首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Biological availability of selenosugars in rats   总被引:1,自引:0,他引:1  
The biological availability and metabolism of two selenosugars orally administered to rats were investigated. Two other selenium species, selenite and trimethylselenonium ion (TMSe) were included in the study as positive and negative controls, respectively. Male Wistar strain rats (three per group) at 8 weeks of age were exposed to sodium selenite, TMSe, selenosugar 1 (methyl-2-acetamido-2-deoxy-1-seleno-beta-D-galactopyranoside) or selenosugar 2 (methyl-2-acetamido-2-deoxy-1-seleno-beta-D-glucopyranoside) through drinking water for 48 h. Total selenium concentrations (ICPMS) and selenium species concentrations (HPLC/ICPMS) were determined in urine samples collected in two 24h periods during the exposure, and total selenium concentrations in liver, kidney, small intestine and blood were determined at the end of the experiment. The major species found in background urine were selenosugar 1 (major metabolite) and TMSe (minor metabolite). Rats exposed to selenite excreted large quantities of selenosugars and TMSe consistent with efficient uptake and biotransformation of selenite, whereas TMSe-exposed rats excreted large quantities of TMSe, but there was no significant increase of other selenium metabolites, consistent with TMSe being taken up and excreted unchanged. Rats exposed to selenosugars, however, excreted significant quantities of TMSe suggesting that the sugars were at least partly biologically available and biotransformed. Rats exposed to selenite accumulated selenium in the liver, kidney, small intestine and blood, whereas no accumulation was observed for the other samples except for small increases in selenium concentrations of small intestine from the two selenosugar-exposed groups.  相似文献   

2.
BackgroundThe urinary excreted selenium species selenosugar 1 (SeSug1) plays a key role for monitoring of supplemental selenium exposure, e.g. by occupational exposure. In order to reproduce its contents in the long term, the integrity of SeSug1 in the urine is essential. Studies on the stability of SeSug1 in urine samples stored at −20 °C have shown that degradation of SeSug 1 occurs, requiring adequate countermeasures.MethodsHere, we explored the long-term stability of SeSug1 under usual storage conditions at −20 °C. For this purpose, the simultaneous determination of selenosugar 1 and methylselenic acid (MeSeA) was used to explore the stabilizing of the SeSug1 content by applying sodium azide (NaN3) as a bactericide or/and 5 M ammonium acetate buffer for pH control.ResultsIn untreated urine, conversion of SeSug1 to MeSeA was evident within days. Differences in urine matrices clearly showed different impact, which could be attributed to different buffer strengths by the urine itself. For durability, various concentrations of sodium azide were first applied, followed by pH buffering. A combination of 0.1% NaN3 and pH of 5.5 kept the SeSug1 content stable for over 3 months.ConclusionThe formation of MeSeA as degradation product of SeSug1 could be confirmed. Based on the proportions, an oxidation-based decomposition pathway was proposed. The investigations revealed that the complex interaction of pH buffering and bactericidal activity must be taken into account in order to stabilize SeSug1 in the urine. The main effect was the addition of NaN3. However, the alkaline nature of NaN3 required a sufficient buffering of the urinary matrix at a pH of 5.5.  相似文献   

3.
A method to permit isolation and measurement of trimethylselenonium ion [TMSe, (CH3)3Se+] from 1 liter of human urine was developed. The method was based on precipitation of TMSe with ammonium reineckate, preseparation with anion-exchange resin, and final thermal decomposition and collection of the product in HNO3. It was tested for recovery and separation from other selenium moieties present in urine using both in vivo-labeled rat urine and human urine spiked with unlabeled TMSe. Recoveries from the former were in the range 76.8-87.0% (mean +/- SD: 81.8 +/- 3.7%, n = 5), while for the latter they were in the range 72.0-93.0% (mean +/- SD for three occasions (%): 80.9 +/- 5.5, 81.4 +/- 7.8, and 78.9 +/- 1.0). The reliability of the method was tested against an HPLC procedure using in vivo-labeled rat's urine. The mean (+/- SD) percentage of urine radioactivity appearing as TMSe was 36.0 +/- 5.7% for the present and 36.2 +/- 6.6% for the HPLC method. The mean of deviations, as percentage of the HPLC method, was -0.03 +/- 8.8%. The linear regression equation for the two methods was y = -0.805 + 1.029x (r2 = 0.81). Excretion of TMSe was measured in urine samples from several persons (range: 0.18-0.37 micrograms Se/liter; mean +/- SD: 0.26 +/- 0.07, n = 9). One subject consumed three separate doses of unlabeled selenite on alternate days (Day 1, 197 micrograms Se; Day 3, 395; and Day 5, 592). For the first 24 h of each period, TMSe excretions (micrograms Se/24 h) were 0.24, 0.53, and 0.97, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A comparison is made between two methods (ion-exchange chromatography vs a difference method) for the quantitative measurement of trimethylselenonium ion (TMSe) in human urine. It is shown that the difference method yields reliable data only if TMSe constitutes a relatively large fraction of urine selenium. Under normal conditions of selenium intake in man, accurate measurement of this important metabolite can, at present, be carried out only with the ion-exchange chromatographic procedure. Preliminary data from a human subject employing stable isotope tracer methodology are given to show that the fraction of urine selenium present as TMSe varies with the level of intake as well as other factors.  相似文献   

5.
The metabolic detoxification of selenite and many other selenium compounds involves a series of S-adenosylmethionine-dependent methylations yielding dimethylselenide (DMSe), which is exhaled, and trimethylselenonium ion (TMSe), which is excreted in the urine. This paper shows that periodate-oxidized adenosine (Adox) inhibits these methylation reactions in vivo and increases the toxicity of selenite. When Adox was injected in mice at 100 mumol/kg 30 min before injection of [75Se]selenite at 0.4 mg Se/kg the appearances of [75Se]DMSe in the breath and [75Se]TMSe in the liver were completely inhibited for 90 min. This was mediated by accumulation of S-adenosylhomocysteine, the methyltransferase inhibitor, in the livers of Adox-treated mice due to inhibition of its hydrolase enzyme. During 24 h, Adox-treated mice excreted no detectable urinary [75Se]TMSe and exhaled only 20% as much [75Se]DMSe as controls. The urine of Adox-treated mice also contained S-adenosylhomocysteine at a level (ca. 4 mM), 200 times that of untreated mice, which provided a convenient index of methylation potential in the intact animal. When three groups of three mice each were injected with 100 mumol Adox/kg, selenite at 4 mg Se/kg, or a combination of the two, the mice receiving the combination were dead within 2 days, while the mice in the other two groups all survived at least 4 days. These results verify the enzymatic nature of selenium methylation in vivo, support its importance in detoxification, and indicate the value of Adox in further studies of selenium metabolism.  相似文献   

6.
Rats injected subcutaneously with 2 mg Se/kg body weight of [75Se]selenocyanate or [14C, 75Se]selenocyanate excreted dimethylselenide (DMSe) in the breath and trimethyl-selenonium ion (TMSe) in the urine. The 24-h respiratory DMSe and urinary TMSe excretions were 26.8 +/- 8.1 and 14.5 +/- 5.1% of the dose, respectively. Tissue concentrations of 75Se were highest in the kidneys (1.89 +/- 0.2% dose/g), liver (1.46 +/- 0.2% dose/g), and blood (0.50 +/- 0.05% dose/ml), and lower (greater than 0.3% dose/g) in the other tissues. Trimethyl-selenonium was the major form (61%) of selenium in urine. Approximately 2% of the dose of doubly labeled SeCN- was excreted unchanged in urine (about 12% of urinary Se). 14C from doubly labeled SeCN- was not present in the methylated selenium metabolites, but a major 14C urinary metabolite was identified as thiocyanate. These results indicate that a substantial part of selenocyanate in the body undergoes metabolism and Se is excreted in methylated forms following scission of the C-Se bond.  相似文献   

7.
The 24-h respiratory excretion of dimethyl selenide (DMSe) and urinary excretion of trimethylselenonium (TMSe) were studied in adult male rats injected with 2 mg Se/kg as selenobetaine [(CH3)2Se+CH2COOH] or its methyl ester, labeled with 75Se and 14C. The DMSe was trapped by means of 20% benzyl chloride in xylene. TMSe was measured by cation exchange high performance liquid chromatography. There was extensive respiratory excretion of DMSe from selenobetaine methyl ester (about 50% of the dose) and from selenobetaine (about 25%). About 12% of the dose was converted to TMSe for both compounds. When the Se-methyl carbons were labeled with 14C and the selenium with 75Se, doubly labeled DMSe and TMSe were formed; the 14C/75Se ratio in DMSe formed from selenobetaine methyl ester was almost unchanged from that administered, and the ratio in TMSe was only slightly lower than in DMSe. In contrast to its ester, doubly labeled selenobetaine yielded DMSe having a lower 14C/75Se ratio (approximately one-half of that administered) and a further decrease was observed between DMSe and TMSe. These data indicate that the (CH3)2Se moiety in selenobetaine methyl ester undergoes facile release to form DMSe, which is directly methylated to form TMSe. Selenobetaine, however, appears to lose a methyl group prior to scission of the Se-CH2COOH bond. The results with selenobetaine also suggest that TMSe generated metabolically is not inert, and can undergo demethylation followed by remethylation; confirmatory evidence for this metabolic instability is provided by the exhalation of [75Se]DMSe after the direct administration of [75Se]TMSe. When [75Se]selenobetaine or its ester was given with the methylene carbon in the acetic acid moiety labeled with 14C, only 75Se was present in the DMSe and TMSe, indicating that TMSe did not arise by decarboxylation of selenobetaine. It is concluded that both selenobetaine and its methyl ester are readily converted to DMSe and TMSe by pathways that do not involve decarboxylation or the formation of hydrogen selenide as an intermediate, and DMSe is a direct precursor of TMSe.  相似文献   

8.
The present study was designed to evaluate three biological activities of trimethylselenonium (TMSe+): anticarcinogenicity, toxicity, and nutritional availability. These experiments were carried out in female rats both in the presence and absence of arsenite because arsenite is known to affect selenium metabolism. Supplementation with TMSe+ by itself in the diet, at levels of 20, 40, or 80 ppm Se, did not offer any protection against mammary carcinogenesis induced by dimethylbenz(a)anthracene. On the other hand, the coadministration of arsenite (5 ppm As) with the two higher levels of TMSe+ resulted in significant tumor suppression. In the acute toxicity experiment, rats were injected subcutaneously with 0.5 or 1 mg Se/kg, preceded 15 minutes earlier by arsenite at doses of 0.5, 1, or 2 mg As/kg. Although treatment with TMSe+ or arsenite alone did not produce any sign of toxicity, a synergistic toxic effect was evident with the combination. Regarding the ability of TMSe+ to restore hepatic glutathione peroxidase following selenium depletion, it was found that a dietary level of 40 ppm Se was necessary for complete recovery. The nutritional biopotency of TMSe+ was not sensitive to either up- or down-regulation by arsenite under conditions where arsenite also enhanced the anticarcinogenic activity of TMSe+. The contrasting effects of arsenite on these two end points suggest that different forms of selenium are involved. It is hypothesized that arsenite might increase the production of a critical metabolite from methylated selenides. However, there is no clear evidence at the present time to suggest whether the same intermediate(s) is responsible for both anticarcinogenicity and toxicity.  相似文献   

9.
We have developed techniques for the separation of unsulfated (2-acetamido-2-deoxy-3-O-(4-deoxy-alpha-L-threo- hex-4-enopyranosyluronicacid)-D-galactose and -D-glucose), monosulfated (2-acetamido-2-deoxy-3- O-(4-deoxy-2-O-sulfo-alpha-L-threo-hex-4-enopyranosyluronic acid)-D-galactose and 2-acetamido-2-deoxy-3-O-(4-deoxy-alpha-L-threo-hex- 4-enopyranosyluronic acid)-4-sulfo-D-galactose and -6-sulfo-D-galactose),disulfated (2-acetamido-2-deoxy-3-O-(4-deoxy-2-O-sulfo-alpha-L-threo-hex-4- enopyranosyluronic acid)-4-sulfo-D-galactose and -6-sulfo-D-galactose and 2-acet-amido-2-deoxy-3-O-(4-deoxy-alpha-L-threo-hex-4-enopy- ranosyluronic acid)-4,6-di-O-sulfo-D-galactose), and trisulfated (2-acetamido-2-deoxy-3-O-(4-deoxy-2-O- sulfo-alpha-L-threo-hex-4-enopyranosyluronic acid)-4,6-di-O-sulfo-D-galactose) isomers of chondroitin using capillary zone electrophoresis. In addition, it is possible to separate oligomers of hyaluronan by similar protocols. These techniques represent a rapid, sensitive, and reproducible technique for the assay of these molecules from digests of connective tissues.  相似文献   

10.
Starting from phenyl 2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-beta-D-glucopyranoside (1), chemical syntheses were developed for phenyl 2-acetamido-2-deoxy-3-O-beta-D-galactopyranosyl-beta-D-glucopyranoside (4) and phenyl 2-acetamido-2-deoxy-4-O-alpha-L-fucopyranosyl-3-O-beta-D-galactopyranosyl -beta-D-glucopyranoside (8). Thin-layer chromatography in the solvent system 6:4:1:5 (v/v) 2-propanol-ethyl acetate-ammonium hydroxide-water clearly separated the synthetic trisaccharide 8 (RF 0.69) from synthetic disaccharide 4 (RF 0.78), fucose (RF 0.56), and GDP-fucose (which remained at the origin). Based upon this observation, a modified method for the determination of GDP-L-fucose: N-acetylglucosaminide-(1 leads to 4)-alpha-L-fucosyltransferase was developed that employed the synthetic disaccharide 4 as an acceptor, and compound 8 as an authentic reference-compound. This modified assay-procedure can simultaneously monitor possible competing reactions which may interfere with determination of alpha-(1 leads to 4)-L-fucosyltransferase activity; these include phosphorylase and alpha-L-fucosidase activities, and incorporation of alpha-L-[14C]-fucose into endogenous acceptors of enzyme preparations. Thus, the modified assay-procedure should facilitate determination of alpha-(1 leads to 4)-L-fucosyltransferase.  相似文献   

11.
A methodology based on liquid chromatography coupled online with atomic and molecular mass spectrometry was developed for identifying trace amounts of the selenosugar methyl 2-acetamido-2-deoxy-1-seleno-β-D-galactopyranoside (SeGalNAc) in porcine liver, obtained from an animal that had not received selenium supplementation. Sample preparation was especially critical for the identification of SeGalNAc by molecular mass spectrometry. This involved liver extraction using a Tris buffer, followed by sequential centrifugations. The resulting cytosolic fraction was pre-concentrated and the low molecular weight selenium (LMWSe) fraction obtained from a size exclusion column was collected, concentrated, and subsequently analyzed using a tandem dual-column HPLC-ICP-MS system which consisted of strong cation exchange (SCX) and reversed phase (RP) columns coupled in tandem. Hepatocytosolic SeGalNAc was tentatively identified by retention time matching and spiking. Its identity was further confirmed by using the same type of chromatography on-line with atmospheric pressure chemical ionization tandem mass spectrometry operated in the selected reaction monitoring (SRM) mode. Four SRM transitions, characteristic of SeGalNAc, were monitored and their intensity ratios determined in order to confirm SeGalNAc identification. Instrument limits of detection for SeGalNAc by SCX-RP HPLC-ICP-MS and SCX-RP HPLC-APCI-MS/MS were 3.4 and 2.9 μg Se L(-1), respectively. Selenium mass balance analysis revealed that trace amounts of SeGalNAc, 2.16±0.94 μg Se kg(-1) liver (wet weight) were present in the liver cytosol, corresponding to 0.4% of the total Se content in the porcine liver.  相似文献   

12.
BackgroundThe aim of the study was to investigate if speciation analysis by liquid chromatography coupled to mass spectrometry could be used to detect organic and inorganic binding forms of selenium in the cerebrospinal fluid (CSF) of patients with Parkinson’s disease (PD) and age-matched control subjects (AMC).MethodsPD patients and control subjects were enrolled from three different neurological departments. CSF samples were collected according to standardized biomarker protocols and subjected to inductively coupled plasma mass spectrometry (ICP-MS) for total selenium determination and ion exchange chromatography (IEC) hyphenated to ICP-MS for selenium speciation analysis.Results75 PD patients and 68 age-matched controls were enrolled for speciation analysis. 8 different species could be detected, but only selenoprotein P (SELENOP), human serum albumin-bound Se (Se-HSA), selenomethionine (Se-Met) and an unidentified Se-compound (U2) presented with more than 50% values above the limit of quantification, without showing significant differences between both groups (p > 0.05). The Se-HSA / Se-Met ratio yielded a significant difference between PD and AMC (p = 0.045). The inorganic species Se-IV and Se-VI were only detectable in a minor part of PD and AMC samples. A highly significant correlation between total selenium levels and SELENOP (PD p < 0.0001; AMC p < 0.0001) and Se-HSA (PD p < 0.0001; AMC p < 0.0001) could be demonstrated, respectively.ConclusionsSpeciation analysis yielded new insight into selenium homeostasis in PD but cannot be used to establish a diagnostic biomarker. The small number of detectable values for Se-IV and Se-VI suggests an inferior role of these potentially neurotoxic binding forms in PD pathology in contrast to other neurodegenerative disorders.  相似文献   

13.
2-Acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl phosphate, pure according to thin-layer and gas—liquid chromatography, optical rotation, and treatment with alkaline phosphatase and 2-acetamido-2-deoxy-β-d-glucosidase, was prepared by treatment of 2-methyl-[4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-1,2-dideoxy-α-d-glucopyrano]-[2,1-d]-2-oxazoline with dibenzyl phosphate, followed by the removal of the benzyl groups by catalytic hydrogenolysis, and O-deacetylation. In contrast, a sample prepared by the phosphoric acid procedure was shown to consist mainly of the β anomer. 2-Acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-α-d-glucopyranosyl phosphate was treated wit P1-diphenyl P2-dolichyl pyrophosphate to give a fully acetylated pyrophosphoric diester, which was O-deacetylated to give P1-2-acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl P2-dolichyl pyrophosphate. This compound could be separated from the β anomer by t.l.c., and its behavior under dilute acid and alkaline conditions was investigated.  相似文献   

14.
Methyl 2-acetamido-3-O-allyl-2-deoxy-4-O-methyl-α-D-glucopyranoside, methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside, and methyl 2-acetamido-3,4-di-O-allyl-2-deoxy-α-D-glucopyranoside, prepared from methyl 2-acetamido-2-deoxy-α-D-glucopyranoside, were coupled with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate (13), to give the phosphoric esters methyl 2-acetamido-3-O-allyl-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (16), methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (23), and methyl 2-acetamido-3,4-di-O-allyl-2-deoxy-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (17). Compound 13 was prepared from penta-O-acetyl-β-D-glucopyranose by the phosphoric acid procedure, or by acetylation of α-D-glucopyranosyl phosphate. Removal of the allyl groups from 16 and 17 gave 23 and methyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (19), respectively. O-Deacetylation of 23 gave methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (26) and O-deacetylation of 19 gave methyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (24). Propyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (25) was prepared by coupling 13 with allyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-α-D-glucopyranoside, followed by catalytic hydrogenation of the product to give the propyl glycoside, which was then O-deacetylated. Compounds 24, 25, and 26 are being employed in structural studies of the Micrococcus lysodeikticus cell-wall.  相似文献   

15.
A fluorogenic substrate for exo-β-N-acetylmuramidase from Bacillus subtilis B was synthesized. 4-Methyl-2-oxo-1,2-benzopyran-7-yl 2-acetamido-4,6-O-benzylidene-2-deoxy-β-d-glucopyranoside was prepared from 4-methyl-2-oxo-1,2-benzopyran-7-yl 2-acetamido-2-deoxy-β-d-glucopyranoside, condensed with dl-2-chloropropionic acid, the benzylidene residue removed by acetolysis and the 4-methyl-2-oxo-1,2-benzopyran-7-yl 2-amino-3-O-(d-1-carboxyethyl)-2-deoxy-β-d-glucopyranoside purified by chromatography on silica gel and Sephadex G-10 and by high-voltage paper electrophoresis. The identity of the product was confirmed by pmr studies, acid hydrolysis followed by chromatography of the products, and enzymic digestion.  相似文献   

16.
Selenium metabolic patterns in the human body originating from five distinct selenium dietary sources, selenate, selenite, selenomethionine (SeMet), methylselenocysteine (MeSeCys) and selenized yeast, were investigated by performing concurrent HPLC–mass spectrometric analysis of human serum and urine. Total selenium and selenium species time profiles were generated by sampling and analyzing serum and urine from volunteers treated with selenium supplements, up to 5 and 24 h following ingestion, respectively. We found that an increase in total serum selenium levels, accompanied by elevated selenium urinary excretion, was the common pattern for all treatments, except for that of selenite supplementation. Selenosugar 1 was a universal serum metabolite in all treatments, indicating that ingested selenium is favorably metabolized to the sugar. Except for selenite and selenized yeast ingestion, these patterns were reflected in the urine time series of the different treatments. Selenosugar 1 was the major selenium species present in urine in all treatments except for the selenate treatment, accounting for about 80% of the identified excreted species within 24 h of ingestion. Furthermore, the urinary metabolite trimethylselenonium ion (TMSe) was detected for the first time in human background serum by using HPLC coupled to elemental and molecular mass spectrometry. The concurrent monitoring of non-protein selenium species in both body fluids provides the relation between bioavailability and excretion of the individual ingested species and of their metabolic products, while the combined use of elemental and molecular mass spectrometry enables the accurate quantitation of structurally confirmed species. This successfully applied approach is anticipated to be a useful tool for more extensive future studies into human selenium metabolism.  相似文献   

17.
Methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-β-D-glucofuranoside was prepared in excellent yield from methyl 2-benzamido-2-deoxy-5,6-O-isopropylidene-β-D-glucofuranoside by alkaline hydrolysis, followed by selective N-acetylation. Treatment with 60% acetic acid at room temperature gave syrupy methyl 2-acetamido-2-deoxy-β-D-glucofuranoside, characterized by a crystalline tri-O-p-nitrobenzoyl derivative. The same treatment, at 100° gave methyl 2-acetamido-2-deoxy-β-D-glucopyranoside. In an alternative procedure, the selective N-acetylation was performed after acetic acid hydrolysis of methyl 2-amino-2-deoxy-5,6-O-isopropylidene-β-D-glucofuranoside. Several derivatives of methyl 2-acetamido-2-deoxy-β-D-glucofuranoside were prepared and compared with the corresponding pyranosides. The furanoside structure was clearly demonstrated by mass spectrometry and periodate oxidation.  相似文献   

18.
The crystalline intermediate 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4-di-O-acetyl-2-deoxy-β-D-glucopyranosyl azide (5), obtained by condensation of 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl bromide with either 2-acetamido-3,4-di-O-acetyl-2-deoxy-β-D-glucopyranosyl azide or its 6-O-triphenylmethyl derivative, was reduced in the presence of Adams' catalyst to give a disaccharide amine. Condensation with 1-benzyl N-(benzyloxycarbonyl)-L-aspartate afforded crystalline 2-acetamido-6-O-(2-acetamido-3,4 6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4-di-O-acetyl-1-N-[1-benzyl N-(benzyloxycarbonyl)-L-aspart-4-oyl]-2-deoxy-β-D-glucopyranosylamine (9). Catalytic hydrogenation in the presence of palladium-on-charcoal was followed by saponification to give 2-acetamido-6-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-1-N-(L-aspart-4-oyl)-2-deoxy-β-D-glucopyranosylamine (11) in crystalline form. From the mother liquors of the reduction of 5, a further crystalline product was isolated, to which was assigned a bisglycosylamine structure (12).  相似文献   

19.
Abstract

The facile synthesis of several substituted carbohydrates that are amenable for the preparation of 2′,3′-dideoxy-3′-hydroxymethyl nucleosides are reported. Elaboration of a previously reported analog, 5-O-benzoyl-3-deoxy-3-(benzyloxy)methyl-1,2-O-isopropylidene-β-D- ribofuranose (4) has provided two 2,3-dideoxy-3-branched ribose derivatives 5-O-benzoyl-2,3-dideoxy-3-(benzyloxy)methyl-1-O-methyl-β-D-ribofuranose (7) and 1.5-di-O-benzoyl-2,3-dideoxy-3-(benzyloxy)methyl-(α,β)-D-ribofuranose (10). Due to problems involved with the separation of anomeric mixtures when these carbohydrates were condensed with an heterocycle, another versatile synthon 5-O-benzoyl-3-deoxy-3-(benzyloxy)methyl-2-O-t-butyldimethylslyl-1-O- methyl-β-D-ribofuranose (12) was synthesized. The utility of this compound (12) is demonstrated in the total synthesis of 1-[3-deoxy-3-hydroxymethyl-β-D-ribofuranosyl]thymine (20).  相似文献   

20.
BackgroundAlthough selenium is an essential element for humans, acute toxicity has been reported after high oral exposure.MethodsThe published literature on the acute toxicity of oral selenium was gathered and reviewed.ResultsReported symptoms and signs include abdominal symptoms, such as vomiting, diarrhea, pain, and nausea, as well as garlic-like odor on the breath. In cases of severe toxicity, cardiac and pulmonary symptoms may develop and ultimately lead to mortality. Mortality has been described after the ingestion of gun bluing solutions, which often contain selenous acid among other potentially toxic substances. Mortality has also been reported after the ingestion of other forms of selenium. Ingested doses associated with mortality are in the range of 1–100 mg Se/kg body weight. Blood levels associated with mortality are above 300 μg Se/L (normal level: 100 μg/L), whereas urinary levels associated with the same endpoint are above170 μg Se/L (normal level: 20–90 μg/L).ConclusionThe acute toxicity associated with oral selenium ingestion and the blood and urinary levels of selenium in different cases of poisonings were reviewed. Mortality is a risk of acute selenium poisoning. Concentrations of selenium in blood and urine samples in non-fatal cases are close to those observed in fatal cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号