首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative metabolite profiling of the underground parts and leaves of Ruscus ponticus was obtained by an HPLC-ESIMSn method, based on high-performance liquid chromatography coupled to electrospray positive ionization multistage ion trap mass spectrometry. The careful study of HPLC-ESIMSn fragmentation pattern of each chromatographic peak, in particular the identification of diagnostic product ions, allowed us to get a rapid screening of saponins belonging to different classes, such as dehydrated/or not furostanol, spirostanol and pregnane glycosides, and to promptly highlight similarities and differences between the two plant parts. This approach, followed by isolation and structure elucidation by 1D- and 2D-NMR experiments, led to the identification of eleven saponins from the underground parts, of which two dehydrated furostanol glycosides and one new vespertilin derivative, and nine saponins from R. ponticus leaves, never reported previously. The achieved results highlighted a clean prevalence of furostanol glycoside derivatives in R. ponticus leaves rather in the underground parts of the plant, which showed a wider structure variety. In particular, the occurrence of dehydrated furostanol derivatives, for the first time isolated from a Ruscus species, is an unusual finding which makes unique the saponins profile of R. ponticus.  相似文献   

2.
A total of 10 steroidal glycosides, together with three new spirostanol glycosides (6-8), a new furostanol glycoside (9), and a new cholestane glycoside (10), were isolated from the rhizomes of Clintonia udensis (Liliaceae). The structures of the new compounds were determined on the basis of extensive spectroscopic analyses, including 2-D nuclear magnetic resonance (NMR) data, and of hydrolytic cleavage followed by chromatographic or spectroscopic analyses. The isolated glycosides were evaluated for their cytotoxic activity against HL-60 leukemia cells. Spirostanol glycosides 1 and 2, and furostanol glycoside 4 showed cytotoxic activity with IC(50) values of 3.2+/-0.02, 2.2+/-0.12, and 2.2+/-0.06 microg/ml, respectively. Neither the spirostanol and furostanol saponins with a hydroxy group at C-1 (6 and 9) and C-12 (7 and 8) nor cholestane glycosides (5 and 10) exhibited apparent cytotoxic activity at a sample concentration of 10 microg/ml.  相似文献   

3.
The anti-inflammatory potential of 26 neolignans (14 of the bicyclooctane-type and 12 of the benzofuran-type), isolated from three Lauraceae species (Pleurothyrium cinereum, Ocotea macrophylla and Nectandra amazonum), was evaluated in vitro through inhibition of COX-1, COX-2, 5-LOX and agonist-induced aggregation of rabbit platelets. Benzofuran neolignans were found to be selective COX-2 inhibitors, whereas bicyclooctane neolignans inhibit selectively the PAF-action as well as COX-1 and 5-LOX. The neolignan 9-nor-7,8-dehydro-isolicarin B 15 and cinerin C 7 were found to be the most potent COX-2 inhibitor and PAF-antagonist, respectively. Nectamazin C 10 exhibited dual 5-LOX/COX-2 inhibition.  相似文献   

4.
One spirostanol glycoside and two furostanol glycosides have been isolated from a methanol extract of the stems and roots of Solanum nigrum and ide  相似文献   

5.
Three new series of 5-aminosalicylic acid derivatives; series I (14, 1618), series II (1930) and series III (3141) were synthesized as potential dual COX-2/5-LOX inhibitors. Their chemical structures were confirmed using spectroscopic tools including IR, 1H NMR, 13C NMR, mass spectroscopy and elemental analyses. The anti-inflammatory activity for all target compounds was evaluated in vivo using carrageenan-induced paw edema. Compound 36 showed the highest anti-inflammatory activity (114.12%) relative to reference drug indomethacin at 4 h interval. Selected derivatives were evaluated in vitro to inhibit ovine COX-1, human recombinant COX-2 and 5-LOX enzymes. Compounds 34 & 35 exhibited significant COX-2 inhibition (IC50 = 0.10 µM) with significant COX-2 selectivity indices (SI = 135 & 145 respectively) approximate to celecoxib (IC50 = 0.049 µM, SI = 308.16) and exceeding indomethacin (IC50 = 0.51 µM, SI = 0.08). Interestingly, all compounds showed superior 5-LOX inhibitory activity about 2–5 times relative to zileuton. Compound 16 was the superlative 5-LOX inhibitor that revealed (IC50 = 3.41 µM) relative to zileuton (IC50 = 15.6 µM). Compounds 34, 35, 36 and 41 showed significant dual COX-2/5-LOX inhibitions. The gastric ulcerogenic effect of compound 36 was examined on gastric mucosa of albino rats and they showed superior GI safety profile compared with indomethacin. Molecular docking studies of the compounds into the binding sites of COX-1, COX-2 and 5-LOX allowed us to shed light on the binding mode of these novels dual COX and 5-LOX inhibitors.  相似文献   

6.
Although dual inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipoxygenase (5-LOX) enzymes is highly effective than targeting COX or LOX alone, there are only a few reports of examining such compounds in case of colorectal cancers (CRC). In the present work we report that the novel di-tert-butyl phenol-based dual inhibitors DTPSAL, DTPBHZ, DTPINH, and DTPNHZ exhibit significant cytotoxicity against human CRC cell lines. Molecular docking studies revealed a good fit of these compounds in the COX-2 and 5-LOX protein cavities. The inhibitors show significant inhibition of COX-2 and 5-LOX activities and are effective against a panel of human colon cancer cell lines including HCA-7, HT-29, SW480 and intestinal Apc10.1 cells as well as the hyaluronan synthase-2 (Has2) enzyme over-expressing colon cancer cells, through inhibition of the Hyaluronan/CD44v6 cell survival pathway. Western blot analysis and qRT-PCR analyses indicated that the di-tert-butyl phenol-based dual inhibitors reduce the expression of COX-2, 5-LOX, and CD44v6 in human colon cancer HCA-7 cells, while the combination of CD44v6shRNA and DTPSAL has an additional inhibitory effect on CD44v6 mRNA expression. The synergistic inhibitory effect of Celecoxib and Licofelone on CD44v6 mRNA expression suggests that the present dual inhibitors down-regulate cyclooxygenase and lipoxygenase enzymes through CD44v6. The compounds also exhibited enhanced antiproliferative potency compared to standard dual COX/LOX inhibitor, viz. Licofelone. Importantly, the HA/CD44v6 antagonist CD44v6shRNA in combination with synthetic compounds had a sensitizing effect on the cancer cells which enhanced their antiproliferative potency, a finding which is crucial for the anti-proliferative potency of the novel synthetic di-tert-butyl phenol based dual COX–LOX inhibitors in colon cancer cells.  相似文献   

7.
A total of 10 steroidal glycosides, together with three new spirostanol glycosides (68), a new furostanol glycoside (9), and a new cholestane glycoside (10), were isolated from the rhizomes of Clintonia udensis (Liliaceae). The structures of the new compounds were determined on the basis of extensive spectroscopic analyses, including 2-D nuclear magnetic resonance (NMR) data, and of hydrolytic cleavage followed by chromatographic or spectroscopic analyses. The isolated glycosides were evaluated for their cytotoxic activity against HL-60 leukemia cells. Spirostanol glycosides 1 and 2, and furostanol glycoside 4 showed cytotoxic activity with IC50 values of 3.2±0.02, 2.2±0.12, and 2.2±0.06 μg/ml, respectively. Neither the spirostanol and furostanol saponins with a hydroxy group at C-1 (6 and 9) and C-12 (7 and 8) nor cholestane glycosides (5 and 10) exhibited apparent cytotoxic activity at a sample concentration of 10 μg/ml.  相似文献   

8.
In the present study we have discovered compound 1, a benzo[1.3.2]dithiazolium ylide-based compound, as a new prototype dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (5-LOX). Compound 1 was initially discovered as a COX-2 inhibitor, resulting indirectly from the COX-2 structure-based virtual screening that identified compound 2 as a virtual hit. Compounds 1 and 2 inhibited COX-1 and COX-2 in mouse macrophages with IC50 in the range of 1.5–18.1 μM. Both compounds 1 and 2 were also found to be potent inhibitors of human 5-LOX (IC50 = 1.22 and 0.47 μM, respectively). Interestingly, compound 1 also had an inhibitory effect on tumor necrosis factor-α (TNF-α) production (IC50 = 0.44 μM), which was not observed with compound 2. Docking studies suggested the (S)-enantiomer of 1 as the biologically active isomer that binds to COX-2. Being a cytokine-suppressive dual COX/5-LOX inhibitor, compound 1 may represent a useful lead structure for the development of advantageous new anti-inflammatory agents.  相似文献   

9.
《Phytochemistry》1986,25(6):1491-1494
Two spirostanol glycosides, cantalasaponins -2 and -4 were isolated from the methanolic extract of the rhizomes of Agave cantala and were characterized. The first glycoside was found to be lethal against Biomphalaria glabrata, the snail vector of the disease schistosomiasis, at a concentration of 7 ppm.  相似文献   

10.
Selective inhibition of both cyclooxygenase-2 (COX-2) and 15-lipooxygenase (15-LOX) may provide good strategy for alleviation of inflammatory disorders while minimizing side effects associated with current anti-inflammatory drugs. The present study describes the synthesis, full characterization and biological evaluation of a series of thiadiazole-thiazolidinone hybrids bearing 5-alk/arylidene as dual inhibitors of these enzymes. Our design was based on merging pharmacophores that exhibit portent anti-inflammatory activities in one molecular frame. 5-(4-hydroxyphenyl)-1,3,4-thiadiazol-2-amine (3) was efficiently synthesized, chloroacetylated and cyclized to give the key 4-thiazolidinone (5). Knovenagel condensation of 5 with different aldehydes afforded the final compounds 6a-m, 7, 8 and 9. These compounds were subjected to in vitro COX-1/COX-2, 15-LOX inhibition assays. Compounds (6a, 6f, 6i, 6l, 6m and 9) with promising potency (IC50 = 70–100 nM) and selectivity index (SI = 220-55) were further tested for in vivo anti-inflammatory activity and effect on gastric mucosa. The most promising compound (6l) inhibits COX-2 enzyme at a nanomolar concentration (IC50 = 70 nM, SI = 220) with simultaneous inhibition of 15-LOX (IC50 = 11 µM). These results are comparable to the potency and selectivity of the standard drugs of both enzymes; celecoxib (COX-2 IC50 = 49 nM, SI = 308) and zileuton (15-LOX IC50 = 15 µM) in one construct. Interestingly three compounds (6a, 6l and 9) exhibited equivalent to or even higher than that of celecoxib in vivo anti-inflammatory activity at 3 h interval with good GIT safety profile. Molecular docking study conferred binding sites of these compounds on COX-2 and 15-LOX. Such type of compounds would represent valuable leads for further investigation and derivatization.  相似文献   

11.
Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) enzyme have been found to play a role in promoting growth in colon cancer cell lines. The di-tert-butyl phenol class of compounds has been found to inhibit both COX-2 and 5-LOX enzymes with proven effectiveness in arresting tumor growth. In the present study, the structural analogs of 2,6 di-tert-butyl-p-benzoquinone (BQ) appended with hydrazide side chain were found to inhibit COX-2 and 5-LOX enzymes at micromolar concentrations. Molecular docking of the compounds into COX-2 and 5-LOX protein cavities indicated strong binding interactions supporting the observed cytototoxicities. The signaling interaction between endogenous hyaluronan and CD44 has been shown to regulate COX-2 activities through ErbB2 receptor tyrosine kinase (RTK) activation. In the present studies it has been observed for the first time, that three of our COX/5-LOX dual inhibitors inhibit proliferation upon hydrazide substitution and prevent the activity of pro-angiogenic factors in HCA-7, HT-29, Apc10.1 cells as well as the hyaluronan synthase-2 (Has2) enzyme over-expressed in colon cancer cells, through inhibition of the hyaluronan/CD44v6 cell survival pathway. Since there is a substantial enhancement in the antiproliferative activities of these compounds upon hydrazide substitution, the present work opens up new opportunities for evolving novel active compounds of BQ series for inhibiting colon cancer.  相似文献   

12.
Four new glycosides, including one anthraquinone glycoside (1), one naphthalene glycoside (2), and two naphthopyrone glycosides (34), with 10 known compounds (514) were isolated from the seeds of Cassia obtusifolia L. The new structures were determined by spectroscopic analysis and chemical transformations.  相似文献   

13.
To evaluate the role of COX-2 and 5-LOX as dual inhibitors in controlling the cancer cell proliferation, a set of two series having 42 compounds of 1, 2, 3-Tethered Indole-3-glyoxamide derivatives were synthesized by employing click chemistry approach and were also evaluated for their in vitro cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX) inhibitory activities with in vivo anti-inflammatory and in vitro anti-proliferative potencies. Among the compounds tested, compounds 11q and 13s displayed excellent inhibition of COX-2 (IC50 0.12 µM) with good COX-2 selectivity index (COX-2/COX-1) of 0.058 and 0.046 respectively. Compounds 11q and 13s also demonstrated comparable 5-LOX inhibitory activity with IC50 7.73 and 7.43 µM respectively to that of standard Norhihydroguaiaretic acid (NDGA: IC50 7.31 µM). Among all the selected cell lines, prostate cancer cell line DU145 was found to be susceptible to this class of compounds. Among all the tested compounds, compounds 11g, 11i, 11k, 11q, 13r, 13s and 13u demonstrated excellent to moderate anti-proliferative activity with IC50s ranging between 6.29 and 18.53 µM. Compounds 11q and 11g demonstrated better anti-proliferative activities against DU145 cancer cell line with IC50 values 8.17 and 8.69 µM respectively when compared to the standard drug etoposide (VP16; IC50 9.80 µM). Compounds 11g, 11k, 11q, 13s and 13u showed good dual COX-2/5-LOX inhibitory potentials with excellent anti-proliferative activity. Results from carrageenan-induced hind paw edema demonstrated that compounds 11b, 11l, 11q and 13q exhibited significant anti-inflammatory activity with 69–77% inhibition at 3 h, 75–82% inhibition at 5 h when compared to the standard drug indomethacin (66.6% at 3 h and 77.94% at 5 h). Ulcerogenic study revealed that compounds 11q and 13q did not cause any gastric ulceration. In vitro tubulin assay resuted that compound 11q interfered with microtubulin dynamic and act as tubulin polymerization inhibitor. In silico molecular docking studies demonstrated that compounds 11q and 13s are occupying the colchicines binding site of tubulin polymer and 11q illustrated very good binding affinities towards COX-2 and 5-LOX.  相似文献   

14.
A novel class of phenylacetic acid regioisomers possessing a N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore attached to its C-2, C-3 or C-4 position was designed for evaluation as anti-inflammatory (AI) agents. A number of compounds exhibited a combination of potent in vitro cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitory activities. 2-(1-Difluoromethyl-2-oxo-1,2-dihydropyridin-4-yl)phenylacetic acid (9a) exerted the most potent AI activity among this group of compounds. Molecular modeling studies showed that the N-difluoromethyl-1,2-dihydropyridin-2-one moiety present in 9a inserts into the secondary pocket present in COX-2 to confer COX-2 selectivity, and that the N-difluoromethyl-1,2-dihydropyrid-2-one group (9a) binds close to the region of the 15-LOX enzyme containing catalytic iron (His361, His366). Accordingly, the N-difluoromethyl-1,2-dihyrdopyrid-2-one moiety possesses properties that make it an attractive pharmacophore suitable for the design of dual COX-2/5-LOX inhibitory AI drugs.  相似文献   

15.
A new group of acetic acid (7ac, R1 = H), and propionic acid (7df, R1 = Me), regioisomers wherein a N-difluoromethyl-1,2-dihydropyrid-2-one moiety is attached via its C-3, C-4, and C-5 position was synthesized. This group of compounds exhibited a more potent inhibition, and hence selectivity, for the cyclooxygenase-2 (COX-2) relative to the COX-1 isozyme. Attachment of the N-difluoromethyl-1,2-dihydropyrid-2-one ring system to an acetic acid, or propionic acid, moiety confers potent 5-LOX inhibitory activity, that is, absent in traditional arylacetic acid NSAIDs. 2-(1-Difluoromethyl-2-oxo-1,2-dihydropyridin-5-yl)acetic acid (7c) exhibited the best combination of dual COX-2 and 5-LOX inhibitory activities. Molecular modeling (docking) studies showed that the highly electronegative CHF2 substituent present in 7c, that showed a modest selectivity for the COX-2 isozyme, is oriented within the secondary pocket (Val523) present in COX-2 similar to the sulfonamide (SO2NH2) COX-2 pharmacophore present in celecoxib, and that the N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore is oriented close to the region containing the LOX enzyme catalytic iron (His361, His366, and His545). Accordingly, the N-difluoromethyl-1,2-dihyrdopyrid-2-one moiety possesses properties suitable for the design of dual COX-2/5-LOX inhibitory drugs.  相似文献   

16.
Phytochemical investigation on the whole plant of Anemone rivularis var. flore-minore led to the isolation of a new labdane-type diterpene glycoside (1) and a new trihydroxyfuranoid lignanoid glycoside (2), together with three known triterpene and triterpenoid glycosides (35). The structures of the two new compounds were elucidated as β-d-glucopyranosyl (13S)-13-hydroxy-7-oxo-labda-8,14-diene-18-oate (1) and (7S,7′R,8R,8′S)-7′-butoxy-7,9′-epoxy-4,4′,9-trihydroxy-3,3′-dimethoxylignane 9-O-β-d-glucopyranoside (2), on the basis of extensive spectral analysis and chemical evidence. Compound 1 is characterized by a glucose (Glc) esterified C-18 carboxyl group, which is a rarely encountered labdane-type diterpene glycoside in nature. The two new compounds (1 and 2) reported here are the first examples of diterpene glycoside and lignanoid glycoside found in the genus Anemone, and the known triterpene and triterpenoid glycosides (35) are identified for the first time from the title plant.  相似文献   

17.
Five spirostanol glycosides and two furostanol glycosides were isolated from Dioscorea floribunda. In addition to the IR spectra of the free glycosides and the MS of the peracetates and permethyl ethers, the most effective method for structural determination proved to be the NMR spectra of the free saponins in pyridine-d5.  相似文献   

18.
Eleven novel furostanol saponins, named ophiofurospisides C–E, G–N (13, 512), one new spirostanol saponin, named ophiopogonin R (13), were isolated from the fresh tubers of Ophiopogon japonicus. Their structures were determined on the basis of spectroscopic techniques (1D and 2D NMR) and HRESIMS. The isolated furostanol saponins possessed two sugar chains located at C-3 and C-26, respectively. Six furostanol saponins (1, 59) with disaccharide moiety linked at position C-26 of the aglycone were rare in the plant kingdom.  相似文献   

19.
New molecular hybrids combining benzothiophene or its bioisostere benzofuran with rhodanine were synthesized as potential dual COX-2/5-LOX inhibitors. The benzothiophene or benzofuran scaffold was linked at position -2 with rhodanine which was further linked to various anti-inflammatory pharmacophores so as to investigate the effect of such molecular variation on the anti-inflammatory activity. The target compounds were evaluated for their in vitro COX/LOX inhibitory activity. The results revealed that, compound 5h exhibited significant COX-2 inhibition higher than celecoxib. Furthermore, compounds 5a, 5f and 5i showed COX-2 inhibitory activity comparable to celecoxib. Compound 5h showed selectivity index SI = 5.1 which was near to that of celecoxib (SI = 6.7). Compound 5h displayed LOX inhibitory activity twice than that of meclofenamate sodium. Moreover, compounds 5a, 5e and 5f showed significant LOX inhibitory activity higher than that of meclofenamate sodium. Compound 5h was screened for its in vivo anti-inflammatory activity using formalin-induced paw edema and gastric ulcerogenic activity tests. The results revealed that, it showed in vivo decrease in formalin-induced paw edema volume higher than celecoxib. It also displayed gastrointestinal safety profile as celecoxib. The biological results were also consistent with the docking studies at the active sites of the target enzymes COX-2 and 5-LOX. Also, compound 5h showed physicochemical, ADMET, and drug-like properties within those considered adequate for a drug candidate.  相似文献   

20.
The present study includes design and synthesis of new molecular hybrids of 2-methylthiobenzimidazole linked to various anti-inflammatory pharmacophores through 2-aminothiazole linker, to investigate the effect of such molecular variation on cyclooxygenase (COX) and 15-lipoxygenase (15-LOX) enzymes inhibition as well as in vivo anti-inflammatory activity. The chemical structures of new hybrids were confirmed using different spectroscopic tools and elemental analyses. Benzimidazole-thiazole hybrids linked to acetyl moiety 13, phenyl thiosemicarbazone 14, 1,3-thiazolines 15a-c and 4-thiazolidinone 16 exhibited significant COX-2 inhibition (IC50 = 0.045–0.075 µM) with significant COX-2 selectivity indices (SI = 142–294). All hybrids revealed potent 15-LOX inhibitory activity (IC50 = 1.67–6.56 µM). Benzimidazole-thiazole hybrid 15b was the most potent dual COX-2 (IC50 = 0.045 µM, SI = 294) inhibitor approximate to celecoxib (COX-2; IC50 = 0.045 µM, SI = 327), with double inhibitory activity versus 15-LOX enzyme (IC50 = 1.67 µM) relative to quercetin (IC50 = 3.34 µM). Three hybrids (14, 15b & 16) were selected for in vivo screening using carrageenan-induced paw edema method. Benzimidazole-thiazole hybrid linked to 4-thiazolidinone 16 showed the maximum edema inhibition at both 3 h and 4 h intervals as well (~119% and 102% relative to indomethacin, respectively). The gastric ulcerogenic effect of benzimidazole-thiazole hybrid 16 was estimated compared with indomethacin showing superior gastrointestinal safety profile. In bases of molecular modeling; all new active hybrids were subjected to docking simulation into active sites of COX-2 and 15-LOX enzymes to study the binding mode of these novel potent dual COX-2/15-LOX inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号