首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundThe existing data demonstrate that alteration of trace element and mineral status in children with neurodevelopmental disorders including ASD and ADHD. However, comparative analysis of the specific patterns of trace element and mineral metabolism in children with ASD and ADHD was not performed. Therefore, the primary objective of the present study was to assess hair trace element and mineral levels in boys with ADHD, ASD, as well as ADHD with ASD.MethodsBoys with ADHD (n = 52), ASD (n = 53), both ADHD and ASD (n = 52), as well as neurotypical controls (n = 52) were examined. Hair analysis was performed using inductively-coupled plasma mass-spectrometry.ResultsThe obtained data demonstrate that hair Co, Mg, Mn, and V levels were significantly reduced in children with ADHD and ASD, and especially in boys with ADHD + ASD. Hair Zn was found to be reduced by 20% (p = 0.009) only in children with ADHD + ASD as compared to healthy controls. Factor analysis demonstrated that ASD was associated with significant alteration of hair Co, Fe, Mg, Mn, and V levels, whereas impaired hair Mg, Mn, and Zn content was also significantly associated with ADHD. In regression models hair Zn and Mg were negatively associated with severity of neurodevelopmental disorders. The revealed similarity of trace element and mineral disturbances in ASD and ADHD may be indicative of certain similar pathogenetic features.ConclusionThe obtained data support the hypothesis that trace elements and minerals, namely Mg, Mn, and Zn, may play a significant role in development of both ADHD and ASD. Improvement of Mg, Mn, and Zn status in children with ASD and ADHD may be considered as a nutritional strategy for improvement of neurodevelopmental disturbances, although clinical trials and experimental studies are highly required to support this hypothesis.  相似文献   

2.
BackgroundOnychocryptosis (ingrown toenail) and onychomycosis are common pathologies of the toenail and affecting many people. Since levels of trace elements have been shown to vary in certain diseases, in the presented work, chromium (Cr), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), selenium (Se), and zinc (Zn) levels of toenail and serum samples of healthy individuals and patients with onychocryptosis and onychomycosis were compared.MethodsSerum and toenail samples of 88 voluntary subjects (healthy n = 24; onychomycosis n = 24; onychocryptosis n = 40) aged between 19–80 years were collected. Levels of trace elements in the samples were analyzed by using an inductively coupled plasma-optical emission spectrophotometer (ICP-OES Thermo iCAP - 6000). The differences in medians between the groups for elements were evaluated with Kruskal -Wallis H test with post hoc for pairwise comparisons in SPSS 18.ResultsMg (p < 0.001) and Mn (p = 0.002) levels were significantly increased whereas Zn (p = 0.011) level was decreased in toenails of patients with onychomycosis compared to healthy subjects. Although Mg and Mn levels were higher in female subjects with onychomycosis (p = 0.001; p = 0.019), Mn was only increased in male subjects (p = 0.015). Mg was the only trace element found to be independent of sex, age, and smoking status in patients with onychomycosis. However, no significant difference has been found in serum trace element levels neither between any groups nor toenail trace element levels of patients with onychocryptosis and healthy subjects.ConclusionAs a response of the human body to pathogens like fungi in toenails, Mg, Mn and Zn levels vary. Especially the role of Mg ions in onychomycosis needs to be investigated more specifically.  相似文献   

3.
Ay  Arzu  Gulyasar  Tevfik  Alkanli  Nevra  Sipahi  Tammam  Cicin  Irfan  Kocak  Zafer  Sut  Necdet 《Molecular biology reports》2021,48(10):6911-6921
Background

The aim of this study is to investigate of the relationship between GSTM1 gene variations and serum trace elements, plasma malondialdehyde levels in patient with colorectal cancer.

Mateials and Methods.

Genotype distributions of GSTM1 gene variations were determined using real-time polymerase chain reaction method. Serum trace element levels were determined using atomic absorption spectrophotometer method and plasma MDA levels were measurement by spectrophotometric method.

Results

Serum Cu levels, plasma MDA levels and Cu/Zn ratio were determined significantly higher in the group of CRC patient carrying the GA heterozygous genotype of the GSTM1 (rs 112,778,559) gene variation compared to healthy controls (p?<?0.05). Serum Cu, Zn levels, plasma MDA levels and Cu/Zn ratio were determined significantly higher in patients carrying GG homozygous genotype of the GSTM1 (rs 112778559) gene variation compared to healthy controls carrying same genotype (p?<?0.05). Serum Cu, Zn levels, plasma MDA levels and Cu/Zn ratio were determined significantly higher in the group of CRC patient carrying the GG homozygous genotype of the GSTM1 (rs 12068997) gene variation compared to healthy controls (p?<?0.05). On the other hand, serum Se levels were detected significantly lower in CRC patients carrying GA heterozygous and GG homozygous genotypes for GSTM1 (rs 112,778,559) and (rs 12,068,997) gene variations compared to healthy controls (p?<?0.05).

Conclusion

In our study, the evaluation of serum Cu, Zn and Se trace element levels and plasma MDA levels according to GSTM1 gene variations genotype distributions were enabled to obtain important biomarkers in terms of CRC development and progression.

  相似文献   

4.
BackgroundThe existing data demonstrate the potential role of trace elements in nasal mucociliary clearance, although the association between trace element and mineral status and ciliary function in children with chronic rhinosinusitis is insufficiently studied. Therefore, the objective of the present study is evaluation of trace element and mineral status and mucociliary function in pediatric CRS patients before and after functional endoscopic sinus surgery.MethodsThe present study involved 30 children with chronic rhinosinusitis without nasal polyps. During this follow-up the patients were examined preoperatively (point 0), underwent functional endoscopic sinus surgery, and were repeatedly examined at three months postoperatively (point 1). At both points the patients were subjected to quality-of-life assessment using SNOT-20 questionnaire; endoscopic and computer tomography examination of the nasal sinuses; evaluation of ciliary function and mucosal cytology using high-speed videomicroscopy; assessment of blood count and inflammatory markers; as well as analysis of trace element and mineral levels in whole blood, serum, and hair using inductively-coupled plasma mass-spectrometry.ResultsThe obtained data demonstrate that endoscopic sinus surgery significantly improved sinonasal pathology in children with chronic rhinosinusitis, as evidenced by significantly reduced Lund-Mackay, Lund-Kennedy, and SNOT-20 scores. At the same time, no significant improvement of ciliary functions or mucosal cytology was observed postoperatively. Trace element status assessment demonstrated that postoperative serum Zn, whole blood Mg and Cu were significantly lower as compared to preoperative values. In contrast, serum Mn and Cr, as well as whole blood Cr and hair Se were characterized by a significant increase at three months postoperatively. Multiple linear regression analysis demonstrated that serum Zn is significantly associated with the number of ciliated cells and cell viability, whereas serum Mn and whole blood Cu concentrations are inversely associated with cell viability and ciliary length, respectively. Hair Se was found to be associated with the number of neutrophils in the mucosa biopsy.ConclusionRedistribution of trace elements and minerals may at least partially mediate prolonged recovery of mucosal ciliary function in children with chronic rhinosinusitis in three months after functional sinus surgery, although the particular mechanisms of these alterations in trace element levels are to be discovered.  相似文献   

5.
PurposeWe investigated the impacts of plasma levels of magnesium (Mg), zinc (Zn), calcium (Ca), iron (Fe), copper (Cu), selenium (Se), and chromium (Cr) on GDM risk and the potential mediation effect of blood glucose levels on the relationship between trace elements and GDM risk.MethodsThis nested case-control study was based on data from a birth cohort study conducted in Wuhan, China in 2013−2016. A total of 305 GDM cases and 305 individually-matched controls were included in the study. Conditional logistic regression models were used to estimate the associations between plasma trace element concentrations and GDM risk. A mediation analysis was conducted to explore whether blood glucose levels act as a mediator between trace element levels and GDM risk.ResultsAn IQR increment in plasma levels of Fe and Cu was associated with a significant increase in GDM risk [OR = 2.04 (95 % CI 1.62, 2.57) and OR = 1.52 (95 % CI 1.25, 1.82)], respectively. On the other hand, an IQR increment in plasma levels of Zn and Ca was associated with a significant decrease in GDM risk [OR = 0.55 (95 % CI 0.43, 0.71) and OR = 0.72 (95 % CI 0.56, 0.92)], respectively. The mediation analysis showed significant mediation of the association between Cu and GDM risk via the FBG (%mediated: 19.27 %), 1 h-PBG (12.64 %), 2h-PBG (28.44 %) pathways.ConclusionsPlasma levels of Zn and Ca were negatively associated with GDM risk, while Fe and Cu were positively associated. Blood glucose levels act as a mediator between plasma trace element exposures and GDM risk.  相似文献   

6.
BackgroundThe existing data demonstrate that both trace elements and amino acids play a significant role in neurodevelopment and brain functioning. Certain studies have demonstrated alteration of micronutrient status in children with cerebral palsy, although multiple inconsistencies exist.The objectiveof the present study was to assess serum trace element and mineral, as well as amino acid levels in children with cerebral palsy.Methods71 children with cerebral palsy (39 boys and 32 girls, 5.7 ± 2.3 y.o.) and 84 healthy children (51 boys and 33 girls, 5.4 ± 2.3 y.o.) were enrolled in the present study. Serum trace element and mineral levels were assessed using inductively-coupled plasma mass-spectrometry (ICP-MS). Amino acid profile was evaluated by means of high-pressure liquid chromatography (HPLC).ResultsChildren with cerebral palsy are characterized by significantly lower Cu and Zn levels by 6% and 8%, whereas serum I concentration exceeded the control values by 7%. A tendency to increased serum Mn and Se levels was also observed in patients with cerebral palsy. Serum citrulline, leucine, tyrosine, and valine levels were 15 %, 23 %, 15 %, and 11 % lower than those in healthy controls. Nearly twofold lower levels of serum proline were accompanied by a 44 % elevation of hydroxyproline concentrations when compared to the control values. In multiple regression model serum I, Zn, and hydroxyproline levels were found to be independently associated with the presence of cerebral palsy. Correlation analysis demonstrated a significant correlation between Cu, Mn, Se, I, and Zn levels with hydroxyproline and citrulline concentrations.ConclusionThe observed alterations in trace element and amino acid metabolism may contribute to neurological deterioration in cerebral palsy. However, the cross-sectional design of the study does not allow to estimate the causal trilateral relationships between cerebral palsy, altered trace element, and amino acid metabolism.  相似文献   

7.
We searched for serum concentrations of trace elements and correlated them to malondialdehyde (MDA), which is an indirect marker of oxidative stress, in order to clarify if routine evaluation is necessary in chronic obstructive pulmonary disease (COPD) outpatients. Serum concentrations of copper (Cu), zinc (Zn), and magnesium (Mg) were determined by atomic absorption spectrophotometry and iron (Fe) by a ILLab 1800 autoanalyzer with ILLab test kits. Serum MDA concentrations were detected in terms of TBARS (thiobarbituric acid reactive substances) spectrophotometrically. Serum Cu, Zn, Mg, Fe, and MDA concentrations in patient and control groups were all in the normal reference range. The results respectively were as follows: Cu:123±29.2 and 122.2±23.4 μg/dL; Zn: 87.8±17.8 and 96.9 ± 12.9 μg/dL; Mg: 2.3±0,5 and 2.04±0.28 mg/dL; Fe: 73.8±35.5 and 80.7±51.2 μg/dL; MDA: 1.09±0.11 and 0.95±0.06 nmol/L. MDA was not correlated to Cu, Zn, Mg, or Fe (p>0.05 for all). The serum Zn concentration of COPD group was lower than the control group (p=0.042), whereas the Mg concentration was higher (p=0.021). There was no statistical difference in other study parameters. Oxidative stress was not increased in clinically stable, regularly treated COPD patients. Although there was no deficiency in trace elements (Cu, Fe, Mg, and Zn), serum Zn was close to the lower limit of the reference value. There is no need for routine evaluation of trace elements in clinically stable, regularly treated COPD outpatients.  相似文献   

8.
BackgroundType 1 diabetes (T1D) exhibited sex-specific metabolic status including oxidative stress with dynamic change of trace elements, which emphasized the importance of the evaluation of trace elements according to sex. Besides, the most significant characteristic, insulin auto-antibodies, could not be found in all T1D patients, which needed the auxiliary prediction of clinical parameters. And it would benefit the early detection and treatment if some high-risk groups of T1D could predict and prevent the occurrence of disease through common clinical parameters. Hence, there was an urgent need to construct more effective and scientific statistical prediction models to serve clinic better. This study aimed to evaluate the sex-specific levels of trace elements and the relationship between trace elements and clinical parameters in T1D, and construct sex-specific auxiliary prediction model combined with trace elements and clinical parameters.MethodsA total of 105 T1D patients with negative insulin auto-antibodies and 105 age/sex-matched healthy individuals were enrolled in First Hospital of Jilin University. Inductively Coupled Plasma Mass Spectrometry was performed for the measurement of calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu), iron (Fe), selenium (Se) in the serum, and the data of clinical parameters were received from medical record system. The lambda-mu-sigma method was used to evaluate the relationship between abnormal clinical parameters and trace elements. Training set and validation set were divided for the construction of predictable models in males and females: clinical parameters model, trace element model and the combined model (clinical parameters and trace elements). Goodness fit test, decision curve analysis and other related statistical methods were used to perform data analysis.ResultsLower levels of Mg, Ca, Fe in the serum were found in T1D population in females compared with healthy population, while levels of Fe, Zn and Cu of serum in T1D individuals were higher than those of healthy population in males. Levels of serum Mg, Fe and Cu in T1D group were found with significant sex difference for (P < 0.05), and the levels of Fe and Cu in serum of males were higher than those of females, level of serum Mg in males was lower than those of females. Levels of serum Mg and Zn showed fluctuation trend with increased numbers of abnormal clinical parameters (NACP) in males. Serum Zn in females showed consistent elevated trend with NACP; serum Se increased first and then decreased with NACP in males and females. The auxiliary prediction model (Triglyceride, Total protein, serum Mg) was found with the highest predicted efficiency in males (AUC=0.993), while the model in females (Apolipoprotein A, Creatinine, Fe, Se, Zn/Cu ratio) showed the best predicted efficiency (AUC=0.951). The models had passed the verification in validation set, and Chi-square goodness-of-fit test, DCA results both confirmed their satisfactory clinical applicability.ConclusionSex-specific difference were found in serum Mg, Fe and Cu in T1D. The combination of triglyceride, total protein and serum Mg for males, and apolipoprotein A, creatinine, Fe, Se, Zn/Cu ratio for females could effectively predict T1D in patients with negative anti-bodies, which would provide alarm for the population with high-risk of T1D and serve the T1D prediction in patients with negative anti-bodies.  相似文献   

9.
Acrylamide is an organic chemical which occurs in foods widespreadly consumed in diets worldwide. The purpose of this study was to evaluate the serum trace element levels (Fe, Cu, Zn, Mn, Cr, Se, Co, Ni, V, As, Mg, P, Li, K, Al) in Wistar rats exposed to acrylamide. Acrylamide was administered to the treatment groups at 2 and 5 mg/kg?body weight (bw)/day via drinking water for 90 days. Inductively coupled plasma mass spectrometry was used for the determination of serum trace element concentrations. Serum Zn, Se, Co, V and Mg concentrations of 5 mg/kg bw/day acrylamide-treated male rats were lower, whereas serum As concentration was higher than the same parameters of the controls rats. Similarly, serum Zn, Se, Co, V and Mg concentrations were decreased in 5 mg/kg?bw/day acrylamide-treated female rats compared with control rats. On the other hand, there were no significant differences between serum Fe, Cu, Mn, Cr, Ni, P, Li, K and Al concentrations of all groups. The results from this study provide evidence that dietary acrylamide intake adversely affects the serum trace elements status.  相似文献   

10.
Concentrations of trace elements in newborns, infants, and adults may be significantly different from each other. Serum trace element reference ranges for different age groups are of value for diagnostic purposes. Inductively coupled plasma-mass spectrometry was applied to the determination of the 21 trace elements Ba, Be, Bi, Ca, Cd, Co, Cs, Cu, La, Li, Hg, Mg, Mn, Mo, Pb, Rb, Sb, Sn, Sr, TI, and Zn in a total of 117 sera of individuals representing different age groups. After microwave-assisted acid digestion with high-purity reagents, 20 umbilical cord sera, 5 sera of fully breast-fed infants, 6 sera of formula-fed infants, 66 sera of patients suffering internal diseases, and 20 sera of healthy blood donors were analyzed for trace elements. One serum and two whole-blood reference materials were analyzed for quality control. Experimental concentrations were in good agreement with certified values. Umbilical cord serum concentrations of the essential elements Ca, Co, Cu, and Mg and of the nonessential and toxic elements Ba, Be, Li, Pb, and Sb were elevated compared to the elemental concentrations in the sera of infants and adults. Serum levels of Ba, Ca, Co, Mn, Pb, and Sb of infants were much higher and serum Cu was significantly lower than in adults. Serum Cu increased significantly with age (newborns: 353 microg/L; infants: 755 microg/L; healthy adults: 810 microg/L), whereas for other trace elements no age-dependence could be established.  相似文献   

11.
IntroductionInflammatory bowel disease (IBD) develops through complex interplay of genetic, microbial, immune, and environmental factors. Trace elements alterations are commonly present in IBD and may have influence on IBD development. Heavy metal pollution is one of the major environmental issues nowadays and IBD incidence is rising in countries where industry starts to develop. Metals are implicated in processes that are connected to IBD pathogenesis.AimThe aim of this study was to investigate toxic and trace element levels in pediatric population of IBD patients both in serum and intestinal mucosa.Materials and methodsThis prospective study enrolled children newly diagnosed with IBD in University children’s hospital in Belgrade. Concentrations of thirteen elements: Al, As, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Se and Zn in serum and intestinal mucosa of 17 newly diagnosed children with IBD (10 Crohn’s disease (CD) and 7ulcerative colitis (UC)) and 10 controls were assessed using inductively coupled plasma mass spectrometry (ICP-MS). Intestinal mucosa samples were taken from terminal ileum and six different colon segments (cecum, ascending colon, colon transversum, descending and sigmoid colon and rectum).ResultsThe results demonstrated significant alterations in serum and intestinal mucosa concentrations of investigated elements. Serum iron was significantly decreased in IBD and CD group, compared to controls while serum Cu significantly differed between three investigated groups with highest concentration observed in CD children. Serum manganese was the highest in the UC subgroup. Terminal ileums of IBD patients contained significantly lower amount of Cu, Mg, Mn and Zn with Mn being significantly decreased also in CD patients compared to control. IBD patients’ caecum contained significantly less Mg and Cu while colon transversum tissue samples from IBD and Crohn’s patients contained significantly more chromium than controls. Moreover, sigmoid colon of IBD patients were poorer in Mg than controls (p < 0.05). Colon Al, As and Cd were significantly reduced in IBD, and UC children compared to control. Correlations of investigated elements in CD and UC groups were different from controls. Biochemical and clinical parameters showed correlation with element concentrations in intestines.ConclusionSera of CD, UC and control children significantly differ in Fe, Cu and Mn levels. Serum manganese was the highest in the UC subgroup creating the most prominent and only significant difference between UC and CD subgroups. Terminal ileum of IBD patients contained significantly lower amount of majority of investigated essential trace elements and toxic elements were significantly reduced in colon of IBD and UC patients. Investigation of macro- and microelement alterations in children and adults has potential to further elucidate IBD pathogenesis.  相似文献   

12.
Abstract

This study investigated the airborne concentration of PM10 and 20 trace elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Na, Pb, Ti, V, Zn) in residential, industry, traffic road, coal mining, thermal power plant area of Bac Giang province. The average PM10 concentration was highest at coal site, followed by traffic 1 sites, industrial sites and traffic 2 sites, the residential sites, and lowest at the power plant site located in mountain area. While Al, Ca, Fe, K, Mg, Na were the most abundant elements in all sampling sites, accounting for 73–96% of total obtained elements, the concentration of As, Cd, Cr, Cu, Mn, Ni, Pb, V, and Zn occupied from 2.9 to 23.2%. Noticeably, the concentrations of Cd were from 7 to 65 times higher than the concentration limit for Cd (0.1?ng/m3) according the World Health Organization (WHO). Although, the Hazard Index (HI values) of all metals were found to be within the safe level for both children and adults, the Carcinogenic Risk (CR) of Cr and As in all sites were closed to the acceptable levels for children, implying a potential carcinogenic risks of these metals.  相似文献   

13.
目的:探讨反复呼吸道感染患儿血清微量元素及体液免疫水平测定及其临床意义。方法:选取2016年1月至2017年1月在我院接受治疗的反复呼吸道感染患儿64例作为观察组,另外选取同期来我院体检的健康儿童60例作为对照组,比较两组儿童血清微量元素钙(Ca)、铁(Fe)、铜(Cu)、锌(Zn)、镁(Mg)等的水平、体液免疫因子免疫球蛋白A(IgA)、免疫球蛋白M(IgM)、免疫球蛋白G(IgG)水平及血清补体C3、C4、C5水平,并分析其相关性。结果:观察组患儿血清Ca、Fe、Zn水平显著低于对照组儿童(P0.05),两组儿童血清Cu、Mg水平比较差异无统计学意义(P0.05)。观察组患儿血清IgA、IgM、IgG水平低于对照组儿童(P0.05)。两组儿童血清补体C3、C4、C5水平比较差异无统计学意义(P0.05)。经Pearson相关性分析可得:反复呼吸道感染患儿血清Ca、Fe、Zn与血清IgA、IgM、IgG水平呈正相关(P0.05)。结论:反复呼吸道感染患儿存在血清Ca、Fe、Zn微量元素缺乏及血清IgA、IgM、IgG水平降低现象,且它们之间具有正相关关系,可能共同促进反复呼吸道感染的发生。  相似文献   

14.
BackgroundThe use of unconventional biological materials in human trace element studies has increased in terms of published research studies. The aim of present study was to develop and validate the use of teardrop fluid for determining trace element levels in the human body. No study has been published in this area yet. This is a new non-invasive approach in the possible early diagnosis of the pathogenesis of type 2 diabetes.Materials and methodsHuman teardrop fluid samples were obtained from Karbala (Iraq) (n = 111) healthy individuals and with type 2 diabetes (n = 44); and London (UK) healthy individuals (n = 18). The levels of V, Cr, Mn, Fe, Cu, Zn, As, Sr and Cd were determined using an inductively coupled plasma mass equipped with collision cell technology for polyatomic ion correction (ICP-MS).Statistical analysisDiscriminate function analysis (DFA) was carried out to determine the set of variables that discriminated between the trace elements in teardrop fluid samples from healthy individuals and diabetic patients.ResultsThe trace element levels of human teardrop fluid are similar for many elements to that reported for human blood serum in the literature. This is interesting since they have different physiological functions, although overall they are mainly water containing electrolytes (∼ 90 %) and solids (antibodies, hormones, etc). In general, for the study groups in Karbala, Iraq, significantly higher teardrop fluid levels of Mn and Sr were found in type 2 diabetic patients when compared with healthy individuals (evaluated using an F-test and a two-tailed t-test). The levels of V, Cu and As were found to be significantly higher (P < 0.05) in healthy individuals than type 2 diabetic patients. Although the levels of Fe and Zn were slightly higher in type 2 diabetic patients than healthy cases, the differences were not statistically significant (P > 0.05). Cr and Cd were found to have similar levels for both study groups. Significantly higher teardrop fluid levels of V, Cr, Mn, Fe, Zn, As and Sr were found in healthy individuals from Karbala (Iraq) when compared with those from London (UK). In contrast, the levels of Cd observed to be significantly higher in London (UK) than Karbala. No statistical difference was found for Cu between the two healthy groups.Statistical analysisDiscriminate analysis showed that human teardrop fluid V, Mn, Zn, As, Sr and Cd levels could be used to discriminate between healthy and type 2 diabetes study groups in Karbala, Iraq (83 % of cases correctly classified).ConclusionThe use of human teardrop fluid for determining the trace element levels of human health conditions has been evaluated. Trace elemental levels are like that for blood serum which is widely used as an invasive method for assessing human health conditions. Sample collection for teardrop fluid is non-invasive and the application has potential for determining the trace element levels in healthy individuals and disorder conditions (like type 2 diabetes) in countries where cultural and gender sensitivity are issues with respect to the collection methods used for other body fluid samples.  相似文献   

15.
Obesity is a multifactorial disease developing following impairment of the energy balance. The endocrine system is known to be affected by the condition. Serum thyroid hormones and trace element levels have been shown to be affected in obese children. Changes in serum thyroid hormones may result from alterations occurring in serum trace element levels. The aim of this study was to evaluate whether or not changes in serum thyroid hormone levels in children with exogenous obesity are associated with changes in trace element levels. Eighty-five children diagnosed with exogenous obesity constituted the study group, and 24 age- and sex-matched healthy children made up the control group. Serum thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), thyroglobulin (TG), selenium (Se), zinc (Zn), copper (Cu), and manganese (Mn) levels in the study group were measured before and at the third and sixth months of treatment, and once only in the control group. Pretreatment fT4 levels in the study group rose significantly by the sixth month (p?=?0.006). Zn levels in the patient group were significantly low compared to the control group (p?=?0.009). Mn and Se levels in the obese children before and at the third and sixth months of treatment were significantly higher than those of the control group (p?=?0.001, p?=?0.001). In conclusion, fT4, Zn, Cu, Mn, and Se levels are significantly affected in children diagnosed with exogenous obesity. The change in serum fT4 levels is not associated with changes in trace element concentrations.  相似文献   

16.
The primary objective of the current study was to assess the influence of early high-fat feeding on tissue trace element content in young male Wistar rats. Twenty weanling male Wistar rats were divided into two groups fed standard (STD) or high-fat diet (HFD) containing 10 and 31.6 % of total calories from fat, respectively, for 1 month. Serum lipid spectrum, apolipoproteins, glucose, insulin, adiponectin, and leptin levels were assessed. The level of trace elements was estimated using inductively coupled plasma mass spectrometry. High-fat feeding significantly increased epidydimal (EDAT) and retroperitoneal adipose tissue (RPAT), as well as total adipose tissue mass by 34, 103, and 59 %, respectively. Serum leptin levels in HFD animals were twofold higher than those in the control rats. No significant difference in serum lipid spectrum, apolipoproteins, glucose, adiponectin, and insulin was detected between the groups. HFD significantly altered tissue trace element content. In particular, HFD-fed animals were characterized by significantly lower levels of Cu, I, Mn, Se, and Zn in the liver; Cr, V, Co, Cu, Fe, and I content of EDAT; Co, Cu, I, Cr, V, Fe, and Zn concentration in RPAT samples. At the same time, only serum Cu was significantly depressed in HFD-fed animals as compared to the control ones. Hair Co, Mn, Si, and V levels were significantly increased in comparison to the control values, whereas Se and I content was decreased. HFD feeding induced excessive adiposity and altered tissue trace element content in rats without insulin resistance, adiponectin deficiency, and proatherogenic state. Hypothetically, trace element disbalance may precede obesity-associated metabolic disturbances.  相似文献   

17.
Reference values for trace and ultratrace elements concentrations in healthy human serum, measured by double-focusing inductively coupled plasma-mass spectrometry (ICP-MS), are presented. Blood donors from Asturias (Spain) were selected as the reference population (n=59). Blood samples were collected, after donation, taking the necessary precautions to avoid contamination. All subjects analyzed had normal renal function and nutritional status, as shown from their creatinine and albumin levels. A total number of 14 elements (Al, Ca, Cr, Mn, Fe, Co, Cu, Zn, Rb, Sr, Mo, Cd, Pb, and U) were monitored almost simultaneously. Serum samples were diluted 1+4 with ultrapure water and matrix interferences were corrected using Sc, Ga, Y, and Tl as internal standards. Fe, Cu, and Zn were also determined by isotope dilution analysis (IDA). Reference trace element concentrations intervals observed containing 95% of the reference distribution after excluding outliers are presented. Fourteen serum samples from hemodialysis patients were also analyzed for comparison. High levels of Al, Cr, Sr, Mo, Mn, Pb, U, Co, and Cu and low levels of Fe, Zn, and Rb were found in the serum samples from hemodialysis patients compared to the corresponding reference values observed in this work.  相似文献   

18.
Abstract

A total of 83 dust samples were collected from the streets of Urumqi city in NW China and analyzed for the concentrations of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn elements. The spatial distribution, contamination levels, main sources, and potential health risks of these trace elements were determined based on geostatistical analysis, geo-accumulation index, multivariate analysis, and the health risk assessment model introduced by the USEPA, respectively. The obtained results indicate that the average concentrations of Cd, Cr, Cu, Hg, Ni, Pb, and Zn exceed the corresponding background values determined in Xinjiang soils by factors of 2.0, 1.35, 1.38, 8.24, 1.28, 2.09, and 3.26, respectively. The spatial distribution patterns of the nine trace elements in street dust were found to be substantially heterogeneous, and the contamination level decreased in the following order: Hg?>?Zn?>?Pb?>?Cd?>?Cr?>?Cu?>?As?>?Ni?>?Mn. Based on the identified concentrations, the collected dust samples were found to be moderately polluted by Hg, and not polluted by As, Cr, Cu, Mn, and Ni. The remaining elements, Cd, Pb, and Zn lie on the borderline between non-pollution and moderate pollution levels. Furthermore, it was shown that Mn and Zn in street dusts originate from both, natural and anthropogenic sources, while As, Cd, Cr, Cu, Hg, Ni, and Pb are mainly produced by anthropogenic sources. Overall, the carcinogenic and non-carcinogenic health risks of the analyzed elements, instigated primarily by oral ingestion of street dusts, were found to be within the acceptable range for both, children and adults. As and Cr are the main non-carcinogenic elements, whereas Cr is the major carcinogenic element among the investigated dust-bound metals in the study area.  相似文献   

19.
Previous studies have demonstrated increased serum copper and iron levels and decreased selenium and zinc levels in patients with myocardial infarction. Furthermore, the prognostic value of the levels of trace elements in myocardial infarction has been stressed. We examined serum levels of Cu, Fe, Zn and Se, as well as glutathione peroxidase (GPx), a selenoenzyme with antioxidant properties, and C-reactive protein (CRP), a marker of inflammation, in acute coronary syndromes (ACS) regarding their relationship to cardiac troponins and creatine kinase-MB mass (CK-MBm), important prognostic markers. Serum trace elements, GPx activity and CRP were determined in 70 patients with ACS who were admitted within 12 h after the onset. Differences in these parameters were evaluated in three groups of patients divided according to the levels of cardiac markers: group III consisted of patients with high increases in cTnT, cTnI and CK-MBm (> or =0.9 ng/mL, > or =1.0 ng/mL, > or =30 ng/mL, respectively), patients with milder increases in these markers were included in groups II and I consisted of patients with values just above the upper reference limits. Serum Fe levels increased significantly in group II and even more prominently in group III compared to group I (p = 0.04, 0.002, respectively). There was no significant difference between groups II and III. The increase in serum Cu was significant in group III compared to both groups II and I (p = 0.04, 0.001, respectively). There was no significant difference between groups I and II regarding Cu and Zn. The decrease in serum Se and GPx levels was significant only between groups III and I (p = 0.004 for Se and p = 0.0001 for GPx). CRP levels showed a significant increase in group III compared to groups II and I (p = 0.03 and 0.001). CRP showed a significant positive and GPx a significant negative correlation to the cardiac markers cTnT, cTnI and CK-MBm. Cu was positively correlated to all cardiac markers, while the positive correlation between Fe and cardiac markers was significant only for cTnI. Both Zn and Se were negatively correlated to cTnT, and Se was also to cTnI. In conclusion, the increase in serum levels of Cu and Fe and the decrease in serum levels of Zn and Se in patients with higher levels of troponins and CK-MBm imply that trace element levels are related to the degree of myocardial damage and thus may play a role in the pathogenesis of ischemic heart disease. The strong correlations between cardiac markers and both CRP and GPx suggest that these parameters are promising prognostic factors in acute coronary syndromes.  相似文献   

20.
This study aims to investigate the contents of trace elements in the brain and serum of male chickens and the effect of selenium–chromium(VI) interaction. A chronic experimental model was established by supplementing 22.14 mg/kg K2Cr2O7 with 0.00, 0.31, 0.63, 1.25, 2.50, and 5.00 mg/kg Na2SeO3 mg/kg B.W. to water for chicken daily. After 14, 28, and 42 days of exposure to the solution, the brain and serum of chickens from each group were collected to detect the levels of Ca, Cu, Mn, Fe, Zn, and Mg by inductively coupled plasma mass spectrometer (ICP-MS). Cr(VI) time-dependently accumulated in the brain and serum. The contents of Cr increased both in the brain and serum with prolonged exposure. Cr contents in the brain and serum decreased in all Se groups compared with those in only Cr-treated groups. Ca contents decreased with prolonged exposure and increasing Se dosage. The contents of Cu and Mn increased on the 28th day but decreased on the 42nd day in the brain and serum. Fe and Zn contents decreased in the serum under prolonged exposure and increased on the 28th day but decreased on the 42nd day in the brain. Cr exposure did not significantly affect Mg contents in the brain but slightly decreased those in the serum. Therefore, appropriate doses of Se affected Cr accumulation, leading to adjustments in the contents and correlations of trace elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号