首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doxorubicin (DOX) is a broad spectrum antitumor agent. However, its clinical utility is limited due to the well-known cardiotoxicity. Resveratrol (RSV) has been reported to exert cardioprotective effect in some cardiovascular diseases. In this study, we aimed to determine the effect of RSV on DOX-induced cardiotoxicity, and further explore the underlying mechanism in this process.Male Sprague-Dawley (SD) rats were randomly divided into four groups: CON, DOX, RSV, or DOX+RSV group (10 rats in each group). DOX treatment significantly decreased cardiac function, and increased the release of serum lactate dehydrogenase (LDH) and creatine kinase isoenzyme (CK-MB) in rat serum. Increased cell death and apoptosis of cardiomyocytes were also observed in DOX group in comparison with CON group. DOX treatment dramatically down-regulated expression of VEGF-B either in vivo or in vitro. In contrast, the combination of RSV and DOX markedly attenuated DOX-induced cardiotoxicity with the up-regulation of VEGF-B. Inhibition of VEGF-B by small interfering RNA (siRNA) abolished the protective effects of RSV on DOX-treated cardiomyocytes.Consequently,our findings indicated that RSV attenuates DOX-induced cardiotoxicity through up-regulation of VEGF-B.  相似文献   

2.
Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX’s cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.  相似文献   

3.
4.
5.
BackgroundDoxorubicin (DOX) is a widely used antitumor drug. However, its clinical application is limited for its serious cardiotoxicity. The mechanism of DOX-induced cardiotoxicity is attributed to the increasing of cell stress in cardiomyocytes, then following autophagic and apoptotic responses. Our previous studies have demonstrated the protective effect of Shenmai injection (SMI) on DOX-induced cardiotoxicity via regulation of inflammatory mediators for releasing cell stress.PurposeTo further investigate whether SMI attenuates the DOX-induced cell stress in cardiomyocytes, we explored the mechanism underlying cell stress as related to Jun N-terminal kinase (JNK) activity and the regulation of autophagic flux to determine the mechanism by which SMI antagonizes DOX-induced cardiotoxicity.Study designThe DOX-induced cardiotoxicity model of autophagic cell death was established in vitro to disclose the protected effects of SMI on oxidative stress, autophagic flux and JNK signaling pathway. Then the autophagic mechanism of SMI antagonizing DOX cardiotoxicity was validated in vivo.ResultsSMI was able to reduce the DOX-induced cardiomyocyte apoptosis associated with inhibition of activation of the JNK pathway and the accumulation of reactive oxygen species (ROS). Besides, SMI antagonized DOX cardiotoxicity, regulated cardiomyocytes homeostasis by restoring DOX-induced cardiomyocytes autophagy. Under specific circumstances, SMI depressed autophagic process by reducing the Beclin 1-Bcl-2 complex dissociation which was activated by DOX via stimulating the JNK signaling pathway. At the same time, SMI regulated lysosomal pH to restore the autophagic flux which was blocked by DOX in cardiomyocytes.ConclusionSMI regulates cardiomyocytes apoptosis and autophagy by controlling JNK signaling pathway, blocking DOX-induced apoptotic pathway and autophagy formation. SMI was also found to play a key role in restoring autophagic flux for counteracting DOX-damaged cardiomyocyte homeostasis.  相似文献   

6.
Doxorubicin (DOX) is one of the most effective chemotherapeutic drugs; however, its incidence of cardiotoxicity compromises its therapeutic index. DOX-induced heart failure is thought to be caused by reduction/oxidation cycling of DOX to generate oxidative stress and cardiomyocyte cell death. Resveratrol (RV), a stilbene found in red wine, has been reported to play a cardioprotective role in diseases associated with oxidative stress. The objective of this study was to test the ability of RV to protect against DOX-induced cardiomyocyte death. We hypothesized that RV protects cardiomyocytes from DOX-induced oxidative stress and subsequent cell death through changes in mitochondrial function. DOX induced a rapid increase in reactive oxygen species (ROS) production in cardiac cell mitochondria, which was inhibited by pretreatment with RV, most likely owing to an increase in MnSOD activity. This effect of RV caused additional polarization of the mitochondria in the absence and presence of DOX to increase mitochondrial function. RV pretreatment also prevented DOX-induced cardiomyocyte death. The protective ability of RV against DOX was abolished when Sirt1 was inhibited by nicotinamide. Our data suggest that RV protects against DOX-induced oxidative stress through changes in mitochondrial function, specifically the Sirt1 pathway leading to cardiac cell survival.  相似文献   

7.
The clinical use of doxorubicin (DOX) is limited by its toxic effect. However, there is no specific drug that can prevent DOX-related cardiac injury. C1qTNF-related protein-6 (CTRP6) is a newly identified adiponectin paralog with many protective functions on metabolism and cardiovascular diseases. However, little is known about the effect of CTRP6 on DOX-induced cardiac injury. The present study aimed to investigate whether CTRP6 could protect against DOX-related cardiotoxicity. To induce acute cardiotoxicity, the mice were intraperitoneally injected with a single dose of DOX (15 mg/kg). Cardiomyocyte-specific CTRP6 overexpression was achieved using an adenoassociated virus system at 4 weeks before DOX injection. The data in our study demonstrated that CTRP6 messenger RNA and protein expression were decreased in DOX-treated hearts. CTRP6 attenuated cardiac atrophy induced by DOX injection and inhibited cardiac apoptosis and improved cardiac function in vivo. CTRP6 also promoted the activation of protein kinase B (AKT/PKB) signaling pathway in DOX-treated mice. CTRP6 prevented cardiomyocytes from DOX-induced apoptosis and activated the AKT pathway in vitro. CTRP6 lost its protection against DOX-induced cardiac injury in mice with AKT inhibition. In conclusion, CTRP6 protected the heart from DOX-cardiotoxicity and improves cardiac function via activation of the AKT signaling pathway.  相似文献   

8.
Doxorubicin (DOX) is an anthracycline antibiotic widely used as a chemotherapeutic agent in the treatment of several tumours. However, its cardiac toxicity limits its use at maximum therapeutic doses. Most studies implicated increased oxidative stress as the major determinant of DOX cardiotoxicity. The local Saudi flora is very rich in a variety of plants of quite known folkloric or traditional medicinal uses. Tribulus macropterus Boiss., Olea europaea L. subsp. africana (Mill.) P. S. Green, Tamarix aphylla (L.) H. Karst., Cynomorium coccineum L., Cordia myxa L., Calligonum comosum L' Hér, and Withania somnifera (L.) Dunal are Saudi plants known to have antioxidant activities. The aim of the current study was to explore the potential protective effects of methanolic extracts of these seven Saudi plants against DOX-induced cardiotoxicity in rats. Two plants showed promising cardioprotective potential in the order Calligonum comosum > Cordia myxa. The two plant extracts showed potent in vitro radical scavenging and antioxidant properties. They significantly protected against DOX-induced alterations in cardiac oxidative stress markers (GSH and MDA) and cardiac serum markers (CK-MB and LDH activities). Additionally, histopathological examination indicated a protection against DOX-induced cardiotoxicity. In conclusion, C. comosum and C. myxa exerted protective activity against DOX-induced cardiotoxicity, which is, at least partly, due to their antioxidant effect.  相似文献   

9.
The most crucial complication related to doxorubicin (DOX) therapy is nonspecific cytotoxic effect on healthy normal cells. The clinical use of this broad-spectrum chemotherapeutic agent is restricted due to development of severe form of cardiotoxicity, myelosuppression, and genotoxicity which interfere with therapeutic schedule, compromise treatment outcome and may lead to secondary malignancy. 3,3′-diindolylmethane (DIM) is a naturally occurring plant alkaloid formed by the hydrolysis of indolylmethyl glucosinolate (glucobrassicin). Therefore, the present study was undertaken to investigate the protective role of DIM against DOX-induced toxicity in mice. DOX was administered (5?mg/kg b.w., i.p.) and DIM was administered (25?mg/kg b.w., p.o.) in concomitant and 15 days pretreatment schedule. Results showed that DIM significantly attenuated DOX-induced oxidative stress in the cardiac tissues by reducing the levels of free radicals and lipid peroxidation, and by enhancing the level of glutathione (reduced) and the activity of antioxidant enzymes. The chemoprotective potential of DIM was confirmed by histopathological evaluation of heart and bone marrow niche. Moreover, DIM considerably mitigated DOX-induced clastogenicity, DNA damage, apoptosis, and myeloid hyperplasia in bone marrow niche. In addition, oral administration of DIM significantly (p?相似文献   

10.
11.
12.
The present experiments were designed to evaluate the effects of pifithrin-alpha (PFT-alpha), which is a p53 inhibitor, on doxorubicin (DOX)-induced apoptosis and cardiac injury. Administration of DOX (22.5 mg/kg ip) in mice upregulated the mRNA levels of Bax and MDM2, whereas PFT-alpha attenuated those levels when administered at a total dose of 4.4 mg/kg at 30 min before and 3 h after DOX challenge. DOX treatment led to an upregulation of p53 protein levels, which was preceded by elevated levels of phosphorylated p53 at Ser15. PFT-alpha had no effect on the level of p53 or its phosphorylated form. The protein levels of Bax and MDM2 were elevated by DOX and attenuated by PFT-alpha. DOX gave rise to increased apoptosis-positive nuclei in cardiac cells, elevated serum creatine phosphokinase, ultrastructural alterations, and cardiac dysfunction. PFT-alpha offered protection against all of the aforementioned changes. Finally, PFT-alpha did not interfere with the antitumor potency of DOX. This study demonstrates that PFT-alpha effectively inhibits DOX-induced cardiomyocyte apoptosis, which suggests that PFT-alpha has the potential to protect cancer patients against DOX-induced cardiac injury.  相似文献   

13.
Doxorubicin (DOX) is an efficient chemotherapeutic agent used against several types of tumors; however, its use is limited due to severe cardiotoxicity. Since it is accepted that reactive oxygen species are involved in DOX-induced cardiotoxicity, antioxidant agents have been used to attenuate its side effects. To determine tomato-oleoresin protection against cardiac oxidative DNA damage induced by DOX, we distributed Wistar male rats in control (C), lycopene (L), DOX (D) and DOX+lycopene (DL) groups. They received corn oil (C, D) or tomato-oleoresin (5mg/kg body wt. day) (L, DL) by gavage for a 7-week period. They also received saline (C, L) or DOX (4mg/kg body wt.) (D, DL) intraperitoneally at the 3rd, 4th, 5th, and at 6th week. Lycopene absorption was checked by HPLC. Cardiac oxidative DNA damage was evaluated by the alkaline Comet assay using formamidopyrimidine-DNA glycosylase (FPG) and endonuclease III (endo III). Cardiomyocyte levels of SBs, SBs FPG and SBs Endo III were higher in rats from D when compared to other groups. DNA damage levels in cardiomyocytes from DL were not different when compared to C and L groups. The viability of cardiomyocytes from D or DL was lower than C or L groups (p<0.01). Lycopene levels (mean+/-S.D.nmol/kg) in saponified hearts were similar between L (47.43+/-11.78) and DL (49.85+/-16.24) groups. Our results showed: (1) lycopene absorption was confirmed by its cardiac levels; (2) DOX-induced oxidative DNA damage in cardiomyocyte; (3) tomato-oleoresin supplementation protected against cardiomyocyte oxidative DNA damage.  相似文献   

14.
15.
Doxorubicin (DOX) was administered intraperitoneally to rats in six equal, 2.5 mg/kg doses over a 2-week period with or without L-carnitine. Injury was monitored by echocardiography, release of myosin light chain-1 (MLC-1), and by measurement of aldehydic lipid peroxidation products. General observation revealed that DOX alone caused more ascites than DOX plus L-carnitine. Animals sacrificed 2 h after the sixth dose had significantly higher aldehyde concentrations than 2 h after a single dose of DOX. Aldehydes in plasma and heart remained elevated for 3 weeks after the final dose of DOX, whereas L-carnitine prevented or attenuated the DOX-induced increases in lipid peroxidation. The increase in MLC-1 2 h after the sixth dose of DOX was greater than after a single dose, suggesting cumulative damage. Echocardiography did not detect either early injury or the protective effects of L-carnitine. These data indicate that lipid peroxidation following DOX occurs early, and parallels the cumulative characteristics of DOX-induced cardiotoxicity. The protective effects of L-carnitine may be due to improved cardiac energy metabolism and reduced lipid peroxidation.  相似文献   

16.
Doxorubicin (DOX) is a commonly used life-saving antineoplastic agent that also causes dose-dependent cardiotoxicity. Because ATP is absolutely required to sustain normal cardiac contractile function and because impaired ATP synthesis through creatine kinase (CK), the primary myocardial energy reserve reaction, may contribute to contractile dysfunction in heart failure, we hypothesized that impaired CK energy metabolism contributes to DOX-induced cardiotoxicity. We therefore overexpressed the myofibrillar isoform of CK (CK-M) in the heart and determined the energetic, contractile and survival effects of CK-M following weekly DOX (5mg/kg) administration using in vivo 31P MRS and 1H MRI. In control animals, in vivo cardiac energetics were reduced at 7 weeks of DOX protocol and this was followed by a mild but significant reduction in left ventricular ejection fraction (EF) at 8 weeks of DOX, as compared to baseline. At baseline, CK-M overexpression (CK-M-OE) increased rates of ATP synthesis through cardiac CK (CK flux) but did not affect contractile function. Following DOX however, CK-M-OE hearts had better preservation of creatine phosphate and higher CK flux and higher EF as compared to control DOX hearts. Survival after DOX administration was significantly better in CK-M-OE than in control animals (p<0.02). Thus CK-M-OE attenuates the early decline in myocardial high-energy phosphates and contractile function caused by chronic DOX administration and increases survival. These findings suggest that CK impairment plays an energetic and functional role in this DOX-cardiotoxicity model and suggests that metabolic strategies, particularly those targeting CK, offer an appealing new strategy for limiting DOX-associated cardiotoxicity.  相似文献   

17.
Doxorubicin (DOX) and VP16 are DNA topoisomerase II inhibitors yet only DOX induces an irreversible cardiotoxicity, likely through DOX-induced oxidative stress. Egr-1 is overexpressed after many stimuli that increase oxidative stress in vitro and after DOX-injection into adult mice in vivo. To investigate Egr-1 function in the heart, we compared the molecular and histological responses of wild type (+/+) and Egr-1 deficient (-/-) female mice to saline, DOX, VP16, the cardioprotectant dexrazoxane (DZR), or DOX+DZR injection. DOX, and to a lesser extent VP16, induced characteristic increases in cardiac muscle and non-muscle genes typical of cardiac damage in +/+ mice, whereas only beta-MHC and Sp1 were increased in -/- mice. DZR-alone treated +/+ mice showed increased cardiomyocyte transnuclear width without a change to the heart to body weight (HW/BW) ratio. However, DZR-alone treated -/- mice had an increased HW/BW, increased cardiomyocyte transnuclear width, and gene expression changes similar to DOX-injected +/+ mice. DZR pre-injection alleviated DOX-induced gene changes in +/+ mice; in DZR+DOX injected -/- mice the increases in cardiac and non-muscle gene expression were equal to, or exceeded that, detected after DOX-alone or DZR-alone injections. We conclude that Egr-1 is required for DOX-induced molecular changes and for DZR-mediated cardioprotection.  相似文献   

18.
Doxorubicin (DOX) is considered as the major culprit in chemotherapy‐induced cardiotoxicity. Yellow wine polyphenolic compounds (YWPC), which are full of polyphenols, have beneficial effects on cardiovascular disease. However, their role in DOX‐induced cardiotoxicity is poorly understood. Due to their antioxidant property, we have been suggested that YWPC could prevent DOX‐induced cardiotoxicity. In this study, we found that YWPC treatment (30 mg/kg/day) significantly improved DOX‐induced cardiac hypertrophy and cardiac dysfunction. YWPC alleviated DOX‐induced increase in oxidative stress levels, reduction in endogenous antioxidant enzyme activities and inflammatory response. Besides, administration of YWPC could prevent DOX‐induced mitochondria‐mediated cardiac apoptosis. Mechanistically, we found that YWPC attenuated DOX‐induced reactive oxygen species (ROS) and down‐regulation of transforming growth factor beta 1 (TGF‐β1)/smad3 pathway by promoting nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2) nucleus translocation in cultured H9C2 cardiomyocytes. Additionally, YWPC against DOX‐induced TGF‐β1 up‐regulation were abolished by Nrf2 knockdown. Further studies revealed that YWPC could inhibit DOX‐induced cardiac fibrosis through inhibiting TGF‐β/smad3‐mediated ECM synthesis. Collectively, our results revealed that YWPC might be effective in mitigating DOX‐induced cardiotoxicity by Nrf2‐dependent down‐regulation of the TGF‐β/smad3 pathway.  相似文献   

19.
Doxorubicin (DOX) is one of the most powerful and widely prescribed chemotherapeutic agents to treat divergent human cancers. However, the clinical use of DOX is restricted due to its severe cardiotoxic side-effects. There has been ongoing search for cardioprotectants against DOX toxicity. Inorganic nitrate has emerged as a bioactive compound that can be reduced into nitrite and nitric oxide in vivo and in turn plays a therapeutic role in diseases associated with nitric oxide insufficiency or dysregulation. In this review, we describe a novel concept of using dietary supplementation of inorganic nitrate to reduce DOX-induced cardiac cellular damage and dysfunction, based on our recent promising studies in a mouse model of DOX cardiotoxicity. Our data show that chronic oral ingestion of sodium nitrate, at a dose equivalent to ~400% of the Acceptable Daily Intake of the World Health Organization, alleviated DOX-induced left ventricular dysfunction and mitochondrial respiratory chain damage. Such cardioprotective effects were associated with reduction of cardiomyocyte necrosis/apoptosis, tissue lipid peroxidation, and mitochondrial H(2)O(2) generation following DOX treatment. Furthermore, proteomic studies revealed enhanced cardiac expression of mitochondrial antioxidant enzyme - peroxiredoxin 5 in the nitrate-treated animals. These studies suggest that inorganic nitrate could be an inexpensive therapeutic agent for long-term oral administration in preventing DOX-induced cardiac toxicity and myopathy during the prolonged pathological process. Future clinical trials in the cancer patients undergoing DOX chemotherapy are warranted to translate these experimental findings into an effective new therapy in preventing the DOX-induced cardiomyopathy.  相似文献   

20.
Doxorubicin (DOX) is an effective antitumor agent used in cancer treatment. Unfortunately, DOX is also toxic to skeletal muscle and can result in significant muscle wasting. The cellular mechanism(s) by which DOX induces toxicity in skeletal muscle fibers remains unclear. Nonetheless, DOX-induced toxicity is associated with increased generation of reactive oxygen species, oxidative damage, and activation of the calpain and caspase-3 proteolytic systems within muscle fibers. It is currently unknown if autophagy, a proteolytic system that can be triggered by oxidative stress, is activated in skeletal muscles following DOX treatment. Therefore, we tested the hypothesis that systemic administration of DOX leads to increased expression of autophagy markers in the rat soleus muscle. Our results reveal that DOX administration results in increased muscle mRNA levels and/or protein abundance of several important autophagy proteins, including: Beclin-1, Atg12, Atg7, LC3, LC3II-to-LCI ratio, and cathepsin L. Furthermore, given that endurance exercise increases skeletal muscle antioxidant capacity and protects muscle against DOX-induced oxidative stress, we performed additional experiments to determine whether exercise training before DOX administration would attenuate DOX-induced increases in expression of autophagy genes. Our results clearly show that exercise can protect skeletal muscle from DOX-induced expression of autophagy genes. Collectively, our findings indicate that DOX administration increases the expression of autophagy genes in skeletal muscle, and that exercise can protect skeletal muscle against DOX-induced activation of autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号