首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given the central role of DNA in life, and how ageing can be seen as the gradual and irreversible breakdown of living systems, the idea that damage to the DNA is the crucial cause of ageing remains a powerful one. DNA damage and mutations of different types clearly accumulate with age in mammalian tissues. Human progeroid syndromes resulting in what appears to be accelerated ageing have been linked to defects in DNA repair or processing, suggesting that elevated levels of DNA damage can accelerate physiological decline and the development of age-related diseases not limited to cancer. Higher DNA damage may trigger cellular signalling pathways, such as apoptosis, that result in a faster depletion of stem cells, which in turn contributes to accelerated ageing. Genetic manipulations of DNA repair pathways in mice further strengthen this view and also indicate that disruption of specific pathways, such as nucleotide excision repair and non-homologous end joining, is more strongly associated with premature ageing phenotypes. Delaying ageing in mice by decreasing levels of DNA damage, however, has not been achieved yet, perhaps due to the complexity inherent to DNA repair and DNA damage response pathways. Another open question is whether DNA repair optimization is involved in the evolution of species longevity, and we suggest that the way cells from different organisms respond to DNA damage may be crucial in species differences in ageing. Taken together, the data suggest a major role of DNA damage in the modulation of longevity, possibly through effects on cell dysfunction and loss, although understanding how to modify DNA damage repair and response systems to delay ageing remains a crucial challenge.  相似文献   

2.
3.
X-chromosome inactivation represents an epigenetics paradigm and a powerful model system of facultative heterochromatin formation triggered by a non-coding RNA, Xist, during development. Once established, the inactive state of the Xi is highly stable in somatic cells, thanks to a combination of chromatin associated proteins, DNA methylation and nuclear organization. However, sporadic reactivation of X-linked genes has been reported during ageing and in transformed cells and disappearance of the Barr body is frequently observed in cancer cells. In this review we summarise current knowledge on the epigenetic changes that accompany X inactivation and discuss the extent to which the inactive X chromosome may be epigenetically or genetically perturbed in breast cancer.  相似文献   

4.
Cellular senescence has long been used as a cellular model for understanding mechanisms underlying the ageing process. Compelling evidence obtained in recent years demonstrate that DNA damage is a common mediator for both replicative senescence, which is triggered by telomere shortening, and premature cellular senescence induced by various stressors such as oncogenic stress and oxidative stress. Extensive observations suggest that DNA damage accumulates with age and that this may be due to an increase in production of reactive oxygen species (ROS) and a decline in DNA repair capacity with age. Mutation or disrupted expression of genes that increase DNA damage often result in premature ageing. In contrast, interventions that enhance resistance to oxidative stress and attenuate DNA damage contribute towards longevity. This evidence suggests that genomic instability plays a causative role in the ageing process. However, conflicting findings exist which indicate that ROS production and oxidative damage levels of macromolecules including DNA do not always correlate with lifespan in model animals. Here we review the recent advances in addressing the role of DNA damage in cellular senescence and organismal ageing.  相似文献   

5.
The mechanism by which we age has sparked a huge number of theories, and is an area of intense debate. As the elderly population rises, the importance of elucidating these mechanisms is becoming more apparent as age is the single biggest risk factor for a number of diseases such as cancer, diabetes and neurodegenerative disease. Mitochondrial DNA (MtDNA) mutations have been shown to accumulate in cells and tissues during the ageing process; however the question as to whether these mutations have a causal role in the ageing process remains an area of uncertainty. Here we review the current literature, and discuss the evidence for and against a causal role of mtDNA mutations in ageing and in the pathogenesis of age-related disease.  相似文献   

6.
Faithful transmission of genetic material is essential for cell viability and organism health. The occurrence of DNA damage, due to either spontaneous events or environmental agents, threatens the integrity of the genome. The consequences of these insults, if allowed to perpetuate and accumulate over time, are mutations that can lead to the development of diseases such as cancer. Alkylation is a relevant DNA lesion produced endogenously as well as by exogenous agents including certain chemotherapeutics. We sought to better understand the cellular response to this form of DNA damage using mass spectrometry-based proteomics. For this purpose, we performed sub-cellular fractionation to monitor the effect of methyl methanesulfonate (MMS) treatment on protein localization to chromatin. The levels of over 500 proteins were increased in the chromatin-enriched nuclear lysate including histone chaperones. Levels of ubiquitin and subunits of the proteasome were also increased within this fraction, suggesting that ubiquitin-mediated degradation by the proteasome has an important role in the chromatin response to MMS treatment. Finally, the levels of some proteins were decreased within the chromatin-enriched lysate including components of the nuclear pore complex. Our spatial proteomics data demonstrate that many proteins that influence chromatin organization are regulated in response to MMS treatment, presumably to open the DNA to allow access by other DNA damage response proteins. To gain further insight into the cellular response to MMS-induced DNA damage, we also performed phosphorylation enrichment on total cell lysates to identify proteins regulated via post-translational modification. Phosphoproteomic analysis demonstrated that many nuclear phosphorylation events were decreased in response to MMS treatment. This reflected changes in protein kinase and/or phosphatase activity in response to DNA damage rather than changes in total protein abundance. Using these two mass spectrometry-based approaches, we have identified a novel set of MMS-responsive proteins that will expand our understanding of DNA damage signaling.  相似文献   

7.
DNA methylation and demethylation in mammals   总被引:1,自引:0,他引:1  
Cell type-specific DNA methylation patterns are established during mammalian development and maintained in adult somatic cells. Understanding how these patterns of 5-methylcytosine are established and maintained requires the elucidation of mechanisms for both DNA methylation and demethylation. The enzymes involved in the de novo methylation of DNA and the maintenance of the resulting methylation patterns have been fairly well characterized. However, important remaining challenges are to understand how DNA methylation systems function in vivo and in the context of chromatin. In addition, the enzymes and mechanisms for demethylation remain to be elucidated. There is still no consensus as to how active enzymatic demethylation is achieved in mammalian cells, but recent studies implicate base excision repair for genome-wide DNA demethylation in germ cells and early embryos.  相似文献   

8.
9.
M Poot 《Mutation research》1991,256(2-6):177-189
In terms of the amount of experimental research it has generated the free radical theory of ageing is one of the most popular hypotheses to explain this ubiquitous phenomenon. From the theory two postulates were derived: either cellular defence mechanisms against free radical-dependent oxidants deteriorate during ageing of cells, or essential, unrepairable damages are imparted to the cell by oxidants regardless of the activity of antioxidant defence systems. The many reports dealing with a putative breakdown in antioxidant defence systems failed to positively support this postulate. However, a minor depletion in cellular glutathione by exposure to a model lipophilic peroxide led to a significant decrement in DNA and protein synthesis. In other words, the glutathione redox cycle is intrinsically fallible with respect to defending the cellular DNA replication system against this model lipophilic peroxide. Interestingly, after ageing in culture cells a partial uncoupling of the NADPH-producing and -consuming systems tends to take place. Experiments involving the addition of antioxidants to the culture medium have failed to significantly extend the lifespan of cultured diploid somatic cells. The level of antioxidants appears to be a modulator rather than a primary determinant of cellular ageing in culture. Several lines of evidence suggest that DNA damages accumulate during ageing of the organism, but no oxidant-related DNA damage has been pinpointed in the cultured cell system. Human mutants with defects in antioxidant enzymes have not shown conclusive signs of accelerated ageing. Cells from patients with Werner's syndrome (progeria of the adult), on the other hand, do not suffer from a defect in their antioxidant defence system, nor do they accumulate more than normal amounts of autofluorescent products resulting from lipid peroxidation. The recent finding that Werner's syndrome constitutes a mutator phenotype may prompt the comparison of oxidant- and ageing-related mutation spectra in order to investigate a mutational theory of ageing as a new derivative from the free radical hypothesis.  相似文献   

10.
DNA damage plays a significant role in mutagenesis, carcinogenesis and ageing. Chemical transformations leading to DNA damage include reactions of the base units with agents of endogenous and exogenous origin. The vast majority of damage arising from cellular processes such as metabolism and lipid peroxidation are identical or very similar to those induced by exposure to environmental agents. A detailed knowledge of the types and prevalence of endogenous DNA damage provides insight into the chemical nature of species involved in these modifications and may be of help in understanding their influence on the induction of cancer or other diseases. This knowledge may also be essential to the development of rational chemopreventive strategies directed against the initiation of oxidative stress- and lipid peroxidation-associated pathology.The present work reviews findings regarding the interaction between DNA bases and various reactive species arising from lipid peroxidation and other cellular processes, drawing attention to the mechanism responsible for the formation of the resulted modifications. The biological consequences of these interactions are also briefly discussed.  相似文献   

11.
《BBA》2006,1757(5-6):611-617
The accumulation of mitochondrial DNA mutations has been proposed as a potential mechanism in the physiological processes of ageing and age-related disease. Although mitochondria have long been anticipated as a perpetrator of ageing, there was little experimental evidence to link these changes directly with the cellular pathology of ageing. Recently, considerable progress in understanding basic mitochondrial genetics and in identifying acquired mtDNA mutations in ageing has been made. Furthermore, the creation of mtDNA-mutator mice has provided the first direct evidence that accelerating the mtDNA mutation rate can result in premature ageing, consistent with the view that loss of mitochondrial function is a major causal factor in ageing. This review will, therefore, focus on recent developments in ageing research related to the role played by mtDNA.  相似文献   

12.
Mitochondrial DNA and ageing   总被引:6,自引:0,他引:6  
The accumulation of mitochondrial DNA mutations has been proposed as a potential mechanism in the physiological processes of ageing and age-related disease. Although mitochondria have long been anticipated as a perpetrator of ageing, there was little experimental evidence to link these changes directly with the cellular pathology of ageing. Recently, considerable progress in understanding basic mitochondrial genetics and in identifying acquired mtDNA mutations in ageing has been made. Furthermore, the creation of mtDNA-mutator mice has provided the first direct evidence that accelerating the mtDNA mutation rate can result in premature ageing, consistent with the view that loss of mitochondrial function is a major causal factor in ageing. This review will, therefore, focus on recent developments in ageing research related to the role played by mtDNA.  相似文献   

13.
Skin is an organ whose function is far beyond a physical barrier between the inside and the outside of the body. Skin as the whole organism is subjected to ageing which concerns skin mostly in its dermal and deepest component which is also its matricial component. The dermis is a tissue rich in matricial elements and poor in cellular content and it is generally admitted that modifications occurring in the matrix are those which mostly contribute to skin ageing, by altering its biomechanical properties. Therefore it is common to address questions related to skin ageing by considering alterations in matrix molecules like collagen. Actually the dermis is a complex tissue both matricial and cellular and is divided between a superficial dermis close to epidermis and a deep dermis much thicker and histologically different. Several years ago we have undertaken investigations related to fibroblasts which are the cells responsible for the formation and maintenance of the dermis, aiming at isolation, culture and characterization of the fibroblasts from the superficial dermis also called papillary dermis and fibroblasts from the deep dermis also called reticular dermis. We were able to show that these fibroblasts in classical culture on plastic exhibit very different morphologies associated with different secretion properties and we have confirmed and expanded such observations revealing different phenotypes by incorporating these cells in reconstructed skin which allows the reproduction of a three-dimensional architecture recalling skin in vivo especially after grafting onto the nude mouse. We also raise the question of how these two dermal regions appear during the formation of the dermis and the question of their fate during ageing. Progress in solving these questions would certainly appear to be very useful for a better understanding of skin physiology and ageing and would hopefully provide new strategies in anti-ageing research.  相似文献   

14.
15.
染色质重塑复合体(chromatin remodeling complexes)通过具有ATPase活性的亚基水解ATP释放能量,通过改变核小体"构象"(包括核小体重定位、核小体滑动和核小体替换等)而改变DNA的"可及性"(accessibility),进而影响特定的生理、生化过程。染色质重塑复合体最早在酵母中发现,生化分析表明其至少含有13个亚基。目前植物染色质重塑复合体的组成还未完全解析,但通过对其酵母同源亚基(染色质重塑因子)的研究可从侧面探究植物染色质重塑复合体的功能。同时,还着重讨论了近年来在植物染色质重塑因子研究上取得的结果,以期为植物染色质重塑的作用机制提供启示。  相似文献   

16.
DNA damage evokes a complex and highly coordinated DNA damage response (DDR) that is integral to the suppression of genomic instability. Double-strand breaks (DSBs) are considered the most deleterious form damage. Evidence suggests that trimethylation of histone H3 lysine 9 (H3K9me3) presents a barrier to DSB repair. Also, global levels of histone methylation are clinically predictive for several tumor types. Therefore, demethylation of H3K9 may be an important step in the repair of DSBs. The KDM4 subfamily of demethylases removes H3K9 tri- and dimethylation and contributes to the regulation of cellular differentiation and proliferation; mutation or aberrant expression of KDM4 proteins has been identified in several human tumors. We hypothesize that members of the KDM4 subfamily may be components of the DDR. We found that Kdm4b-enhanced GFP (EGFP) and KDM4D-EGFP were recruited rapidly to DNA damage induced by laser micro-irradiation. Focusing on the clinically relevant Kdm4b, we found that recruitment was dependent on poly(ADP-ribose) polymerase 1 activity as well as Kdm4b demethylase activity. The Kdm4 proteins did not measurably accumulate at γ-irradiation-induced γH2AX foci. Nevertheless, increased levels of Kdm4b were associated with decreased numbers of γH2AX foci 6 h after irradiation as well as increased cell survival. Finally, we found that levels of H3K9me2 and H3K9me3 were decreased at early time points after 2 gray of γ-irradiation. Taken together, these data demonstrate that Kdm4b is a DDR protein and that overexpression of Kdm4b may contribute to the failure of anti-cancer therapy that relies on the induction of DNA damage.  相似文献   

17.
Tendon ageing is a complicated process caused by multifaceted pathways and ageing plays a critical role in the occurrence and severity of tendon injury. The role of tendon stem/progenitor cells (TSPCs) in tendon maintenance and regeneration has received increasing attention in recent years. The decreased capacity of TSPCs in seniors contributes to impaired tendon functions and raises questions as to what extent these cells either affect, or cause ageing, and whether these age-related cellular alterations are caused by intrinsic factors or the cellular environment. In this review, recent discoveries concerning the biological characteristics of TSPCs and age-related changes in TSPCs, including the effects of cellular epigenetic alterations and the mechanisms involved in the ageing process, are analyzed. During the ageing process, TSPCs ageing might occur as a natural part of the tendon ageing, but could also result from decreased levels of growth factor, hormone deficits and changes in other related factors. Here, we discuss methods that might induce the rejuvenation of TSPC functions that are impaired during ageing, including moderate exercise, cell extracellular matrix condition, growth factors and hormones; these methods aim to rejuvenate the features of youthfulness with the ultimate goal of improving human health during ageing.  相似文献   

18.
19.
Telomere dysfunction and stem cell ageing   总被引:1,自引:0,他引:1  
Ageing is characterized by a decline in organ maintenance and repair. Adult stem cells contribute to tissue repair and organ maintenance. Thus it is conceivable that ageing is partly due to a decline of stem cell function. At molecular level, ageing is associated with an accumulation of damage affecting DNA, proteins, membranes, and organelles, as well as the formation of insoluble protein aggregates. Telomere shortening represents a cell intrinsic mechanism, which contributes to the accumulation of DNA damage during cellular ageing. Telomere dysfunction in response to critical telomere shortening induces DNA damage checkpoints that lead to cell cycle arrest and/or cell death. Checkpoint responses induced by telomere dysfunction have mostly been studied in somatic cells but there are emerging data on cell intrinsic checkpoints that impair the maintenance and function of adult stem cell in response to telomere dysfunction. Moreover, telomere dysfunction induces alterations in the stem cell environment that limit the function of adult stem cells. In this review we summarize our current knowledge on the role of telomere dysfunction in adult stem cell ageing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号