首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-throughput sequencing technologies have offered in recent years new opportunities to study genome variations. These studies have mostly focused on single nucleotide polymorphisms, small insertions or deletions and on copy number variants. Other structural variants, such as large insertions or deletions, tandem duplications, translocations, and inversions are less well-studied, despite that some have an important impact on phenotypes. In the present study, we performed a large-scale survey of structural variants in cattle. We report the identification of 6,426 putative structural variants in cattle extracted from whole-genome sequence data of 62 bulls representing the three major French dairy breeds. These genomic variants affect DNA segments greater than 50 base pairs and correspond to deletions, inversions and tandem duplications. Out of these, we identified a total of 547 deletions and 410 tandem duplications which could potentially code for CNVs. Experimental validation was carried out on 331 structural variants using a novel high-throughput genotyping method. Out of these, 255 structural variants (77%) generated good quality genotypes and 191 (75%) of them were validated. Gene content analyses in structural variant regions revealed 941 large deletions removing completely one or several genes, including 10 single-copy genes. In addition, some of the structural variants are located within quantitative trait loci for dairy traits. This study is a pan-genome assessment of genomic variations in cattle and may provide a new glimpse into the bovine genome architecture. Our results may also help to study the effects of structural variants on gene expression and consequently their effect on certain phenotypes of interest.  相似文献   

2.
Repetitive DNA is present in the eukaryotic genome in the form of segmental duplications, tandem and interspersed repeats, and satellites. Repetitive sequences can be beneficial by serving specific cellular functions (e.g. centromeric and telomeric DNA) and by providing a rapid means for adaptive evolution. However, such elements are also substrates for deleterious chromosomal rearrangements that affect fitness and promote human disease. Recent studies analyzing the role of nuclear organization in DNA repair and factors that suppress non-allelic homologous recombination (NAHR) have provided insights into how genome stability is maintained in eukaryotes. In this review, we outline the types of repetitive sequences seen in eukaryotic genomes and how recombination mechanisms are regulated at the DNA sequence, cell organization, chromatin structure, and cell cycle control levels to prevent chromosomal rearrangements involving these sequences.  相似文献   

3.
Repetitive DNA is present in the eukaryotic genome in the form of segmental duplications, tandem and interspersed repeats, and satellites. Repetitive sequences can be beneficial by serving specific cellular functions (e.g. centromeric and telomeric DNA) and by providing a rapid means for adaptive evolution. However, such elements are also substrates for deleterious chromosomal rearrangements that affect fitness and promote human disease. Recent studies analyzing the role of nuclear organization in DNA repair and factors that suppress non-allelic homologous recombination (NAHR) have provided insights into how genome stability is maintained in eukaryotes. In this review, we outline the types of repetitive sequences seen in eukaryotic genomes and how recombination mechanisms are regulated at the DNA sequence, cell organization, chromatin structure, and cell cycle control levels to prevent chromosomal rearrangements involving these sequences.  相似文献   

4.
Nucleotide substitutions, insertions, and deletions constitute the principal molecular mechanisms generating genetic variation on small length scales. In contrast to substitutions, the nature of short DNA insertions and deletions (indels) is far less understood. With the recent availability of whole-genome multiple alignments between human and other primates, detailed investigations on indel characteristics and origin have come within reach. Here, we show that the majority of short (1-100 bp) DNA insertions in the human lineage are tandem duplications of directly adjacent sequence segments with conserved polarity. Indels in microsatellites comprise only a small fraction. The underlying molecular processes generating indels do not necessarily rely on the presence of preexisting duplicates, as would be expected for unequal crossing over, as well as replication slippage. Instead, our findings point toward a mechanism that preferentially occurs in the male germline and is not recombination-mediated. Surprisingly, nonframeshifting tandem duplications and deletions in coding regions still occur at approximately 50% of their genomic background rates. As is already well established in the context of gene and segmental duplications, our results demonstrate that duplications are also likely to constitute the predominant process for rapid generation of new genetic material and function on smaller scales.  相似文献   

5.
Xrcc3 is recruited to DNA double strand breaks early and independent of Rad51   总被引:11,自引:0,他引:11  
Rad51-mediated homologous recombination (HR) is essential for maintenance of genome integrity. The Xrcc3 protein functions in HR DNA repair, and studies suggest it has multiple roles at different stages in this pathway. Defects in vertebrate XRCC3 result in elevated levels of spontaneous and DNA damage-induced chromosomal abnormalities, as well as increased sensitivity to DNA damaging agents. Formation of DNA damaged-induced nuclear Rad51 foci requires Xrcc3 and the other Rad51 paralog proteins (Rad51B, Rad51C, Rad51D, Xrcc2), thus supporting a model in which an early function of Xrcc3 involves promoting assembly of active Rad51 repair complexes. However, it is not known whether Xrcc3 or other Rad51 paralog proteins accumulate at DNA breaks, and if they do whether their stable association with breaks requires Rad51. Here we report for the first time that Xrcc3 forms distinct foci in human cells and that nuclear Xrcc3 begins to localize at sites of DNA damage within 10 min after radiation treatment. RNAi-mediated knock down of Rad51 has no effect on the DNA damage-induced localization of Xrcc3 to DNA breaks. Our data are consistent with a model in which Xrcc3 associates directly with DNA breaks independent of Rad51, and subsequently facilitates formation of the Rad51 nucleoprotein filament.  相似文献   

6.
Interstitial Telomeric Repeat Sequence (ITRS) blocks are recognized as hot spots for spontaneous and ionizing radiation-induced chromosome breakage and recombination. Background and ionizing radiation-induced DNA breaks in large blocks of ITRS from Chinese hamster cell lines were analyzed using the DNA Breakage Detection-Fluorescence In Situ Hybridization (DBD-FISH) procedure. Our results indicate an extremely alkali-sensitivity of ITRS. Furthermore, it appears that ITRS blocks exhibit a particular chromatin structure, being enriched in short unpaired DNA segments. These segments could be liable to severe topological stress in highly compacted areas of the genome resulting in their spontaneous fragility and thus explaining their alkali-sensitivity. The induction and repair kinetics of DNA single-strand breaks (ssb) and DNA double-strand breaks (dsb) induced by ionizing radiation were assessed by DBD-FISH on neutral comets using Chinese hamster cells deficient in either DNA-PKcs or Rad51C. Our results indicate that the initial rejoining rate of dsb within ITRS is slower than that in the whole genome, in wild-type cells, demonstrating an intragenomic heterogeneity in dsb repair. Interestingly, in the absence of DNA-PKcs activity, the rejoining rate of dsb within ITRS is not modified, unlike in the whole genome. This was also found in the case of Rad51C mutant cells. Our results suggest the possibility that different DNA sequences or chromatin organizations may be targeted by specific dsb repair pathways. Furthermore, it appears that additional unknown dsb repair pathways may be operational in mammalian cells.  相似文献   

7.
8.
The development of high-throughput screening methods such as array-based comparative genome hybridization (array CGH) allows screening of the human genome for copy-number changes. Current array CGH strategies have limits of resolution that make detection of small (less than a few tens of kilobases) gains or losses of genomic DNA difficult to identify. We report here a significant improvement in the resolution of array CGH, with the development of an array platform that utilizes single-stranded DNA array elements to accurately measure copy-number changes of individual exons in the human genome. Using this technology, we screened 31 patient samples across an array containing a total of 162 exons for five disease genes and detected copy-number changes, ranging from whole-gene deletions and duplications to single-exon deletions and duplications, in 100% of the cases. Our data demonstrate that it is possible to screen the human genome for copy-number changes with array CGH at a resolution that is 2 orders of magnitude higher than that previously reported.  相似文献   

9.
Base excision repair (BER) is a major DNA repair pathway employed in mammalian cells that is required to maintain genome stability, thus preventing several human diseases, such as ageing, neurodegenerative diseases and cancer. This is achieved through the repair of damaged DNA bases, sites of base loss and single strand breaks of varying complexity that are continuously induced endogenously or via exogenous mutagens. Whilst the enzymes involved in BER are now well known and characterised, the role of the co-ordination of BER enzymatic activities in the cellular response to DNA damage and the mechanisms regulating this process are only now being revealed. Post-translational modifications of BER proteins, including ubiquitylation and phosphorylation, are increasingly being identified as key processes that regulate BER. In this review we will summarise recent evidence discovering novel mechanisms that are involved in maintaining genome stability by regulation of the key BER proteins in response to DNA damage.  相似文献   

10.
Tandem direct duplications are a common feature of the genomes of eukaryotes ranging from yeast to human, where they comprise a significant fraction of copy number variations. The prevailing model for the formation of tandem direct duplications is non-allelic homologous recombination (NAHR). Here we report the isolation of a series of duplications and reciprocal deletions isolated de novo from a maize allele containing two Class II Ac/Ds transposons. The duplication/deletion structures suggest that they were generated by alternative transposition reactions involving the termini of two nearby transposable elements. The deletion/duplication breakpoint junctions contain 8 bp target site duplications characteristic of Ac/Ds transposition events, confirming their formation directly by an alternative transposition mechanism. Tandem direct duplications and reciprocal deletions were generated at a relatively high frequency (∼0.5 to 1%) in the materials examined here in which transposons are positioned nearby each other in appropriate orientation; frequencies would likely be much lower in other genotypes. To test whether this mechanism may have contributed to maize genome evolution, we analyzed sequences flanking Ac/Ds and other hAT family transposons and identified three small tandem direct duplications with the structural features predicted by the alternative transposition mechanism. Together these results show that some class II transposons are capable of directly inducing tandem sequence duplications, and that this activity has contributed to the evolution of the maize genome.  相似文献   

11.

Background

Replication-independent endogenous double-strand breaks (RIND-EDSBs) occur in both humans and yeast in the absence of inductive agents and DNA replication. In human cells, RIND-EDSBs are hypermethylated, preferentially retained in the heterochromatin and unbound by γ-H2AX. In single gene deletion yeast strains, the RIND-EDSB levels are altered; the number of RIND-EDSBs is higher in strains with deletions of histone deacetylase, endonucleases, topoisomerase, or DNA repair regulators, but lower in strains with deletions of the high-mobility group box proteins or Sir2. In summary, RIND-EDSBs are different from pathologic DSBs in terms of their causes and consequences. In this study, we identified the nucleotide sequences surrounding RIND-EDSBs and investigated the features of these sequences as well as their break locations.

Results

In recent work, we detected RIND-EDSBs using ligation mediated PCR. In this study, we sequenced RIND-EDSB PCR products of resting state Saccharomyces cerevisiae using next-generation sequencing to analyze RIND-EDSB sequences. We found that the break locations are scattered across a number of chromosomes. The number of breaks correlated with the size of the chromosomes. Most importantly, the break occurrences had sequence pattern specificity. Specifically, the majority of the breaks occurred immediately after the sequence “ACGT” (P = 2.2E-156). Because the “ACGT” sequence does not occur primarily in the yeast genome, this specificity of the “ACGT” sequence cannot be attributed to chance.

Conclusions

RIND-EDSBs occur non-randomly; that is, they are produced and retained by specific mechanisms. Because these particular mechanisms regulate their generation and they possess potentially specific functions, RIND-EDSBs could be epigenetic marks.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-750) contains supplementary material, which is available to authorized users.  相似文献   

12.
Unlike normal tissues, tumor cells possess a propensity for genomic instability, resulting from elevated oxidant levels produced by oncogenic signaling and aberrant cellular metabolism. Thus, targeting mechanisms that protect cancer cells from the tumor-inhibitory consequences of their redox imbalance and spontaneous DNA-damaging events is expected to have broad-spectrum efficacy and a high therapeutic index. One critical mechanism for tumor cell protection from oxidant stress is the hydrolysis of oxidized nucleotides. Human MutT homolog 1 (MTH1), the mammalian nudix (nucleoside diphosphate X) pyrophosphatase (NUDT1), protects tumor cells from oxidative stress-induced genomic DNA damage by cleansing the nucleotide pool of oxidized purine nucleotides. Depletion or pharmacologic inhibition of MTH1 results in genomic DNA strand breaks in many cancer cells. However, the mechanisms underlying how oxidized nucleotides, thought mainly to be mutagenic rather than genotoxic, induce DNA strand breaks are largely unknown. Given the recent therapeutic interest in targeting MTH1, a better understanding of such mechanisms is crucial to its successful translation into the clinic and in identifying the molecular contexts under which its inhibition is likely to be beneficial. Here we provide a comprehensive perspective on MTH1 function and its importance in protecting genome integrity, in the context of tumor-associated oxidative stress and the mechanisms that likely lead to irreparable DNA strand breaks as a result of MTH1 inhibition.  相似文献   

13.
NME1 (also known as NM23-H1) was the first identified tumor metastasis suppressor, which has been reported to link with genomic stability maintenance and cancer. However its underlying mechanisms are still not fully understood. Here we find that NME1 is required for non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). Mechanistically, NME1 re-localizes to DNA damage sites in a Ku-XRCC4-dependent manner, and regulates downstream LIG4 recruitment and end joining efficiency. Furthermore, we show that the 3′-5′ exonuclease activity of NME1 is critical for its function in NHEJ. Taken together, our findings identify NME1 as a novel NHEJ factor, and reveal how this metastasis suppressor promotes genome stability.  相似文献   

14.
Plant genome diversity varies from single nucleotide polymorphisms to large-scale deletions, insertions, duplications, or re-arrangements. These re-arrangements of sequences resulting from duplication, gains or losses of DNA segments are termed copy number variations (CNVs). During the last decade, numerous studies have emphasized the importance of CNVs as a factor affecting human phenotype; in particular, CNVs have been associated with risks for several severe diseases. In plants, the exploration of the extent and role of CNVs in resistance against pathogens and pests is just beginning. Since CNVs are likely to be associated with disease resistance in plants, an understanding of the distribution of CNVs could assist in the identification of novel plant disease-resistance genes. In this paper, we review existing information about CNVs; their importance, role and function, as well as their association with disease resistance in plants.  相似文献   

15.
Protein domain repeats are common in proteins that are central to the organization of a cell, in particular in eukaryotes. They are known to evolve through internal tandem duplications. However, the understanding of the underlying mechanisms is incomplete. To shed light on repeat expansion mechanisms, we have studied the evolution of the muscle protein Nebulin, a protein that contains a large number of actin-binding nebulin domains.Nebulin proteins have evolved from an invertebrate precursor containing two nebulin domains. Repeat regions have expanded through duplications of single domains, as well as duplications of a super repeat (SR) consisting of seven nebulins. We show that the SR has evolved independently into large regions in at least three instances: twice in the invertebrate Branchiostoma floridae and once in vertebrates.In-depth analysis reveals several recent tandem duplications in the Nebulin gene. The events involve both single-domain and multidomain SR units or several SR units. There are single events, but frequently the same unit is duplicated multiple times. For instance, an ancestor of human and chimpanzee underwent two tandem duplications. The duplication junction coincides with an Alu transposon, thus suggesting duplication through Alu-mediated homologous recombination.Duplications in the SR region consistently involve multiples of seven domains. However, the exact unit that is duplicated varies both between species and within species. Thus, multiple tandem duplications of the same motif did not create the large Nebulin protein.Finally, analysis of segmental duplications in the human genome reveals that duplications are more common in genes containing domain repeats than in those coding for nonrepeated proteins. In fact, segmental duplications are found three to six times more often in long repeated genes than expected by chance.  相似文献   

16.
Single cell genomics performed on individual human subjects' tumors, neural tissues, and sperm samples revealed the existence of genetic heterogeneity arising through either mutations in exomes, deletions, recombinations, and duplications of DNA sequences, as well as aneuploidy. These genetic changes happen during cell cycles followed by cell division. The aim of this review is to strictly focus on single cell human genomics and intends to deliver information that can help to refine fundamental knowledge relating to genetic causes of cellular heterogeneity origins in both healthy and disease states. Allogenic heterogeneity as well as heterogeneity origins of cells possessing the same genome with different gene expression patterns is not the subject of this review. Future research still requires: a) improvement for complete and errorless DNA acquisition and sequencing of not only selected parts of the genome, and b) analyses of more samples that contain millions of cells. These data will deliver a more precise comparative representation of genetic diversity among single cells in an individual human subject. Consequently, we will be able to better distinguish between the role of genetic, versus epigenetic, and stochastic factors in the cellular diversity of over 30 trillion cells present in a human body.  相似文献   

17.
Aberrant end joining of DNA double strand breaks leads to chromosomal rearrangements and to insertion of nuclear or mitochondrial DNA into breakpoints, which is commonly observed in cancer cells and constitutes a major threat to genome integrity. However, the mechanisms that are causative for these insertions are largely unknown. By monitoring end joining of different linear DNA substrates introduced into HEK293 cells, as well as by examining end joining of CRISPR/Cas9 induced DNA breaks in HEK293 and HeLa cells, we provide evidence that the dNTPase activity of SAMHD1 impedes aberrant DNA resynthesis at DNA breaks during DNA end joining. Hence, SAMHD1 expression or low intracellular dNTP levels lead to shorter repair joints and impede insertion of distant DNA regions prior end repair. Our results reveal a novel role for SAMHD1 in DNA end joining and provide new insights into how loss of SAMHD1 may contribute to genome instability and cancer development.  相似文献   

18.
Standard methods of DNA sequence analysis assume that sequences evolve independently, yet this assumption may not be appropriate for segmental duplications that exchange variants via interlocus gene conversion (IGC). Here, we use high quality multiple sequence alignments from well-annotated segmental duplications to systematically identify IGC signals in the human reference genome. Our analysis combines two complementary methods: (i) a paralog quartet method that uses DNA sequence simulations to identify a statistical excess of sites consistent with inter-paralog exchange, and (ii) the alignment-based method implemented in the GENECONV program. One-quarter (25.4%) of the paralog families in our analysis harbor clear IGC signals by the quartet approach. Using GENECONV, we identify 1477 gene conversion tracks that cumulatively span 1.54 Mb of the genome. Our analyses confirm the previously reported high rates of IGC in subtelomeric regions and Y-chromosome palindromes, and identify multiple novel IGC hotspots, including the pregnancy specific glycoproteins and the neuroblastoma breakpoint gene families. Although the duplication history of a paralog family is described by a single tree, we show that IGC has introduced incredible site-to-site variation in the evolutionary relationships among paralogs in the human genome. Our findings indicate that IGC has left significant footprints in patterns of sequence diversity across segmental duplications in the human genome, out-pacing the contributions of single base mutation by orders of magnitude. Collectively, the IGC signals we report comprise a catalog that will provide a critical reference for interpreting observed patterns of DNA sequence variation across duplicated genomic regions, including targets of recent adaptive evolution in humans.  相似文献   

19.
Sukhodolets VV 《Genetika》2004,40(8):1046-1052
Homologous recombination between direct DNA repeats within the extended tandem duplications in E. coli results from unequal sister-chromosome exchanges. This conclusion follows from the observations on the segregation of completely or partly homozygous diploid segregants by heterozygous duplications. The formation of diploid segregants with preserved heterozygosity for the unselected markers could also result from "symmetrical" intrachromosomal recombination. Analysis of the segregant genotypes, however, confirmed their formation via unequal crossing over. The data obtained indicated that in tandem duplications segregation of diploid recombinants of different types was preceded by the formation of triplications as the products of unequal sister-chromosome exchanges. In heterozygous duplications, unequal crossing over is manifested as a highly frequent adaptive exchange, providing the survival of the most part of the duplication-carrying cells on selective medium. It is suggested that adaptive mutagenesis can be the consequence of unequal sister crossing over.  相似文献   

20.
Using a data set of protein translations associated with map positions in the human genome, we identified 1520 mapped highly conserved gene families. By comparing sharing of families between genomic windows, we identified 92 potentially duplicated blocks in the human genome containing 422 duplicated members of these families. Using branching order in the phylogenetic trees, we timed gene duplication events in these families relative to the primate-rodent divergence, the amniote-amphibian divergence, and the deuterostome-protostome divergence. The results showed similar patterns of gene duplication times within duplicated blocks and outside duplicated blocks. Both within and outside duplicated blocks, numerous duplications were timed prior to the deuterostome-protostome divergence, whereas others occurred after the amniote-amphibian divergence. Thus, neither gene duplication in general nor duplication of genomic blocks could be attributed entirely to polyploidization early in vertebrate history. The strongest signal in the data was a tendency for intrachromosomal duplications to be more recent than interchromosomal duplications, consistent with a model whereby tandem duplication-whether of single genes or of genomic blocks-may be followed by eventual separation of duplicates due to chromosomal rearrangements. The rate of separation of tandemly duplicated gene pairs onto separated chromosomes in the human lineage was estimated at 1.7 x 10(-9) per gene-pair per year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号