首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our aim was to evaluate the protective and antioxidant effects of ginger extract against cadmium-induced renal toxicity in animal models and to support the use of ginger as anti-renal failure natural remedy. Seventy rats were examined in a 4-week experiment to evaluate the effect of Ginger (Zingiber officinale) at doses of 100 and 200 mg/kg body weight on molecular DNA content, antioxidant status, and renal function in rats intoxicated with cadmium at dose of (5 mg/kg) using biochemical and histological analysis. Renal dysfunction, kidney tissue damage, and oxidative effect were evident in cadmium intoxicated rats as estimated by significant increase in (creatinine, urea), decrease in (creatinine clearance and reabsorption rate of urine albumin), increase in MDA, decrease in total antioxidant status (TAC), reduction in DNA content, and histopathological changes of kidneys’ tissues compared to control rats. Treatment with ginger resulted in significant restoring of renal function biomarkers, TAC, molecular DNA, and histological improvements which occurs via free radical scavenging and regenerative mechanisms. The activity of ginger was supported by estimation of bioactive phenolic and falvinods constituents. Twenty-eight polyphenolic compounds were estimated in ginger extract; [6]-gingerol, [6]-shogaol, citral and pyrogallol were the highest amounts in ginger, and supposed to be responsible for its major antioxidant and free radical scavenging activity as shown by In vitro DPPH/β-carotene-linolic acid assay tests. Consequently, ginger extracts could have a potent protective effects against nephrotoxicity induced by various toxicants.  相似文献   

2.
Recently, increased attention has been directed towards medicinal extracts as potential new drug candidates for dementia. Ginger has long been used as an important ingredient in cooking and traditional herbal medicine. In particular, ginger has been known to have disease-modifying effects in Alzheimer's disease (AD). However, there is no evidence of which constituents of ginger exhibit therapeutic effects against AD. A growing number of experimental studies suggest that 6-shogaol, a bioactive component of ginger, may play an important role as a memory-enhancing and anti-oxidant agent against neurological diseases. 6-Shogaol has also recently been shown to have anti-neuroinflammatory effects in lipopolysaccharide (LPS)-treated astrocytes and animal models of Parkinson’s disease, LPS-induced inflammation and transient global ischemia. However, it is still unknown whether 6-shogaol has anti-inflammatory effects against oligomeric forms of the Aβ (AβO) in animal brains. Furthermore, the effects of 6-shogaol against memory impairment in dementia models are also yet to be investigated. In this study, we found that administration of 6-shogaol significantly reduced microgliosis and astrogliosis in intrahippocampal AβO-injected mice, ameliorated AβO and scopolamine-induced memory impairment, and elevated NGF levels and pre- and post-synaptic marker in the hippocampus. All these results suggest that 6-shogaol may play a role in inhibiting glial cell activation and reducing memory impairment in animal models of dementia.  相似文献   

3.
The high failure rate of the reductionist approach to discover effective and safe drugs to treat chronic inflammatory diseases has led scientists to seek alternative ways. Recently, targeting cell signaling pathways has been utilized as an innovative approach to discover drug leads from natural products. Cell signaling mechanisms have been identified playing key role in diverse diseases by inducing proliferation, cell survival and apoptosis. Phytochemicals are known to be able to modulate the cellular and molecular networks which are associated to chronic diseases including cancer-associated inflammation. In this review, the roles of dietary polyphenols (apigenin, kaempferol, quercetin, curcumin, genistein, isoliquiritigenin, resveratrol and gallic acid) in modulating multiple inflammation-associated cell signaling networks are deliberated. Scientific databases on suppressive effects of the polyphenols on chronic inflammation via modulation of the pathways especially in the recent five years are gathered and critically analyzed. The polyphenols are able to modulate several inflammation-associated cell signaling pathways, namely nuclear factor-kappa β, mitogen activated protein kinases, Wnt/β-catenin and phosphatidylinositol 3-kinase and protein kinase B via selective actions on various components of the networks. The suppressive effects of the polyphenols on the multiple cell signaling pathways reveal their potential use in prevention and treatment of chronic inflammatory disorders. Understanding the mechanistic effects involved in modulation of the signaling pathways by the polyphenols is necessary for lead identification and development of future functional foods for prevention and treatment of chronic inflammatory diseases.  相似文献   

4.
5.
Ginger (the rhizome of Zingiber officinale Roscoe) has been used worldwide for many centuries in cooking and for treatment of several diseases. The main pharmacological properties of ginger include anti-inflammatory, antihyperglycemic, antiarthritic, antiemetic and neuroprotective actions. Recent studies demonstrated that ginger significantly enhances cognitive function in various cognitive disorders as well as in healthy brain. However, the biochemical mechanisms underlying the ginger-mediated enhancement of cognition have not yet been studied in normal or diseased brain. In the present study, we assessed the memory-enhancing effects of dried ginger extract (GE) in a model of scopolamine-induced memory deficits and in normal animals by performing a novel object recognition test. We found that GE administration significantly improved the ability of mice to recognize novel objects, indicating improvements in learning and memory. Furthermore, to elucidate the mechanisms of GE-mediated cognitive enhancement, we focused on nerve growth factor (NGF)-induced signaling pathways. NGF enzyme-linked immunosorbent assay analysis revealed that GE administration led to elevated NGF levels in both the mouse hippocampus and rat glioma C6 cells. GE administration also resulted in phosphorylation of extracellular-signal-regulated kinase (ERK) and cyclic AMP response element-binding protein (CREB), as revealed by Western blotting analysis. Neutralization of NGF with a specific NGF antibody inhibited GE-triggered activation of ERK and CREB in the hippocampus. Also, GE treatment significantly increased pre- and postsynaptic markers, synaptophysin and PSD-95, which are related to synapse formation in the brain. These data suggest that GE has a synaptogenic effect via NGF-induced ERK/CREB activation, resulting in memory enhancement.  相似文献   

6.
Pancreatic cancer has a poor prognosis with a 5-year survival rate of <5%. It does not respond well to either chemotherapy or radiotherapy, due partly to apoptotic resistance (AR) of the cancer cells. AR has been attributed to certain genetic abnormalities or defects in apoptotic signaling pathways. In pancreatic cancer, significant mutations of K-ras and p53, constitutive activation of NFκB, over-expression of heat shock proteins (Hsp90, Hsp70), histone deacetylase (HDACs) and the activities of other proteins (COX-2, Nrf2 and bcl-2 family members) are closely linked with resistance to apoptosis and invasion. AR has also been associated with aberrant signaling of MAPK, PI3K–AKT, JAK/STAT, SHH, Notch, and Wnt/β-catenin pathways. Strategies targeting these signaling molecules and pathways provide an alternative for overcoming AR in pancreatic cancer. The use of herbal medicines or natural products (HM/NPs) alone or in combination with conventional anti-cancer agents has been shown to produce beneficial effects through actions upon multiple molecular pathways involved in AR. The current standard first-line chemotherapeutic agents for pancreatic cancer are gemcitabine (Gem) or Gem-containing combinations; however, the efficacy is dissatisfied and this limitation is largely attributed to AR. Meanwhile, emerging data have pointed to a combination of HM/NPs that may augment the sensitivity of pancreatic cancer cells to Gem. Greater understanding of how these compounds affect the molecular mechanisms of apoptosis may propel development of HM/NPs as anti-cancer agents and/or adjuvant therapies forward.In this review, we give a critical appraisal of the use of HM/NPs alone and in combination with anti-cancer drugs. We also discuss the potential regulatory mechanisms whereby AR is involved in these protective pathways.  相似文献   

7.
This article is part of a Special Issue “Estradiol and cognition”.Since the publication of the 1998 special issue of Hormones and Behavior on estrogens and cognition, substantial progress has been made towards understanding the molecular mechanisms through which 17β-estradiol (E2) regulates hippocampal plasticity and memory. Recent research has demonstrated that rapid effects of E2 on hippocampal cell signaling, epigenetic processes, and local protein synthesis are necessary for E2 to facilitate the consolidation of object recognition and spatial memories in ovariectomized female rodents. These effects appear to be mediated by non-classical actions of the intracellular estrogen receptors ERα and ERβ, and possibly by membrane-bound ERs such as the G-protein-coupled estrogen receptor (GPER). New findings also suggest a key role of hippocampally-synthesized E2 in regulating hippocampal memory formation. The present review discusses these findings in detail and suggests avenues for future study.  相似文献   

8.
Ginkgo biloba extract EGb761 has been shown to protect against β-amyloid peptide (Aβ)-induced neurotoxicity but the specific mechanisms remain unclear. In the present study, effects of EGb761 and two of its constituents, quercetin and ginkgolide B, on the cytotoxic action of Aβ (1-42) were tested with human neuroblastoma SH-SY5Y cells. We found that EGb761 was able to block Aβ (1-42)-induced cell apoptosis, reactive oxygen species (ROS) accumulation, mitochondrial dysfunction and activation of c-jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt signaling pathways. Both quercetin and ginkgolide B may be involved in the inhibitory effects of EGb761 on JNK, ERK1/2 and Akt signaling pathways. Ginkgolide B also helped to improve mitochondrial functions but quercetin failed to show this effect. Additional experiments suggest that, protective effects of EGb761 against Aβ toxicity may be associated with its antioxidant and platelet activating factor (PAF) antagonist activities. Quercetin but not ginkgolide B is one of the constituents responsible for the antioxidant action of EGb761. Both quercetin and ginkgolide B may be involved in the PAF antagonist activity of EGb761. Overall, actions of individual EGb761 components provide further insights into direct mechanisms underlying the neuroprotective effects of EGb761.  相似文献   

9.
Wound healing (WH) impairment is a well-documented phenomenon in clinical and experimental diabetes. Sex hormones, in addition to a number of signaling pathways including transforming growth factor-β1 (TGF-β1)/Smads and TNF-α/NF-κB in macrophages and fibroblasts, appear to play a cardinal role in determining the rate and nature of WH. We hypothesized that a defect in resolution of inflammation and an enhancement in TNF-α/NF-κB activity induced by estrogen deficiency contribute to the impairment of TGF-β signaling and delayed WH in diabetes models. Goto-Kakizaki (GK) rats and full thickness excisional wounds were used as models for type 2 diabetes (T2D) and WH, respectively. Parameters related to the various stages of WH were assessed using histomorphometry, western blotting, real-time PCR, immunofluorescence microscopy and ELISA-based assays. Retarded re-epithelialization, suppressed angiogenesis, delayed wound closure, reduced estrogen level and heightened states of oxidative stress were characteristic features of T2D wounds. These abnormalities were associated with a defect in resolution of inflammation, shifts in macrophage phenotypes, increased β3-integrin expression, impaired wound TGF-β1 signaling (↓p-Smad2/↑Smad7) and enhanced TNF-α/NFκB activity. Human/rat dermal fibroblasts of T2D, compared to corresponding control values, displayed resistance to TGF-β-mediated responses including cell migration, myofibroblast formation and p-Smad2 generation. A pegylated form of soluble TNF receptor-1 (PEG-sTNF-RI) or estrogen replacement therapy significantly improved re-epithelialization and wound contraction, enhanced TGFβ/Smad signaling, and polarized the differentiation of macrophages toward an M2 or "alternatively" activated phenotype, while limiting secondary inflammatory-mediated injury. Our data suggest that reduced estrogen levels and enhanced TNF-α/NF-κB activity delayed WH in T2D by attenuating TGFβ/Smad signaling and impairing the resolution of inflammation; most of these defects were ameliorated with estrogen and/or PEG-sTNF-RI therapy.  相似文献   

10.
11.
Extracts of Prunella vulgaris have been shown to exert antiestrogenic effects. To identify the compounds responsible for these actions, we isolated the constituents of P. vulgaris and tested their individual antiestrogenic effects. Rosmarinic acid, caffeic acid, ursolic acid (UA), oleanolic acid, hyperoside, rutin and betulinic acid (BA) were isolated from the flower stalks of P. vulgaris var. lilacina Nakai (Labiatae). Among these constituents, UA and BA showed significant antiestrogenic effects, measured as a decrease in the mRNA level of GREB1, an estrogen-responsive protein; the effects of BA were stronger than those of UA. UA and BA were capable of suppressing estrogen response element (ERE)-dependent luciferase activity and expression of estrogen-responsive genes in response to exposure to estradiol, further supporting the suppressive role of these compounds in estrogen-induced signaling. However, neither UA nor BA was capable of suppressing estrogen signaling in cells ectopically overexpressing estrogen receptor α (ERα). Furthermore, both mRNA and protein levels of ERα were reduced by treatment with UA or BA, suggesting that UA and BA inhibit estrogen signaling by suppressing the expression of ERα. Interestingly, both compounds enhanced prostate-specific antigen promoter activity. Collectively, these findings demonstrate that UA and BA are responsible for the antiestrogenic effects of P. vulgaris and suggest their potential use as therapeutic agents against estrogen-dependent tumors.  相似文献   

12.
The epithelial–mesenchymal transition (EMT) is an important cellular process during which polarized epithelial cells become motile mesenchymal cells, which promote cancer metastasis. Ginger, the rhizome of Zingiber officinale, is extensively used in cooking worldwide and also as a traditional medicinal herb with antioxidant, anti-inflammatory and anticancer properties. Several pungent compounds have been identified in ginger, including zingerone, which has anticancer potential. However, the role of zingerone in EMT is unclear. We investigated the synergistic effect of zingerone and its derivative on EMT. Transforming growth factor-beta 1 (TGF-β1) induces the EMT to promote hepatocellular carcinoma metastasis, including migration and invasion. To understand the repressive role of the combination of zingerone and its derivative (ZD 2) in hepatocellular carcinoma metastasis, we investigated the potential use of each compound of ginger, such as zingerone, ZD 2 and 6-shogaol, or the mixture of zingerone and ZD 2 (ZD 2-1) as inhibitors of TGF-β1 induced EMT development in SNU182 hepatocellular carcinoma cells in vitro. We show that ZD 2-1, but not zingerone, ZD 2 and 6-shogaol significantly increased expression of the epithelial marker E-cadherin and repressed Snail upregulation and expression of the mesenchymal marker N-cadherin during initiation of the TGF-β1 induced EMT. In addition, ZD 2-1 inhibited the TGF-β1 induced increase in cell migration and invasion of SNU182 hepatocellular carcinoma cells. Furthermore, ZD 2-1 significantly inhibited TGF-β1 regulated matrix metalloproteinase-2/9 and activation of Smad2/3. We also found that ZD 2-1 inhibited nuclear translocation of NF-κB, activation of p42/44 MAPK/AP1 signaling pathway in the TGF-β1 induced EMT. Our findings provide new evidence that combined treatment with ZD 2, novel zingerone derivative, and zingerone synergistically suppresses hepatocellular carcinoma metastasis in vitro by inhibiting the TGF-β1 induced EMT.  相似文献   

13.
We investigated the effects of Achillea millefolium extract in vitro on the growth of primary rat vascular smooth muscle cells (VSMCs) as well as the potential involvement of estrogen receptors (ERs) in this process. In addition, the ability of A. millefolium extract to modulate the NF-κB pathway was tested in human umbilical vein endothelial cells (HUVECs). The fingerprinting of the extract was carried out by HPLC-DAD and LC-MSn and main constituents were flavonoids (10%) and dicaffeolylquinic acid derivatives (12%). The extract enhanced VSMC growth at least in part by acting through ERs and impaired NF-κB signaling in HUVECs. The various compounds may act with different mode of actions thus contributing to the final effect of the extract. Our findings support some of the traditional uses of A. millefolium, and suggest potential modes of action as related to its effects on vascular inflammation. Therefore, A. millefolium may induce novel potential actions in the cardiovascular system.  相似文献   

14.
Wheat gluten is a Pro-rich protein complex comprising glutenins and gliadins. Previous studies have reported that oral intake of enzymatic hydrolysates of gluten has beneficial effects, such as suppression of muscle injury and improvement of hepatitis. Here, we utilized ginger protease that preferentially cleaves peptide bonds with Pro at the P2 position to produce a novel type of wheat gluten hydrolysate. Ginger protease efficiently hydrolyzed gluten, particularly under weak acidic conditions, to peptides with an average molecular weight of <600 Da. In addition, the gluten hydrolysate contained substantial amounts of tripeptides, including Gln-Pro-Gln, Gln-Pro-Gly, Gln-Pro-Phe, Leu-Pro-Gln, and Ser-Pro-Gln (e.g. 40.7 mg/g at pH 5.2). These gluten-derived tripeptides showed high inhibitory activity on dipeptidyl peptidase-IV with IC50 values of 79.8, 70.9, 71.7, 56.7, and 78.9 μM, respectively, suggesting that the novel gluten hydrolysate prepared using ginger protease can be used as a functional food for patients with type 2 diabetes.  相似文献   

15.
Diabetes mellitus (DM) is a metabolic condition characterized by high blood sugar levels with serious system complications. Ginger (Zingiber officinale) and Cinnamon (Cinnamomum zeylanicum) have anti-diabetic activities. The goal of this study is to evaluate the possible protective and therapeutic effects of ginger and Cinnamon against histological, Ki67 Immunohistochemistry (IHC) and biochemical studies in testis and coda epididymis of Streptozotocin (STZ) induced diabetic rats. The experimental rats were divided into six groups: G1 was the control, G2 induced diabetic without treatment, G3 was treated with ginger before induction of DM (ginger protective), G4 were given ginger after DM induction (ginger therapeutic), G5 were given cinnamon before induction of DM (cinnamon protective) and G6 were given cinnamon after DM induction (cinnamon therapeutic). In diabetic rats’ significant increases in fasting blood sugar and body weight were observed after three weeks. Ginger and cinnamon effectively decreased serum glucose levels. Histopathological evaluations of seminiferous tubules and coda epididymis sections from diabetic rats showed severe damage to them. Furthermore, the sections of seminiferous tubules and coda epididymis rats administered ginger and cinnamon extract showed normal structure, healthy lining epithelium and sperm contents compared to diabetic rats. The results of the study show that both Ginger and Cinnamon aqueous extracts are effective as both hypoglycemic natural supplements that can protect against diabetic-induced testicular damage as well as share in the reservation of the cauda epididymal structure and sperm contents.  相似文献   

16.
17.
BackgroundMitochondria, the power plants of the cell, are known as a cross-road of different cellular signaling pathways. These cytoplasmic double-membraned organelles play a pivotal role in energy metabolism and regulate calcium flux in the cells. It is well known that mitochondrial dysfunction is associated with different diseases such as neurodegeneration and cancer. A growing body of literature has shown that polyphenolic compounds exert direct effects on mitochondrial ultra-structure and function. Resveratrol is known as one of the most common bioactive constituents of red wine, which improves mitochondrial functions under in vitro and in vivo conditions.Scope of reviewThis paper aims to review the molecular pathways underlying the beneficial effects of resveratrol on mitochondrial structure and functions. In addition, we discuss the chemistry and main sources of resveratrol.Major conclusionsResveratrol represents the promising effects on mitochondria in different experimental models. However, there are several reports on the detrimental effects elicited by resveratrol on mitochondria.General significanceAn understanding of the chemistry and source of resveratrol, its bioavailability and the promising effects on mitochondria brings a new hope to therapy of mitochondrial dysfunction-related diseases.  相似文献   

18.
Benign prostatic hyperplasia (BPH) and associated lower urinary tract symptoms (LUTS) are common clinical problems in urology. While the precise molecular etiology remains unclear, sex steroids have been implicated in the development and maintenance of BPH. Sufficient data exists linking androgens and androgen receptor pathways to BPH and use of androgen reducing compounds, such as 5α-reductase inhibitors which block the conversion of testosterone into dihydrotestosterone, are a component of the standard of care for men with LUTS attributed to an enlarged prostate. However, BPH is a multifactorial disease and not all men respond well to currently available treatments, suggesting factors other than androgens are involved. Testosterone, the primary circulating androgen in men, can also be metabolized via CYP19/aromatase into the potent estrogen, estradiol-17β. The prostate is an estrogen target tissue and estrogens directly and indirectly affect growth and differentiation of prostate. The precise role of endogenous and exogenous estrogens in directly affecting prostate growth and differentiation in the context of BPH is an understudied area. Estrogens and selective estrogen receptor modulators (SERMs) have been shown to promote or inhibit prostate proliferation signifying potential roles in BPH. Recent research has demonstrated that estrogen receptor signaling pathways may be important in the development and maintenance of BPH and LUTS; however, new models are needed to genetically dissect estrogen regulated molecular mechanisms involved in BPH. More work is needed to identify estrogens and associated signaling pathways in BPH in order to target BPH with dietary and therapeutic SERMs.  相似文献   

19.
20.
Background/HypothesisBeside its beneficial effects on weight loss, ketogenic diet (KD) causes dyslipidemia, a pro-inflammatory state involved in the development of hepatic steatosis, glucose intolerance and insulin resistance, although the latter is still being debated. Additionally, KD is known to increase fibroblast growth factor 21 (FGF21) plasma levels. However, FGF21 cannot initiate its beneficial actions on metabolism in these conditions. We therefore hypothesized and tested in the present study that KD may impair FGF21 signaling.Methods/ResultsUsing indirect calorimetry, we found that KD-fed mice exhibited higher energy expenditure than regular chow (RC)-fed mice associated with increased Ucp1 levels in white adipose tissue (WAT), along with increased plasma FGF21 levels. We then assessed the effect of KD on FGF21 signaling in both the liver and WAT. We found that Fgfr4 and Klb (β-klotho) were downregulated in the liver, while Fgfr1 was downregulated in WAT of KD-fed mice. Because inflammation could be one of the mechanisms linking KD to impaired FGF21 signaling, we measured the expression levels of inflammatory markers and macrophage accumulation in WAT and liver and found an increased inflammation and macrophage accumulation in the liver, but surprisingly, a reduction of inflammation in WAT.We also showed that KD enhances lipid accumulation in the liver, which may explain hepatic inflammation and impaired Fgfr4 and Klb expression. In contrast, import of lipids from the circulation was significantly reduced in WAT of KD-fed mice, as suggested by a downregulation of Lpl and Cd36. This was further associated with reduced inflammation in WAT.ConclusionAltogether, these results indicate that KD could be beneficial for a given tissue but deleterious for another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号