首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:设计合成新型2-喹诺酮类Polo样激酶1(Plk1)抑制剂。方法:以Plk1抑制剂ON 01910为先导化合物,利用生物电子等排原理设计一系列2-喹诺酮类衍生物,用Autodock软件将该类化合物与Plk1进行分子对接和虚拟筛选,计算结合自由能;以取代的氯(溴)苄为起始原料,先后经巯基乙酸取代、双氧水氧化、与(对甲氧基)苯胺酰化,再经环合、水解制得目标化合物。结果:设计的化合物大多数与Plk1的结合自由能均比ON 01910的低,结合强度高、稳定性好;合成了16个2-喹诺酮类衍生物,产物结构经1H-NMR确证。结论:所得化合物中有15个为新化合物,化合物的结构设计科学合理,虚拟筛选结果良好,为后续实体筛选和化合物结构优化提供了理论依据和参考。  相似文献   

2.
The development of bacterial resistance to chemical therapy poses a severe danger to efficacy of treating bacterial infections. One of the key factors for resistance to antimicrobial medications is growth of bacteria in biofilm. Quorum sensing (QS) inhibition was created as an alternative treatment by developing novel anti-biofilm medicines. Cell-cell communication is impeded by QS inhibition, which targets QS signaling pathway. The goal of this work is to develop newer drugs that are effective against Pseudomonas aeruginosa by decreasing QS and acting as anti-biofilm agents. In this investigation, N-(benzo[d]thiazol-2-yl)benzamide/N-(thiazol-2-yl)benzamide derivatives 3a-h were designed and synthesized in good yields. Further, molecular docking analyses revealed that binding affinity values were founded −11.2 to −7.6 kcal/mol that were moderate to good. The physicochemical properties of these prepared compounds were investigated through in-silico method. Molecular dynamic simulation was also used to know better understanding of stability of the protein and ligand complex. Comparing N-(benzo[d]thiazol-2-yl)benzamide 3a to salicylic acid (4.40±0.10) that was utilised as standard for quorum sensing inhibitor, the anti-QS action was found greater for N-(benzo[d]thiazol-2-yl)benzamide 3a (4.67±0.45) than salicylic acid (4.40±0.10). Overall, research results suggested that N-(benzo[d]thiazol-2-yl)benzamide/N-(thiazol-2-yl)benzamide derivatives 3a-h may hold to develop new quorum sensing inhibitors.  相似文献   

3.
4.
5.
Myeloid differentiation protein 2 (MD2), a key TLR4 adaptor protein for sensing LPS, plays an important role in inflammatory process and has been identified as a promising target for the treatment of a variety of inflammatory diseases. In our study, a series of benzoxazolone derivatives were synthesized, characterized and tested for anti-inflammatory activity in vitro. The compounds 3c , 3d and 3g demonstrated the greatest anti-inflammatory activity against IL-6 with IC50 values of 10.14±0.08, 5.43±0.51 and 5.09±0.88 μM, respectively. Furthermore, the bis-ANS displacement assay revealed that these compounds competitively inhibited the binding between the probe bis-ANS and the MD2 protein. The most active compound 3g , revealed a directly bind with MD2 protein via Arg90 binding and a dissociation constant value of 1.52×10−6 mol L−1 as determined by the biological layer interference (BLI) assay. Our finding suggested that compounds 3g could be a promising lead compound as MD2 inhibitor for further anti-inflammatory agent development.  相似文献   

6.
Vascular endothelial growth factor receptor‐2 (VEGFR‐2) plays an important role in both vasculogenesis and angiogenesis. Inhibition of VEGFR‐2 has been demonstrated as a key method against tumor‐associated angiogenesis. Thiazolopyrimidine is an important analog of the purine ring, and we choose the thiazolopyrimidine scaffold as the mother nucleus. Two series of thiazolo[5,4‐d]pyrimidine derivatives were synthesized and evaluated for their antiproliferative activity. In HUVEC inhibition assay, compounds 3l (=1‐(5‐{[2‐(4‐chlorophenyl)‐5‐methyl[1,3]thiazolo[5,4‐d]pyrimidin‐7‐yl]amino}pyridin‐2‐yl)‐3‐(3,4‐dimethylphenyl)urea) and 3m (=1‐(5‐{[2‐(4‐chlorophenyl)‐5‐methyl[1,3]thiazolo[5,4‐d]pyrimidin‐7‐yl]amino}pyridin‐2‐yl)‐3‐(4‐methoxyphenyl)urea) exhibited the most potent inhibitory effect (IC50=1.65 and 3.52 μm , respectively). Compound 3l also showed the best potency against VEGFR‐2 at 50 μm (98.5 %). These results suggest that further investigation of compound 3l might provide potential angiogenesis inhibitors.  相似文献   

7.
Fischer indole synthesis of indole by using phenyl-hydrazine and acetaldehyde resulted 1H-Indole while phenyl-hydrazine reacted with malonaldehyde gives 1H-Indole-3-carbaldehyde. Also Vilsmeier-Haack formylation of 1H-Indole gives 1H-Indole-3-carbaldehyde. 1H-Indole-3-carbaldehyde were oxidized to form 1H-Indole-3-carboxylic acid. 1H-Indole reacted with excess of BuLi at −78 °C using dry ice also gives 1H-Indole-3-carboxylic acid. Obtained 1H-Indole-3-carboxylic acid was converted to ester and ester in to acid hydrazide. Finally 1H-Indole-3-carboxylic acid hydrazide reacted with substituted carboxylic acid gives microbial active indole substituted oxadiazoles. Synthesized compounds 9a – j showing promising in vitro anti microbial activities against S. aureus bacteria compared with Streptomycin. Compound 9a , 9f and 9g showing activities against E. coli compared with standards. Compound 9a and 9f are found potent active against B. subtilis compared with reference standard while compound 9a , 9c and 9j active against S. typhi.  相似文献   

8.
In this work, a novel series of arylisoxazole‐phenylpiperazines were designed, synthesized, and evaluated toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Our results revealed that [5‐(2‐chlorophenyl)‐1,2‐oxazol‐3‐yl](4‐phenylpiperazin‐1‐yl)methanone ( 5c ) was the most potent AChE inhibitor with IC50 of 21.85 μm . It should be noted that most of synthesized compounds showed no BChE inhibitory activity and [5‐(2‐fluorophenyl)‐1,2‐oxazol‐3‐yl](4‐phenylpiperazin‐1‐yl)methanone ( 5a ) was the most active anti‐BChE derivative (IC50=51.66 μm ). Also, kinetic studies for the AChE and BChE inhibitory activity of compounds 5c and 5a confirmed that they have simultaneously bound to the catalytic site (CS) and peripheral anionic site (PAS) of both AChE and BChE. Furthermore, docking study of compound 5c showed desired interactions of that compound with amino acid residues located in the active and peripheral anionic sites. Compound 5c was also evaluated for its BACE1 inhibitory activity and demonstrated IC50=76.78 μm . Finally, neuroprotectivity of compound 5c on Aβ‐treated neurotoxicity in PC12 cells depicted low activity.  相似文献   

9.
A series of aminothiazole derivatives bearing the benzimidazole moiety were synthesized and evaluated in Gli luciferase reporter assays. Lead optimization led to the discovery of potent hedgehog pathway antagonist 18 (2‐[3‐(1H‐benzimidazol‐2‐yl)‐4‐chloroanilino]‐N‐[4‐(trifluoromethyl)phenyl]‐1,3‐thiazole‐4‐carboxamide), with IC50 values in nanomolar range. The molecular basis ascribed to hindering sonic hedgehog‐driven Smoothened (Smo) localization within the primary cilium (PC). Moreover, compound 18 inhibited Gli1 mRNA expression in mutant Smo cell line and displayed moderate cytotoxicity against DAOY cancer cell.  相似文献   

10.
Fatty acid biosynthesis is essential for bacterial survival. Of these promising targets, β-ketoacyl-acyl carrier protein (ACP) synthase III (FabH) is the most attractive target. A series of novel 1,3,4-oxadiazole-2(3H)-thione derivatives containing 1,4-benzodioxane skeleton targeting FabH were designed and synthesized. These compounds were determined by 1H-NMR, 13C-NMR, MS and further confirmed by crystallographic diffraction study for compound 7m and 7n . Most of the compounds exhibited good inhibitory activity against bacteria by computer-assisted screening, antibacterial activity test and E. coli FabH inhibitory activity test, wherein compounds 7e and 7q exhibited the most significant inhibitory activities. Besides, compound 7q showed the best E. coli FabH inhibitory activity (IC50=2.45 μΜ). Computational docking studies also showed that compound 7q interacts with FabH critical residues in the active site.  相似文献   

11.
Plant diseases can seriously affect the growth of food crops and economic crops. To date, pesticides are still among the most effective methods to prevent and control plant diseases worldwide. Consequently, to develop potential pesticide molecules, a series of novel 2-phenylglycine derivatives containing 1,3,4-oxadiazole-2-thioethers were designed and synthesized. The bioassay results revealed that G19 exhibited great in vitro antifungal activity against Thanatephorus cucumeris with an EC50 value of 32.4 μg/mL, and in vivo antifungal activity against T. cucumeris on rice leaves at a concentration of 200.0 μg/mL (66.9 %) which was close that of azoxystrobin (73.2 %). Compounds G24 (80.2 %), G25 (89.4 %), and G27 (83.3 %) exhibited impressive in vivo inactivation activity against tobacco mosaic virus (TMV) at a concentration of 500.0 μg/mL, which was comparable to that of ningnanmycin (96.3 %) and markedly higher than that of ribavirin (55.6 %). The antibacterial activity of G16 (63.1 %), G26 (89.9 %), G27 (78.0 %), and G28 (68.0 %) against Xoo at a concentration of 50.0 μg/mL was higher than that of thiadiazole copper (18.0 %) and bismerthiazol (38.9 %). Preliminary mechanism studies on the antifungal activity against T. cucumeris demonstrated that G19 can affect the growth of mycelia by disrupting the integrity of the cell membrane and altering the permeability of the cell. These studies revealed that the amino acid derivatives containing a 1,3,4-oxadiazole moiety exhibited certain antifungal, antibacterial, and anti-TMV activities, and these derivatives can be further modified and developed as potential pesticide molecules.  相似文献   

12.
Eight derivatives of tetrahydropyrimidine scaffold were designed and prepared as hybrid compounds possessing the structural features of both monastrol as an anticancer drug and nifedipine as a fascin blocking agent. All of the compounds were evaluated for their cytotoxic potency and the ability to inhibit 4T1 breast cancer cells migration. Then, they were investigated in silico for their ability to inhibit the fascin protein using molecular docking simulation. The most potent compound was 4d and the weakest one was 4a according to the in vitro cytotoxicity assay. The corresponding IC50 values were 193.70 and 248.75 μm , respectively. The least cytotoxic compound ( 4a ) was one of the strongest ones in binding to the fascin binding site according to the molecular docking results. 4a and 4e inhibited the 4T1 cells migration better than other compounds. They were more potent than nifedipine in inhibiting the migration process. In silico studies proved 4h to be the most potent fascin inhibitor in terms of ΔGbind although it was not inhibiting migration. The controversy between the in vitro and in silico results may cancel the theory of the involvement of the fascin inhibition in the migration inhibition. However, the considerable antimigratory effects of some of the synthesized compounds encourage performing further in vivo experiments to introduce novel tumor metastasis inhibitors.  相似文献   

13.
New series of pyrazoles 4a – c and pyrazolopyrimidines 5a – f had been constructed. The newly synthesized compounds were assessed for their antimicrobial activity towards E. coli and P. aeruginosa (gram –ve bacteria), B. subtilis and S. aureus (gram +ve bacteria) and A. flavus and C. albicans (representative of fungi). The pyrazolylpyrimidine-2,4-dione derivative 5b is the most active candidate against B. subtilis (MIC=60 μg/mL) and P. aeruginosa (MIC=45 μg/mL). Regarding antifungal potential, compound 5f was the most effective against A. flavus (MIC=33 μg/mL). Similarly, compound 5c displayed strong antifungal activity towards C. Albicans (MIC=36 μg/mL) in reference to amphotericin B (MIC=60 μg/mL). Finally, the novel compounds had been docked inside dihydropteroate synthase (DHPS) to suggest the binding mode of these compounds.  相似文献   

14.
A series of biotinylated camptothecin derivatives were designed and synthesized. The key to the synthesis was achieved by employing an esterification reaction and click chemistry. All of the new derivatives were tested for cytotoxicity against five human tumor cell lines, including HL-60, SMMC-7721, A-549, MCF-7, and SW480 with IC50 values ranging from 0.13 to 21.53?μM. Most of the derivatives exhibited potent cytotoxicity, especially compound 17 (IC50?=?0.13–3.31?μM) and compound 18 (IC50?=?0.23–1.48?μM), which exhibited the highest potencies. The structure-activity relationships (SARs) of the biotinylated camptothecin derivatives were discussed for exploring novel anticancer agents.  相似文献   

15.
In the course of investigation of 8-alkylamino substituted adenosines, the title compounds were synthesized as potential partial agonists for adenosine receptors. The structure determination of these compounds was carried out with the X-ray crystallography study. Crystals of 8-(2-hydroxyethylamino)adenosine are monoclinic, space group P 21; a = 7.0422(2), b = 11.2635(3), c = 8.9215(2) Å, β = 92.261(1)°, V = 707.10(3) Å3, Z = 2; R-factor is 0.0339. The nucleoside is characterized by the anti conformation; the ribose ring has the C(2′)-endo conformation and gauchegauche form across C(4′)–C(5′) bond. The molecular structure is stabilized by intramolecular hydrogen bond of N–H·O type. Crystals of 8-(pyrrolidin-1-yl)adenosine are monoclinic, space group C 2; a = 19.271(1), b = 7.3572(4), c = 11.0465(7) Å, β = 103.254(2)°, V = 1524.4(2) Å3, Z = 4; R-factor is 0.0498. In this compound, there is syn conformation of the nucleoside; the ribose has the C(2′)-endo conformation and gauchegauche form across C(4′)–C(5′) bond. The molecular structure is stabilized by intramolecular hydrogen bond of O–H·N type. For both compounds, the branching net of intermolecular hydrogen bonds occur in the crystal structures.  相似文献   

16.
Novel herbicidally active sulfonamide compounds having a 2-arylsubstituted oxiranylmethyl structure are racemates due to a chiral carbon in the oxirane moiety. To clarify the stereochemical structure-activity relationship, we synthesized each enantiomer of 4-chloro-N-[2-(6-chloropyridin-2-yl)-2-oxiran-2-ylmethyl]-3,N-dimethylbenzenesulfonamide and N-[2-(6-chloropyridin-2-yl)-2-oxiran-2-ylmethyl]-N-methyl-5,6,7,8-tetrahydronaphthalene-2-sulfonamide by chemical methods including Sharpless asymmetric chlorohydroxylation. The results of herbicidal tests indicated that the (S)-isomers were the active forms.  相似文献   

17.
A series of 4-amino-5-((4-chlorophenyl)diazenyl)-6-(alkylamino)-1-methylpyrimidin-2-one deri- vatives 7–16 were prepared by nucleophilic displacement of 6-chloro-pyrimidine 6 by various amines. 4-Amino-5-((aryl-4-yl)diazenyl)-6-aryl-1-methylpyrimidin-2-one analogs 19–27, as well as 4-amino-5-((aryl-[1,1′-biphenyl]-4-yl)diazenyl)-6-aryl-1-methylpyrimidin-2-one 29–31 and 4-amino-6-aryl-1-methylpyrimidin-2-one 34–34, were synthesized via Suzuki cross-coupling reaction, using Pd(PPh3)4 as a catalyst and arylboronic acids as reagents. All compounds were evaluated for their antiviral activity against the replication of HIV-1 and HIV-2 in MT-4. Compounds 6, 16, 27, and 29 showed a 50% effective concentration of >2.15, >3.03, >2.29, and >1.63 μM, respectively, but no selectivity was observed (selectivity index < 1). Two of the newly synthesized pyrimidines 12 and 29 exhibited moderate kinesin Eg5 inhibition.  相似文献   

18.
A series of novel 2‐oxoimidazolidine derivatives were synthesized and their antiviral activities against BK human polyomavirus type 1 (BKPyV) were evaluated in vitro. Bioassays showed that the synthesized compounds 1‐{[(4E)‐5‐(dichloromethylidene)‐2‐oxoimidazolidin‐4‐ylidene]sulfamoyl}piperidine‐4‐carboxylic acid ( 5 ) and N‐Cyclobutyl‐N′‐[(4E)‐5‐(dichloromethylidene)‐2‐oxoimidazolidin‐4‐ylidene]sulfuric diamide ( 4 ) exhibited moderate activities against BKPyV (EC50=5.4 and 5.5 μm , respectively) that are comparable to the standard drug Cidofovir. Compound 5 exhibited the same cytotoxicity in HFF cells and selectivity index (SI50) as Cidofovir. The selectivity index of compound 4 is three times less than that of Cidofovir due to the higher toxicity of this compound. Hence, these compounds may be taken as lead compound for further development of novel ant‐BKPyV agents.  相似文献   

19.
In the present study, a series of 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives were synthesized, characterized and evaluated for theirin vitroactivity, i. e., antimicrobial, antioxidant and anti-inflammatory. The target compounds were synthesized by condensation reaction of 3-hydroxy-2-naphthoic acid hydrazide with substituted benzaldehydes which were subjected to cyclization reaction with thioglycolic acid and ZnCl2 to get target compounds. The synthesized 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives were examined for their antimicrobial activity and 3-hydroxy-N-(4-oxo-2-(3,4,5-trimethoxyphenyl)thiazolidin-3-yl)-2-naphthamide ( S20 ) exhibited the highest antimicrobial potential. The N′-(2,3-dichlorobenzylidene)-3-hydroxy-2-naphthohydrazide ( S5 ) displayed good antifungal potential against Rhizopus oryzae, whereas N′-(2,3-dichlorobenzylidene)-3-hydroxy-2-naphthohydrazide ( S20 ) showed the highest antioxidant potential and N-(2-(2,6-dichlorophenyl)-4-oxothiazolidin-3-yl)-3-hydroxy-2-naphthamide ( S16 ) displayed the highest anti-inflammatory activity. The results of molecular docking studies revealed that existence of hydrogen bonding and hydrophobic interactions with their respective proteins. In silico ADMET studies were carried out by Molinspiration, Pre-ADMET and OSIRIS property explorer to predict the pharmacokinetic behaviour of synthesized 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives.  相似文献   

20.
A series of bis-aromatic amides was designed, synthesized, and evaluated as a new class of inhibitors with IC50 values in the micromolar range against protein tyrosine phosphatase 1B (PTP1B). Among them, compound 15 displayed an IC50 value of 2.34 ± 0.08 μM with 5-fold preference over TCPTP. More importantly, the treatment of CHO/HIR cells with compound 15 resulted in increased phosphorylation of insulin receptor (IR), which suggested extensive cellular activity of compound 15. These results provided novel lead compounds for the design of inhibitors of PTP1B as well as other PTPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号