共查询到20条相似文献,搜索用时 15 毫秒
1.
Dermokine-β is abundant in stratified epithelia and in differentiating cultured keratinocytes. In this study, we investigated the role of dermokine-β in differentiation of keratinocytes. Treatment of keratinocytes or skin tumor cells with dermokine-β attenuated phosphorylation of extracellular-signal-regulated kinase (ERK). Exposure of cells to dermokine-β, as well as its carboxyl-terminus domain peptide, interrupted phosphorylation of ERK and stimulated dermokine gene expression. Inhibition of ERK signaling by its specific inhibitor also increased dermokine expression level. A combination of chemical cross-linking and immunoprecipitation, followed by proteomics analyses, identified glucose-regulated protein 78 (GRP78) as a dermokine-β-associated protein. Blockage of GRP78 expression by a specific siRNA abrogated actions of dermokine-β. These findings provide novel insights into the physiological significance of dermokine-β in the epidermis. 相似文献
2.
Wild-type p53-induced phosphatase 1 (Wip1) is a p53-inducible serine/threonine phosphatase that switches off DNA damage checkpoint responses by the dephosphorylation of certain proteins (i.e. p38 mitogen-activated protein kinase, p53, checkpoint kinase 1, checkpoint kinase 2, and uracil DNA glycosylase) involved in DNA repair and the cell cycle checkpoint. Emerging data indicate that Wip1 is amplified or overexpressed in various human tumors, and its detection implies a poor prognosis. In this study, we show that Wip1 interacts with and dephosphorylates BAX to suppress BAX-mediated apoptosis in response to γ-irradiation in prostate cancer cells. Radiation-resistant LNCaP cells showed dramatic increases in Wip1 levels and impaired BAX movement to the mitochondria after γ-irradiation, and these effects were reverted by a Wip1 inhibitor. These results show that Wip1 directly interacts with and dephosphorylates BAX. Dephosphorylation occurs at threonines 172, 174 and 186, and BAX proteins with mutations at these sites fail to translocate efficiently to the mitochondria following cellular γ-irradiation. Overexpression of Wip1 and BAX, but not phosphatase-dead Wip1, in BAX-deficient cells strongly reduces apoptosis. Our results suggest that BAX dephosphorylation of Wip1 phosphatase is an important regulator of resistance to anticancer therapy. This study is the first to report the downregulation of BAX activity by a protein phosphatase. 相似文献
3.
4.
Kidney fibrosis is a common feature of chronic kidney disease (CKD). A recent study suggests that abnormal Notch signaling activation contributes to the development of renal fibrosis. However, the molecular mechanism that regulates this process remains unexplored. Unilateral ureteral obstruction (UUO) or sham-operated C57BL6 mice (aged 10 weeks) were randomly assigned to receive dibenzazepine (DBZ, 250 μg/100 g/d) or vehicle for 7 days. Histologic examinations were performed on the kidneys using Masson's trichrome staining and immunohistochemistry. Real-time PCR and western blot analysis were used for detection of mRNA expression and protein phosphorylation. The expression of Notch 1, 3, and 4, Notch intracellular domain (NICD), and its target genes Hes1 and HeyL were upregulated in UUO mice, while the increase in NICD protein was significantly attenuated by DBZ. After 7 days, the severity of renal fibrosis and expression of fibrotic markers, including collagen 1α1/3α1, fibronectin, and α-smooth muscle actin, were markedly increased in UUO compared with sham mice. In contrast, administration of DBZ markedly attenuated these effects. Furthermore, DBZ significantly inhibited UUO-induced expression of transforming growth factor (TGF)-β, phosphorylated Smad 2, and Smad 3. Mechanistically, Notch signaling activation in tubular epithelial cells enhanced fibroblast proliferation and activation in a coculture experiment. Our study provides evidence that Notch signaling is implicated in renal fibrogenesis. The Notch inhibitor DBZ can ameliorate this process via inhibition of the TGF-β/Smad2/3 signaling pathway, and might be a novel drug for preventing chronic kidney disease. 相似文献
5.
Dehua Zhu Jianping Zhou Jinbo Zhao Guiyang Jiang Xiupeng Zhang Yong Zhang Ming Dong 《Journal of cellular physiology》2019,234(6):8899-8907
ZC3H13 is a canonical CCCH zinc finger protein, which harbors a somatic frame-shift mutation in colorectal cancer (CRC). However, its expression and biological function were still uncertain. In the current study, we found that ZC3H13 was served as a tumor suppressor in CRC cells, which decreased the expression of Snail, Cyclin D1, and Cyclin E1, and increased the expression of Occludin and Zo-1 through inactivating Ras–ERK signaling pathway. Furthermore, reduction of ZC3H13 associated with advanced TNM stage (p = 0.02), positive regional lymph node metastasis ( p = 0.01). Taken together, the current study indicated that ZC3H13 may be an upstream regulator of Ras–ERK signaling pathway and suppressed invasion and proliferation of CRC. 相似文献
6.
7.
8.
9.
Lai JF Zindl CL Duffy LB Atkinson TP Jung YW van Rooijen N Waites KB Krause DC Chaplin DD 《PloS one》2010,5(12):e14417
Mycoplasma pneumoniae (Mp), a common cause of pneumonia, is associated with asthma; however, the mechanisms underlying this association remain unclear. We investigated the cellular immune response to Mp in mice. Intranasal inoculation with Mp elicited infiltration of the lungs with neutrophils, monocytes and macrophages. Systemic depletion of macrophages, but not neutrophils, resulted in impaired clearance of Mp from the lungs. Accumulation and activation of macrophages were decreased in the lungs of MyD88(-/-) mice and clearance of Mp was impaired, indicating that MyD88 is a key signaling protein in the anti-Mp response. MyD88-dependent signaling was also required for the Mp-induced activation of NFκB, which was essential for macrophages to eliminate the microbe in vitro. Thus, MyD88-NFκB signaling in macrophages is essential for clearance of Mp from the lungs. 相似文献
10.
11.
《Cell cycle (Georgetown, Tex.)》2013,12(13)
Comment on: Buontempo F, et al. Cell Cycle 2012; 11:2467-75. 相似文献
12.
13.
14.
Robert G. Bell 《Archives of biochemistry and biophysics》1980,203(1):58-64
Vitamin K-dependent carboxylation of glutamic acid residues to γ-carboxyglutamic acid was demonstrated in proteins of lung microsomes. The carboxylation was 12% of that in liver microsomes per milligram of mierosomal protein. Carboxylation was very low with microsomes of untreated rats but increased with time up to 42 h after warfarin administration. Carboxylation was highest with microsomes from rats fed a vitamin K-deficient diet. This suggests that a protein(s) accumulates which can be carboxylated in vitro/J. Lung microsomes also catalyzed the vitamin K-dependent carboxylation of the peptide Phe-Leu-Glu-Glu-Leu. The peptide carboxylase activity was 9% of that obtained with liver microsomes. Vitamin K-dependent protein carboxylation required NADH or dithioerythritol, suggesting that vitamin K had to be reduced to the hydroquinone. Accordingly, vitamin K1 hydroquinone had carboxylating activity without added reducing agents. Menaquinone-3 was considerably more active than phylloquinone. The temperature optimum for carboxylation was around 27 °C. 相似文献
15.
Moriwaki A Matsumoto K Matsunaga Y Fukuyama S Matsumoto T Kan-o K Noda N Asai Y Nakanishi Y Inoue H 《Biochemical and biophysical research communications》2011,(4):922-927
Acute asthma exacerbations are frequently associated with respiratory viral infections. Although impaired production of type III IFNs (IFN-λs) is related to the severity of asthma exacerbation, the mechanisms underlying deficient IFN-λ production in asthma are poorly understood. Airway epithelial cells were stimulated in vitro with a synthetic mimetic of viral double-stranded RNA (dsRNA). IL-13, a crucial cytokine responsible for asthma pathogenesis, suppressed dsRNA-induced expression of IFN-λs, and JAK inhibitor AG490 prevented the suppression by IL-13. IL-13 per se did not affect IFN-λ production or the expressions of membrane dsRNA receptor TLR3 and of cytoplasmic receptors RIG-I and MDA5. IL-13-deficient mice exhibited more enhanced IFN-λ expression after intratracheal instillation of dsRNA than wild-type mice, whereas IFN-λ expression after dsRNA was absent in the mouse lungs of the OVA-induced asthma model. These findings suggest that IL-13 may be a putative cytokine suppressing IFN-λ production against airway viral infections in asthmatics. 相似文献
16.
Jingmei Zhang Zhirong Yang Pengfei Li Grant Bledsoe Lee Chao Julie Chao 《Molecular and cellular biochemistry》2013,379(1-2):295-301
Kallistatin, a plasma protein, exerts pleiotropic effects in inhibiting angiogenesis, inflammation and tumor growth. Canonical Wnt signaling is the primary pathway for oncogenesis in the mammary gland. In this study, we demonstrate that kallistatin bound to the Wnt coreceptor low-density lipoprotein receptor-related protein 6 (LRP6), thus, blocking Wnt/β-catenin signaling and Wnt-mediated growth and migration in MDA-MB-231 breast cancer cells. Kallistatin inhibited Wnt3a-induced proliferation, migration, and invasion of cultured breast cancer cells. Moreover, kallistatin was bound to LRP6 in breast cancer cells, as identified by immunoprecipitation followed by western blot. Kallistatin suppressed Wnt3a-mediated phosphorylation of LRP6 and glycogen synthase kinase-3β, and the elevation of cytosolic β-catenin levels. Furthermore, kallistatin antagonized Wnt3a-induced expression of c-Myc, cyclin D1, and vascular endothelial growth factor. These findings indicate a novel role of kallistatin in preventing breast tumor growth and mobility by direct interaction with LRP6, leading to blockade of the canonical Wnt signaling pathway. 相似文献
17.
《Biochemical and biophysical research communications》2020,521(4):977-983
Lung cancer, one of the most commonly found carcinoma type, has the highest mortality rate in cancer patients worldwide. Therapeutic interventions targeting to lung cancer become remaining the world significant challenge. Recently, the α7-nicotinic acetylcholine receptor (α7-nAChR) was reported to play an important role in the mechanism underlying lung cancer progression, being intriguing drug target for lung cancer therapy. Hence, the top four α7-nAChR antagonists (QND7, PPRD10, PPRD11 and PPRD12) among our previously developed ligands were proceeded to the in vitro anti-cancer evaluations in non-small cell lung cancer (NSCLC) cell lines (H460 and A549). In this study, we found that QND7 exhibited the highest cytotoxic effect and induced cell apoptosis in both cell lines at a level comparable to cisplatin, whereas the PPRD compounds showed much lower cytotoxicity. Low doses of QND7 and PPRD11 were able to suppress H460 and A549 cell proliferation, whereas PPRD10 and PPRD12 were considered ineffective. In an in vitro wound healing assay, QND7-treatment showed the greatest suppression of H460 and A549 cell migration. The variations in the anti-cancer activities of PPRD compounds might be, at least in part of, their non-selective antagonisms to serotonin receptor (5-HT3) and α4β2-nAChR. Further investigation revealed that QND7 was able to minimize protein kinase B/mammalian target of rapamycin (Akt/mTOR) activity, in correlating to its anti-cancer effects. These findings warrant QND7 for further preclinical evaluation and demonstrate the potential of α7-nAChR as cancer drug target. 相似文献
18.
19.
Goodson P Kumar A Jain L Kundu K Murthy N Koval M Helms MN 《American journal of physiology. Lung cellular and molecular physiology》2012,302(4):L410-L419
To define roles for reactive oxygen species (ROS) and epithelial sodium channel (ENaC) in maintaining lung fluid balance in vivo, we used two novel whole animal imaging approaches. Live X-ray fluoroscopy enabled quantification of air space fluid content of C57BL/6J mouse lungs challenged by intratracheal (IT) instillation of saline; results were confirmed by using conventional lung wet-to-dry weight ratios and Evans blue as measures of pulmonary edema. Visualization and quantification of ROS produced in lungs was performed in mice that had been administered a redox-sensitive dye, hydro-Cy7, by IT instillation. We found that inhibition of NADPH oxidase with a Rac-1 inhibitor, NSC23766, resulted in alveolar flooding, which correlated with a decrease in lung ROS production in vivo. Consistent with a role for Nox2 in alveolar fluid balance, Nox2(-/-) mice showed increased retention of air space fluid compared with wild-type controls. Interestingly, fluoroscopic analysis of C57BL/6J lungs IT instilled with LPS showed an acute stimulation of lung fluid clearance and ROS production in vivo that was abrogated by the ROS scavenger tetramethylpiperidine-N-oxyl (TEMPO). Acute application of LPS increased the activity of 20 pS nonselective ENaC channels in rat type 1 cells; the average number of channel and single-channel open probability (NPo) increased from 0.14 ± 0.04 to 0.62 ± 0.23. Application of TEMPO to the same cell-attached recording caused an immediate significant decrease in ENaC NPo to 0.04 ± 0.03. These data demonstrate that, in vivo, ROS has the capacity to stimulate lung fluid clearance by increasing ENaC activity. 相似文献
20.
《Cell cycle (Georgetown, Tex.)》2013,12(13):2485-2486
Comment on: Deng L, et al. Am J Pathol. 2010; 176:952-67. 相似文献