首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The treatment of inflammatory diseases today is largely based on interrupting the synthesis or action of the mediators that drive the host's response to injury. It is on the basis of this concept that most of the anti-inflammatory drugs have been developed. In our continuous search for novel anti-inflammatory agents from traditional medicinal plants, Saposhnikovia divaricata has been a focus of our investigations. Anomalin, a pyranocoumarin constituent of S. divaricata, exhibits potent anti-inflammatory activity. To clarify the cellular signaling mechanisms underlying the anti-inflammatory action of anomalin, we investigated the effect of anomalin on the production of inflammatory molecules in LPS-stimulated murine macrophages. The anomalin dose-dependently inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA and protein expression in LPS-stimulated RAW 264.7 macrophage. Molecular analysis using quantitative real time polymerase chain reaction (qRT-PCR) revealed that several pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), were reduced by anomalin, and this reduction correlated with the down-regulation of the NF-κB signaling pathway. In addition, anomalin suppressed the LPS-induced phosphorylation and degradation of IκBα. To further study the mechanisms underlying its anti-inflammatory activity, an electrophoretic mobility shift assay (EMSA) using a (32) P-labeled NF-κB probe was conducted. LPS-induced NF-κB DNA binding was drastically abolished by anomalin. The present data suggest that anomalin is a major anti-inflammatory agent and may be a potential therapeutic candidate for the treatment of inflammatory disorders.  相似文献   

4.
Magnesium Isoglycyrrhizinate (MgIG), a novel molecular compound extracted from licorice root, has exhibited greater anti-inflammatory activity and hepatic protection than glycyrrhizin and β-glycyrrhizic acid. In this study, we investigated the anti-inflammatory effect and the potential mechanism of MgIG on Lipopolysaccharide (LPS)-treated RAW264.7 cells. MgIG down-regulated LPS-induced pro-inflammatory mediators and enzymes in LPS-treated RAW264.7 cells, including TNF-α, IL-6, IL-1β, IL-8, NO and iNOS. The generation of reactive oxygen species (ROS) in LPS-treated RAW264.7 cells was also reduced. MgIG attenuated NF-κB translocation by inhibiting IKK phosphorylation and IκB-α degradation. Simultaneously, MgIG also inhibited LPS-induced activation of MAPKs, including p38, JNK and ERK1/2. Taken together, these results suggest that MgIG suppresses inflammation by blocking NF-κB and MAPK signaling pathways, and down-regulates ROS generation and inflammatory mediators.  相似文献   

5.
Lipopolysaccharide (LPS) activates a broad range of signalling pathways including mainly NF-κB and the MAPK cascade, but recent evidence suggests that LPS stimulation also activates the PI3K pathway. To unravel the specific roles of both pathways in LPS signalling and gene expression profiling, we investigated the effects of different inhibitors of NF-κB (BAY 11-7082), PI3K (wortmannin and LY294002) but also of mTOR (rapamycin), a kinase acting downstream of PI3K/Akt, in LPS-stimulated RAW264.7 macrophages, analyzing their effects on the LPS-induced gene expression profile using a low density DNA microarray designed to monitor the expression of pro-inflammatory genes. After statistical and hierarchical cluster analyses, we determined five clusters of genes differentially affected by the four inhibitors used. In the fifth cluster corresponding to genes upregulated by LPS and mainly affected by BAY 11-7082, the gene encoding MMP9 displayed a particular expression profile, since rapamycin drastically enhanced the LPS-induced upregulation at both the mRNA and protein levels. Rapamycin also enhanced the LPS-induced NF-κB transactivation as determined by a reporter assay, phosphorylation of the p38 and Erk1/2 MAPKs, and counteracted PPAR activity. These results suggest that mTOR could negatively regulate the effects of LPS on the NF-κB and MAPK pathways. We also performed real-time RT-PCR assays on mmp9 expression using rosiglitazone (agonist of PPARγ), PD98059 (inhibitor of Erk 1/2) and SB203580 (inhibitor of p38MAPK), that were able to counteract the rapamycin mediated overexpression of mmp9 in response to LPS. Our results suggest a new pathway involving mTOR for regulating specifically mmp9 in LPS-stimulated RAW264.7 cells.  相似文献   

6.
7.

Objectives

To identify the protective effect of DJ-1 protein against oxidative stress-induced HepG2 cell death, we used cell-permeable wild type (WT) and a mutant (C106A Tat-DJ-1) protein.

Results

By using western blotting and fluorescence microscopy, we observed WT and C106A Tat-DJ-1 proteins were efficiently transduced into HepG2 cells. Transduced WT Tat-DJ-1 proteins increased cell survival and protected against DNA fragmentation and intracellular ROS generation levels in H2O2-exposed HepG2 cells. At the same time, transduced WT Tat-DJ-1 protein significantly inhibited NF-κB and MAPK (JNK and p38) activation as well as regulated the Bcl-2 and Bax expression levels. However, C106A Tat-DJ-1 protein did not show any protective effect against cell death responses in H2O2-exposed HepG2 cells.

Conclusions

Oxidative stress-induced HepG2 cell death was significantly reduced by transduced WT Tat-DJ-1 protein, not by C106A Tat-DJ-1 protein. Thus, transduction of WT Tat-DJ-1 protein could be a novel strategy for promoting cell survival in situations of oxidative stress-induced HepG2 cell death.
  相似文献   

8.
In this study, a series of compounds with 1,2,4-oxadiazole core was designed and synthesized for the optimization of JC01, an anti-inflammatory hit identified from our in-house compound library using NF-κB pathway luciferase assay and NO production assay. All the synthetic compounds 129 have been screened for their anti-inflammatory effects by evaluating their inhibition against LPS-induced NO release, and compound 17 exhibited the highest activity. Western blotting and immunofluorescence analysis revealed that 17 prominently inhibited LPS-induced activation of NF-κB in RAW264.7 cells and blocked the phosphorylation of p65. Consistent with these results, it was found that 17 prevented the nuclear translocation of NF-κB induced by LPS. These data highlighted 17 as a promising anti-inflammatory agent by inhibiting NF-κB activity.  相似文献   

9.
10.
Carabrol, isolated from Carpesium macrocephalum, showed anti-inflammatory potential in LPS-induced RAW 264.7 murine macrophages. In present study, carabrol demonstrated the inhibitory activity on pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. In addition, mRNA and protein levels of iNOS and COX-2 were reduced by carabrol. Molecular analysis revealed that these suppressive effects were correlated with the inactivation of p38 and JNK via inhibition of NF-κB activation. Immunoblotting showed that carabrol suppressed LPS-induced degradation of I-κBα and decreased nuclear translocation of p65. Taken together, these results suggest that carabrol can be a modulator of pro-inflammatory signal transduction pathway in RAW 264.7 cells.  相似文献   

11.
12.
Endothelial barrier breakdown contributes to organ failure in sepsis. The key mechanism by which the potent sepsis inductor lipopolysaccharide (LPS) disrupts the endothelial barrier is controversial. Here, we tested the hypothesis that NF-κB activation is critically involved in endothelial barrier breakdown. Application of LPS to monolayers of porcine pulmonary artery endothelial cells (PAEC) and human dermal microvascular endothelial cells (HDMEC) induced a rapid and sustained activation of NF-κB as revealed by translocation of its subunit p65 into the nuclei in nuclear extraction assays and by immunostaining. Measurements of transendothelial electrical resistance (TER) and intercellular gap formation demonstrated significant breakdown of endothelial barrier properties following LPS treatment for 3?h. Interestingly, monolayers recovered spontaneously beginning after 10?h. Increased cAMP prevented LPS-induced loss of endothelial barrier properties, but did not block NF-κB activation. Application of the cell-permeable NEMO-binding domain (NBD) synthetic peptide was effective to prevent NF-κB activation, but did neither block LPS-induced loss of TER nor intercellular gap formation. NBD peptide alone did not alter endothelial barrier properties, but enhanced the barrier-compromising effects when applied in combination with LPS. Similarly, siRNA-mediated knock-down of p65 in HDMECs did not prevent LPS-induced barrier breakdown. Known targets of NF-κB-derived protein expression of caveolin or vasodilator-stimulated phosphoprotein (VASP) remained unaltered by LPS treatment of endothelial cells. In summary, our data indicate that NF-κB activation by LPS is not critically involved in disruption of endothelial barrier properties. Rather, our data suggest that NF-κB activation acts as a part of a rescue mechanism.  相似文献   

13.
We isolated the phenolic glucoside salicortin from a Populus euramericana bark extract, and examined its ability to suppress inflammatory responses as well as the molecular mechanisms underlying these abilities, using lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Salicortin inhibited iNOS expression and the subsequent production of NO in a dose-dependent manner in the LPS-stimulated RAW 264.7 cells. Salicortin significantly suppressed LPS-induced signal cascades of NF-κB activation, such as IKK activation, IκBα phosphorylation and p65 phosphorylation in RAW 264.7 cells. In addition, salicortin inhibited the LPS-induced activation of JNK, but not ERK or p38 MAPK. Furthermore, salicortin significantly inhibited production of pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6 in the LPS-stimulated RAW 264.7 cells. These findings suggest that salicortin may show its anti-inflammatory activity by suppressing the LPS-induced expression of pro-inflammatory mediators through inhibition of NF-κB and JNK MAPK signaling cascades in macrophages. [BMB Reports 2014; 47(6): 318-323]  相似文献   

14.
Macrophages secrete inflammatory cytokines and mono-nitrogen oxide (NO), and play crucial roles in inflammation in early-stage rheumatoid arthritis (RA). This study investigated whether glucosamine hydrochloride (GlcN), a nonsteroidal anti-inflammatory agent (NSAID) widely used to treat arthritis, affects the expression of inflammatory cytokines via the unfolded protein response (UPR) in lipopolysaccharide (LPS)-stimulated mouse macrophages (RAW264.7 cells). Pretreatment with GlcN reduced the expression of inflammatory cytokines and inhibited cell differentiation. Moreover, GlcN treatment increased the expression of CHOP and BiP/Grp78, the UPR target genes, in the presence or absence of LPS. Indeed, knockdown of CHOP using siRNAs prevented the GlcN-mediated reduction of inflammatory cytokines in LPS-stimulated RAW264.7 cells. Finally, we found that GlcN-mediated induction of CHOP reduced the phosphorylation of JNK and NF-?B in LPS-stimulated RAW264.7 cells. Combined, these results suggest that the GlcN-mediated induction of CHOP negatively regulates the inflammatory response by modulating JNK and NF-?B in LPS-stimulated RAW264.7 cells.  相似文献   

15.
《Cytokine》2014,65(3):638-641
Adiponectin, a hormone produced from adipose tissue, regulates various biological responses, including inflammation and many metabolic processes. MicroRNAs control expression of diverse target genes and various physiological responses. Many of these responses are commonly regulated by adiponectin. However, effects of adiponectin on microRNAs regulation are largely unknown. Herein we demonstrated that globular adiponectin induces increase in miR-155 expression, which plays an important role in inflammatory response, in RAW 264.7 macrophages. We further showed that this effect was modulated by and MANK/NF-κB dependent mechanisms. These results suggest that miR-155 would be a novel promising target mediating adiponectin-induced various biological responses.  相似文献   

16.
17.
18.
Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. The unique function and ability of osteoclasts to resorb bone makes them critical in both normal bone homeostasis and pathologic bone diseases such as osteoporosis and rheumatoid arthritis. Thus, new compounds that may inhibit osteoclastogenesis and osteoclast function may be of great value in the treatment of osteoclast-related diseases. In the present study, we examined the effect of jolkinolide B (JB), isolated from the root of Euphorbia fischeriana Steud on receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation. We found that JB inhibited RANKL-induced osteoclast differentiation from bone marrow macrophages (BMMs) without cytotoxicity. Furthermore, the expression of osteoclastic marker genes, such as tartrate-resistant acid phosphatase (TRAP), cathepsin K (CtsK), and calcitonin receptor (CTR), was significantly inhibited. JB inhibited RANKL-induced activation of NF-κB by suppressing RANKL-mediated IκBα degradation. Moreover, JB inhibited RANKL-induced phosphorylation of mitogen-activated protein kinases (p38, JNK, and ERK). This study thus identifies JB as an inhibitor of osteoclast formation and provides evidence that JB might be an alternative medicine for preventing and treating osteolysis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号