) control. Real‐time PCR results revealed that the enhanced shikonin biosynthesis in the overexpression lines was mainly caused by highly up‐regulated expression of genes coding key enzymes (LePAL, HMGR, Le4CL and LePGT) involved in shikonin biosynthesis. Conversely, LeMRP RNAi decreased the accumulation of shikonin and effectively down‐regulated expression level of the above genes. Typical inhibitors of ABC proteins, such as azide and buthionine sulphoximine, dramatically inhibited accumulation of shikonin in hairy roots.
  • Our findings provide evidence for the important direct or indirect role of LeMRP in transmembrane transport and biosynthesis of shikonin.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号