首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundDespite several alternatives for cellular iron influx, the only mechanism for cellular iron efflux is ferroportin mediated active transport. In cases of ferroportin dysfunction, iron accumulates in the cell and causes ferroptosis. Hepcidin suppresses ferroportin levels and inflammatory activation increases hepcidin production. Mild inflammation in schizophrenia and bipolar disorder may alter hepcidin and ferroportin.MethodsThe study included a total of 137 patients aged 18–65 years, 57 diagnosed with schizophrenia and 80 with bipolar disorder, according to the DSM-IV diagnostic criteria, and a control group (HC) of 42 healthy individuals. Biochemical analyses, thyroid function tests, hemogram, serum iron level, iron-binding capacity, and ferritin levels were examined. Serum levels of hepcidin and ferroportin were measured with enzyme-linked immunosorbent assay (ELISA) method.ResultsA statistically significant difference was determined between the groups in terms of the serum ferroportin levels (F = 15.69, p < 0.001). Post-hoc analyses showed that the schizophrenia group had higher ferroportin levels than in the bipolar group (p < 0.001) and HCs (p < 0.001). Hepcidin levels did not differ between the groups. Chlorpromazine equivalent doses of antipsychotics correlated with ferroportin levels (p = 0.024).ConclusionFerroportin levels were increased in the schizophrenia group, although iron and hepcidin levels were within normal ranges. Antipsychotics may alter the mechanisms which control ferroportin levels. Further studies are needed to examine the relationships between antipsychotics and iron metabolism for determination of causal relationship.  相似文献   

2.
Although the recent identification of several genes has extended our knowledge on the maintenance of body iron homeostasis, their tissue specific expression patterns and the underlying regulatory networks are poorly understood. We studied C57black/Sv129 mice and HFE knockout (HFE -/-) variants thereof as a model for hemochromatosis, and investigated the expression of iron metabolism genes in the duodenum, liver, and kidney as a function of dietary iron challenge. In HFE +/+ mice dietary iron supplementation increased hepatic expression of hepcidin which was paralleled by decreased iron regulatory protein (IRP) activity, and reduced expression of divalent metal transporter-1 (DMT-1) and duodenal cytochrome b (Dcytb) in the enterocyte. In HFE -/- mice hepcidin formation was diminished upon iron challenge which was associated with decreased hepatic transferrin receptor (TfR)-2 levels. Accordingly, HFE -/- mice presented with high duodenal Dcytb and DMT-1 levels, and increased IRP and TfR expression, suggesting iron deficiency in the enterocyte and increased iron absorption. In parallel, HFE -/- resulted in reduced renal expression of Dcytb and DMT-1. Our data suggest that the feed back regulation of duodenal iron absorption by hepcidin is impaired in HFE -/- mice, a model for genetic hemochromatosis. This change may be linked to inappropriate iron sensing by the liver based on decreased TfR-2 expression, resulting in reduced circulating hepcidin levels and an inappropriate up-regulation of Dcytb and DMT-1 driven iron absorption. In addition, iron excretion/reabsorption by the kidneys may be altered, which may aggravate progressive iron overload.  相似文献   

3.
Hemizygous TNFΔARE/+ mice are a murine model for chronic inflammation. We utilized these animals to study iron-kinetics and corresponding protein expression in an iron-deficient and iron-adequate setting. 59Fe-absorption was determined in ligated duodenal loops in vivo. Whole body distribution of i.v. injected 59Fe was analysed, and the organ specific expression of ferroportin, transferrin receptor-1, hepcidin and duodenal DMT-1 was quantified by real-time PCR and Western blotting.Duodenal 59Fe-lumen-to-body transport was not affected by the genotype. Duodenal 59Fe-retention was increased in TNFΔARE/+ mice, suggesting higher 59Fe-losses with defoliated enterocytes. Iron-deficiency increased duodenal 59Fe-lumen-to-body transport, and higher duodenal 59Fe-tissue retention went along with higher duodenal DMT-1, ferroportin, and liver hepcidin expression. TNFΔARE/+ mice significantly increase their 59Fe-content in inflamed joints and ilea, and correspondingly reduce splenic 59Fe-content. Leukocyte infiltrations in the joints suggest a substantial shift of iron-loaded RES cells to inflamed tissues as the underlying mechanism. This finding was paralleled by increased non-haem iron content in joints and reduced haemoglobin and haematocrit concentrations in TNFΔARE/+ mice.In conclusion, erythropoiesis in inflamed TNFΔARE/+ mice could be iron-limited due to losses with exfoliated iron-loaded enterocytes and/or to increased iron-retention in RES cells that shift from the spleen to inflamed tissues.  相似文献   

4.
Disturbances of iron metabolism are observed in chronic liver diseases. In the present study, we examined gene expression of duodenal iron transport molecules and hepcidin in patients with hereditary hemochromatosis (HHC) (treated and untreated), involving various genotypes (genotypes which represent risk for HHC were examined), and in patients with iron deficiency anaemia (IDA). Gene expressions of DMT1, ferroportin, Dcytb, hephaestin, HFE and TFR1 were measured in duodenal biopsies using real-time PCR and Western blot. Serum hepcidin levels were measured using ELISA. DMT1, ferroportin and TFR1 mRNA levels were significantly increased in post-phlebotomized hemochromatics relative to controls. mRNAs of all tested molecules were significantly increased in patients with IDA compared to controls. The protein expression of ferroportin was increased in both groups of patients but not significantly. Spearman rank correlations showed that DMT1 versus ferroportin, Dcytb versus hephaestin and DMT1 versus TFR1 mRNAs were positively correlated regardless of the underlying cause, similarly to protein levels of ferroportin versus Dcytb and ferroportin versus hephaestin. Serum ferritin was negatively correlated with DMT1 mRNA in investigated groups of patients, except for HHC group. A decrease of serum hepcidin was observed in IDA patients, but this was not statistically significant. Our data showed that although untreated HHC patients do not have increased mRNA levels of iron transport molecules when compared to normal subjects, the expression is relatively increased in relation to body iron stores. On the other hand, post-phlebotomized HHC patients had increased DMT1 and ferroportin mRNA levels possibly due to stimulated erythropoiesis after phlebotomy.  相似文献   

5.

Iron is an essential trace element involved in oxidation–reduction reactions, oxygen transport and storage, and energy metabolism. Iron in excess can be toxic for cells, since iron produces reactive oxygen species and is important for survival of pathogenic microbes. There is a fine-tuning in the regulation of serum iron levels, determined by intestinal absorption, macrophage iron recycling, and mobilization of hepatocyte stores versus iron utilization, primarily by erythroid cells in the bone marrow. Hepcidin is the major regulatory hormone of systemic iron homeostasis and is upregulated during inflammation. Hepcidin metabolism is altered in chronic kidney disease. Ferroportin is an iron export protein and mediates iron release into the circulation from duodenal enterocytes, splenic reticuloendothelial macrophages, and hepatocytes. Systemic iron homeostasis is controlled by the hepcidin–ferroportin axis at the sites of iron entry into the circulation. Hepcidin binds to ferroportin, induces its internalization and intracellular degradation, and thus inhibits iron absorption from enterocytes, and iron release from macrophages and hepatocytes. Recent data suggest that hepcidin, by slowing or preventing the mobilization of iron from macrophages, may promote atherosclerosis and may be associated with increased cardiovascular disease risk. This article reviews the current data regarding the molecular and cellular pathways of systemic and autocrine hepcidin production and seeks the answer to the question whether changes in hepcidin translate into clinical outcomes of all-cause and cardiovascular mortality, and cardiovascular and renal end-points.

  相似文献   

6.
Molecular analysis of increased iron status in moderately exercised rats   总被引:5,自引:0,他引:5  
Although iron plays a critical role in exercise, the regulatory mechanism of iron metabolism remains poorly understood. The aims of the present study were to investigate the effects of different intensity exercise on body iron status and the regulatory mechanism of duodenal iron absorption. Thirty female Sprague-Dawley rats (90–100 g) were randomly divided into three groups: a control group (remained sedentary, CG), a moderately exercised group (swam 1.5 h/day, MG) and a strenuously exercised group (swam with different load, SG). Serum iron status, serum ferritin and Hct were examined after 10 weeks of swimming. Western blot was performed to detect the expression of iron transport proteins: divalent metal transporter1 (DMT1) and ferroportin 1 (FPN1) in duodenal epithelium. The expression of hepcidin mRNA in liver was examined by RT-PCR. The results showed: (1) the body iron status in MG was kept at a high level compared to that of CG and SG, (2) Western blot showed DMT1 with iron responsive element (IRE) and FPN1 in duodenal epithelium which were higher in MG than that of CG and (3) the expression of hepatic hepcidin mRNA was down regulated in MG (p < 0.05). The data suggested that moderate exercise improved iron status and that was likely regulated by increased DMT1 with IRE and FPN1 expression. Hepcidin signaling pathway may involve in the regulation of duodenal iron absorption proteins. Xiang Lin Duan and Yan Zhong Chang share Senior Authorship  相似文献   

7.
Hepcidin-synthesis was reported to be stimulated by inflammation. In contrast, hepcidin synthesis was inhibited by TNFα and serum hepcidin was low. To elucidate these contradictions, we compare data on hepcidin expression, on iron absorption and homoeostasis and markers of inflammation between two murine models of intestinal inflammation and corresponding wild-types as determined by standard methods.In TNFΔARE/+ and IL-10−/−-mice hepatic hepcidin expression and protein content was significantly lower than in corresponding wild-types. However, 59Fe whole-body retention showed no difference between knock-outs and corresponding wild-types 7d after gavage, in neither strain. Compared to wild-types, body weight, hepatic non-haem iron content, hemoglobin and hematocrit were significantly decreased in TNFΔARE/+ mice, while erythropoiesis increased. These differences were not seen in IL-10−/− mice. Duodenal IL-6 and TNFα content increased significantly in TNFΔARE/+ mice, while ferritin-H decreased along with hepatic hepcidin expression, ferritin L, and non-haem iron. In IL-10−/− mice, these changes were less marked or missing for non-haem iron. Duodenal ferritin-L and ferroportin increased significantly, while HFE decreased.Our results corroborate the conflicting combination of low hepcidin with inflammation and without increased intestinal iron absorption. Speculating on underlying mechanism, decreased hepcidin may result from stimulated erythropoiesis. Unaltered intestinal iron-absorption may compromise between the stimulation by increased erythropoiesis and inhibition by local and systemic inflammation. The findings suggest intense interaction between counterproductive mechanisms and ask for further research.  相似文献   

8.
ImportanceSince the beginning of the COVID-19 pandemic, numerous metabolic alterations have been observed in individuals with this disease. It is known that SARS-CoV-2 can mimic the action of hepcidin, altering intracellular iron metabolism, but gaps remain in the understanding of possible outcomes in other pathways involved in the iron cycle.ObjectiveTo profile iron, ferritin and hepcidin levels and transferrin receptor gene expression in patients diagnosed with COVID-19 between June 2020 and September 2020.Design, setting and participantsCross-sectional study that evaluated iron metabolism markers in 427 participants, 218 with COVID-19 and 209 without the disease.ExposuresThe primary exposure was positive diagnose to COVID-19 in general population of Santo André and São Bernardo cities. The positive and negative diagnose were determinate through RT-qPCR.Main outcomes and measuresDevido a evidências de alterações do ciclo do ferro em pacientes diagnosticados com COVID-19 e devido a corregulação entre hepcidina e receptor de transferrina, uma análise da expressão gênica deste último, poderia trazer insights sobre o estado de ferro celular. A hipótese foi confirmada, mostrando aumento da expressão de receptor de transferrina concomitante com redução do nível de hepcidina circulante.ResultsSerum iron presented lower values in individuals diagnosed with COVID-19, whereas serum ferritin presented much higher values in infected patients. Elderly subjects had lower serum iron levels and higher ferritin levels, and men with COVID-19 had higher ferritin values than women. Serum hepcidin was lower in the COVID-19 patient group and transferrin receptor gene expression was higher in the infected patient group compared to controls.Conclusions and relevanceCOVID-19 causes changes in several iron cycle pathways, with iron and ferritin levels being markers that reflect the state and evolution of infection, as well as the prognosis of the disease. The increased expression of the transferrin receptor gene suggests increased iron internalization and the mimicry of hepcidin action by SARS-CoV-2, reduces iron export via ferroportin, which would explain the low circulating levels of iron by intracellular trapping.  相似文献   

9.
The Caco-2 cell line is well established as an in vitro model for iron absorption. However, the model does not reflect the regulation of iron absorption by hepcidin produced in the liver. We aimed to develop the Caco-2 model by introducing human liver cells (HepG2) to Caco-2 cells. The Caco-2 and HepG2 epithelia were separated by a liquid compartment, which allowed for epithelial interaction. Ferritin levels in cocultured Caco-2 controls were 21.7±10.3 ng/mg protein compared to 7.7±5.8 ng/mg protein in monocultured Caco-2 cells. The iron transport across Caco-2 layers was increased when liver cells were present (8.1%±1.5% compared to 3.5%±2.5% at 120 μM Fe). Caco-2 cells were exposed to 0, 80 and 120 μM Fe and responded with increased hepcidin production at 120 μM Fe (3.6±0.3 ng/ml compared to 2.7±0.3 ng/ml). The expression of iron exporter ferroportin in Caco-2 cells was decreased at the hepcidin concentration of 3.6 ng/ml and undetectable at external addition of hepcidin (10 ng/ml). The apical transporter DMT1 was also undetectable at 10 ng/ml but was unchanged at the lower concentrations. In addition, we observed that sourdough bread, in comparison to heat-treated bread, increased the bioavailability of iron despite similar iron content (53% increase in ferritin formation, 97% increase in hepcidin release). This effect was not observed in monocultured Caco-2 cells. The Caco-2/HepG2 model provides an alternative approach to in vitro iron absorption studies in which the hepatic regulation of iron transport must be considered.  相似文献   

10.
Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis   总被引:8,自引:0,他引:8  
Hepcidin, a key regulator of iron metabolism, decreases intestinal absorption of iron and its release from macrophages. Iron, anemia, hypoxia, and inflammation were reported to influence hepcidin expression. To investigate regulation of the expression of hepcidin and other iron-related genes, we manipulated erythropoietic activity in mice. Erythropoiesis was inhibited by irradiation or posttransfusion polycythemia and stimulated by phenylhydrazine administration and erythropoietin. Gene expression of hepcidin and other iron-related genes (hemojuvelin, DMT1, ferroportin, transferrin receptors, ferritin) in the liver was measured by the real-time polymerase chain reaction. Hepcidin expression increased despite severe anemia when hematopoiesis was inhibited by irradiation. Suppression of erythropoiesis by posttransfusion polycythemia or irradiation also increased hepcidin mRNA levels. Compensated hemolysis induced by repeated phenylhydrazine administration did not change hepcidin expression. The decrease caused by exogenous erythropoeitin was blocked by postirradiation bone marrow suppression. The hemolysis and anemia decrease hepcidin expression only when erythropoiesis is functional; on the other hand, if erythropoiesis is blocked, even severe anemia does not lead to a decrease of hepcidin expression, which is indeed increased. We propose that hepcidin is exclusively sensitive to iron utilization for erythropoiesis and hepatocyte iron balance, and these changes are not sensed by other genes involved in the control of iron metabolism in the liver.  相似文献   

11.
Patients with chronic hepatitis C frequently have serum and hepatic iron overload, but the mechanism is unknown. Recently identified hepcidin, exclusively synthesized in the liver, is thought to be a key regulator for iron homeostasis and is induced by infection and inflammation. This study was conducted to determine the hepatic hepcidin expression levels in patients with various liver diseases. We investigated hepcidin mRNA levels of liver samples by real-time detection-polymerase chain reaction; 56 were hepatitis C virus (HCV) positive, 34 were hepatitis B virus (HBV) positive, and 42 were negative for HCV and HBV (3 cases of auto-immune hepatitis, 7 alcoholic liver disease, 13 primary biliary cirrhosis, 9 nonalcoholic fatty liver disease, and 10 normal liver). We analyzed the relation of hepcidin to clinical, hematological, histological, and etiological findings. Hepcidin expression levels were strongly correlated with serum ferritin (P < 0.0001) and the degree of iron deposit in liver tissues (P < 0.0001). Hepcidin was also correlated with hematological parameters (vs. hemoglobin, P = 0.0073; vs. serum iron, P = 0.0012; vs. transferrin saturation, P < 0.0001) and transaminase levels (P = 0.0013). The hepcidin-to-ferritin ratio was significantly lower in HCV(+) patients than in HBV(+) patients (P = 0.0129) or control subjects (P = 0.0080). In conclusion, hepcidin expression levels in chronic liver diseases were strongly correlated with either the serum ferritin concentration or degree of iron deposits in the liver. When adjusted by either serum ferritin values or hepatic iron scores, hepcidin indices were significantly lower in HCV(+) patients than in HBV(+) patients, suggesting that hepcidin may play a pivotal role in the pathogenesis of iron overload in patients with chronic hepatitis C.  相似文献   

12.
13.
Ceruloplasmin plays an essential role in cellular iron efflux by oxidizing ferrous iron exported from ferroportin. Ferroportin is posttranslationally regulated through internalization triggered by hepcidin binding. Aceruloplasminemia is an autosomal recessive disorder of iron homeostasis resulting from mutations in the ceruloplasmin gene. The present study investigated the biological effects of glycosylphosphatidylinositol (GPI)-linked ceruloplasmin on the hepcidin-mediated internalization of ferroportin. The prevention of hepcidin-mediated ferroportin internalization was observed in the glioma cells lines expressing endogenous ceruloplasmin as well as in the cells transfected with GPI-linked ceruloplasmin under low levels of hepcidin. A decrease in the extracellular ferrous iron by an iron chelator and incubation with purified ceruloplasmin in the culture medium prevented hepcidin-mediated ferroportin internalization, while the reconstitution of apo-ceruloplasmin was not able to prevent ferroportin internalization. The effect of ceruloplasmin on the ferroportin stability was impaired due to three distinct properties of the mutant ceruloplasmin: namely, a decreased ferroxidase activity, the mislocalization in the endoplasmic reticulum, and the failure of copper incorporation into apo-ceruloplasmin. Patients with aceruloplasminemia exhibited low serum hepcidin levels and a decreased ferroportin protein expression in the liver. The in vivo findings supported the notion that under low levels of hepcidin, mutant ceruloplasmin cannot stabilize ferroportin because of a loss-of-function in the ferroxidase activity, which has been reported to play an important role in the stability of ferroportin. The properties of mutant ceruloplasmin regarding the regulation of ferroportin may therefore provide a therapeutic strategy for aceruloplasminemia patients.  相似文献   

14.
BackgroundIron export via the transport protein ferroportin (Fpn) plays a critical role in the regulation of dietary iron absorption and iron recycling in macrophages. Fpn plasma membrane expression is controlled by the hepatic iron-regulated hormone hepcidin in response to high iron availability and inflammation. Hepcidin binds to the central cavity of the Fpn transporter to block iron export either directly or by inducing Fpn internalization and lysosomal degradation. Here, we investigated whether iron deficiency affects Fpn protein turnover.MethodsWe ectopically expressed Fpn in HeLa cells and used cycloheximide chase experiments to study basal and hepcidin-induced Fpn degradation under extracellular and intracellular iron deficiency.Conclusions/General significanceWe show that iron deficiency does not affect basal Fpn turnover but causes a significant delay in hepcidin-induced degradation when cytosolic iron levels are low. These data have important mechanistic implications supporting the hypothesis that iron export is required for efficient targeting of Fpn by hepcidin. Additionally, we show that Fpn degradation is not involved in protecting cells from intracellular iron deficiency.  相似文献   

15.
Studies have shown that men and women exhibit significant differences regarding iron status. However, the effects of sex on iron accumulation and distribution are not well established. In this study, female and male Sprague-Dawley rats were killed at 4 months of age. Blood samples were analyzed to determine the red blood cell (RBC) count, hemoglobin (Hb) concentration, hematocrit (Hct), and mean red blood cell volume (MCV). The serum samples were analyzed to determine the concentrations of serum iron (SI), transferrin saturation (TS), ferritin, soluble transferrin receptor (sTfR), and erythropoietin (EPO). The tissue nonheme iron concentrations were measured in the liver, spleen, bone marrow, kidney, heart, gastrocnemius, duodenal epithelium, lung, pallium, cerebellum, hippocampus, and striatum. Hepatic hepcidin expression was detected by real-time PCR analysis. The synthesis of ferroportin 1 (FPN1) in the liver, spleen, kidney, and bone marrow was determined by Western blot analysis. The synthesis of duodenal cytochrome B561 (DcytB), divalent metal transporter 1 (DMT1), FPN1, hephaestin (HP) in the duodenal epithelium was also measured by Western blot analysis. The results showed that the RBC, Hb, and Hct in male rats were higher than those in female rats. The SI and plasma TS levels were lower in male rats than in female rats. The levels of serum ferritin and sTfR were higher in male rats than in female rats. The EPO levels in male rats were lower than that in female rats. The nonheme iron contents in the liver, spleen, bone marrow, and kidney in male rats were also lower (56.7, 73.2, 60.6, and 61.4 % of female rats, respectively). Nonheme iron concentrations in the heart, gastrocnemius, duodenal epithelium, lung, and brain were similar in rats of both sexes. A moderate decrease in hepatic hepcidin mRNA content was also observed in male rats (to 56.0 % of female rats). The levels of FPN1 protein in the liver, spleen, and kidney were higher in male rats than in female rats. There was no significant change in FPN1 expression in bone marrow. Significant difference was also not found in DcytB, DMT1, FPN1, and HP protein levels in the duodenal epithelium between male and female rats. These data suggest that iron is distributed differently in male and female rats. This difference in iron distribution may be associated with the difference in the hepcidin level.  相似文献   

16.
17.
Both cellular iron deficiency and excess have adverse consequences. To maintain iron homeostasis, complex mechanisms have evolved to regulate cellular and extracellular iron concentrations. Extracellular iron concentrations are controlled by a peptide hormone hepcidin, which inhibits the supply of iron into plasma. Hepcidin acts by binding to and inducing the degradation of the cellular iron exporter, ferroportin, found in sites of major iron flows: duodenal enterocytes involved in iron absorption, macrophages that recycle iron from senescent erythrocytes, and hepatocytes that store iron. Hepcidin synthesis is in turn controlled by iron concentrations, hypoxia, anemia and inflammatory cytokines. The molecular mechanisms that regulate hepcidin production are only beginning to be understood, but its dysregulation is involved in the pathogenesis of a spectrum of iron disorders. Deficiency of hepcidin is the unifying cause of hereditary hemochromatoses, and excessive cytokine-stimulated hepcidin production causes hypoferremia and contributes to anemia of inflammation.  相似文献   

18.
Genetic variants associated with iron homeostasis have been identified, but their association with iron-related indices and variables among different ethnic populations remains controversial. We aimed to explore the genotype frequency and allelic distribution of three iron-metabolism related variants in homeostatic iron regulator gene (HFE; rs1800562 G/A), transmembrane protease, Serine-6 gene (TMPRSS6; rs855791 A/G), and BTB domain-containing protein-9 gene (BTBD9; rs9357271 C/T) among a sample of the Middle Eastern blood donors and to detect the association of these variants on blood indices, and serum hepcidin/ferritin levels. Real-Time TaqMan genotyping assay for the specified variants was applied for 197 unrelated blood donors. Complete blood picture and serum hepcidin/ferritin levels were assessed. All participants were carriers of rs1800562*G/G genotype for HFE. The frequency of A/A and A/G genotypes of TMPRSS6 rs855791 variant was 55% and 45%, and for C/C, C/T, and T/T of BTBD9 rs9357271, were 15%, 43%, and 42%, respectively. Minor allele frequencies of rs855791*G and rs9357271*C were 0.23 and 0.37. The GGC genotype combination (for HFE/TMPRSS6/BTBD9, respectively) was more frequent in male participants. Higher serum hepcidin and hepcidin/ferritin ratio were observed in TMPRSS6 (A/G) carriers. While subjects with BTBD9 C/T and TT genotypes had lower serum ferritin values and higher levels of hepcidin and hepcidin/ferritin ratio compared with C/C genotype. No significant associations were found with any other blood parameters.In conclusion, TMPRSS6 rs855791 (A/G) and BTBD9 rs9357271 (C/T) variants were prevalent in the present blood donor population and may influence the serum hepcidin and/or ferritin levels.  相似文献   

19.
Hepcidin and ferritin are key proteins of iron homeostasis in mammals. In this study, we characterize a chimera by fusing camel hepcidin to a human ferritin H-chain to verify if it retained the properties of the two proteins. The construct (HepcH) is expressed in E. coli in an insoluble and iron-containing form. To characterize it, the product was incubated with ascorbic acid and TCEP to reduce and solubilize the iron, which was quantified with ferrozine. HepcH bound approximately five times more iron than the wild type human ferritin, due to the presence of the hepcidin moiety. To obtain a soluble and stable product, the chimera was denatured and renatured together with different amounts of L-ferritin of the H-chain in order to produce 24-shell heteropolymers with different subunit proportions. They were analyzed by denaturing and non-denaturing PAGE and by mass spectroscopy. At the 1:5 ratio of HepcH to H- or L-ferritin, a stable and soluble molecule was obtained. Its biological activity was verified by its ability to both bind specifically cell lines that express ferroportin and to promote ferroportin degradation. This chimeric molecule showed the ability to bind both mouse J774 macrophage cells, as well as human HepG2 cells, via the hepcidin–ferroportin axis. We conclude that the chimera retains the properties of both hepcidin and ferritin and might be exploited for drug delivery.  相似文献   

20.
Hepcidin, the body's main regulator of systemic iron homeostasis, is upregulated in response to inflammation and is thought to play a role in the manifestation of iron deficiency (ID) observed in obese populations. We determined systemic hepcidin levels and its association with body mass, inflammation, erythropoiesis, and iron status in premenopausal obese and nonobese women (n = 20/group) matched for hemoglobin (Hb). The obese participants also had liver and abdominal visceral and subcutaneous adipose tissue assessed for tissue iron accumulation and hepcidin mRNA expression. Despite similar Hb levels, the obese women had significantly higher serum hepcidin (88.02 vs. 9.70 ng/ml; P < 0.0001) and serum transferrin receptor (sTfR) (P = 0.001) compared to nonobese. In the obese women hepcidin was not correlated with serum iron (r = ?0.02), transferrin saturation (Tsat) (r = 0.17) or sTfR (r = ?0.12); in the nonobese it was significantly positively correlated with Tsat (r = 0.70) and serum iron (r = 0.58), and inversely with sTfR (r = ?0.63). Detectable iron accumulation in the liver and abdominal adipose tissue of the obese women was minimal. Liver hepcidin mRNA expression was ~700 times greater than adipose tissue production and highly correlated with circulating hepcidin levels (r = 0.61). Serum hepcidin is elevated in obese women despite iron depletion, suggesting that it is responding to inflammation rather than iron status. The source of excess hepcidin appears to be the liver and not adipose tissue. The ID of obesity is predominantly a condition of a true body iron deficit rather than maldistribution of iron due to inflammation. However, these findings suggest inflammation may perpetuate this condition by hepcidin‐mediated inhibition of dietary iron absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号