首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maternal diabetes impairs fetoplacental development and programs metabolic diseases in the offspring. We have previously reported that female offspring of pregnant rats with mild diabetes develop gestational diabetes mellitus (GDM) when they become pregnant. Here, we studied the effects of supplementation with polyunsaturated fatty acids (PUFAs) in pregnant mild diabetic rats (F0) by feeding a 6% safflower-oil-enriched diet from day 1 to 14 followed by a 6% chia-oil-enriched diet from day 14 of pregnancy to term. We analyzed maternal metabolic parameters and placental signaling at term in pregnant offspring (F1). The offspring of both PUFAs-treated and untreated mild diabetic rats developed GDM. Although gestational hyperglycemia was not prevented by dietary PUFAs treatment in F0, triglyceridemia and cholesterolemia in F1 mothers were normalized by F0 PUFAs dietary treatment. In the placenta of F1 GDM rats, PPARγ levels were reduced and lipoperoxidation was increased, changes that were prevented by the maternal diets enriched in PUFAs in the F0 generation. Moreover, fetal overgrowth and placental activation of mTOR signaling pathways were reduced in F1 GDM rats whose mothers were treated with PUFAs diets. These results suggest that F0 PUFAs dietary treatment in pregnancies with mild diabetes improves maternal dyslipidemia, fetal overgrowth and placental signaling in female offspring when they become pregnant. We speculate that an increased PUFAs intake in pregnancies complicated by diabetes may prove effective to ameliorate metabolic programming in the offspring, thereby improving the health of future generations.  相似文献   

2.
Maternal diabetes impairs fetal development and growth. We studied the effects of maternal diets enriched in unsaturated fatty acids capable of activating peroxisome proliferator-activated receptors (PPARs) on the concentrations of 15deoxyΔ12,14PGJ2 (15dPGJ2), lipid mass, and the de novo lipid synthesis in 13.5-day fetuses from control and diabetic rats. Diabetes was induced by neonatal streptozotocin administration (90 mg/kg). Rats were treated with a standard diet supplemented or not with 6% olive oil or 6% safflower oil from days 0.5 to 13.5 of gestation. Fetuses from diabetic rats fed with the standard diet showed reduced 15dPGJ2 concentrations, whereas maternal treatments with olive and safflower oils increased 15dPGJ2 concentrations. Fetuses from diabetic rats showed increased concentrations of phospholipids and increased synthesis of triglycerides, phospholipids, cholesterol and free fatty acids. Diabetic rat treatments with olive and safflower oils reduced phospholipids, cholesterol, and free fatty acid concentrations and the de novo lipid synthesis in the fetuses. These effects were different from those observed in fetuses from control rats, and seem not to involve PPARγ activation. In conclusion, olive oil- and safflower oil-supplemented diets provide beneficial effects in maternal diabetes, as they prevent fetal impairments in 15dPGJ2 concentrations, lipid synthesis and lipid accumulation.  相似文献   

3.
Maternal diabetes impairs fetal development and growth. We studied the effects of maternal diets enriched in unsaturated fatty acids capable of activating peroxisome proliferator-activated receptors (PPARs) on the concentrations of 15deoxyΔ12,14PGJ2 (15dPGJ2), lipid mass, and the de novo lipid synthesis in 13.5-day fetuses from control and diabetic rats. Diabetes was induced by neonatal streptozotocin administration (90 mg/kg). Rats were treated with a standard diet supplemented or not with 6% olive oil or 6% safflower oil from days 0.5 to 13.5 of gestation. Fetuses from diabetic rats fed with the standard diet showed reduced 15dPGJ2 concentrations, whereas maternal treatments with olive and safflower oils increased 15dPGJ2 concentrations. Fetuses from diabetic rats showed increased concentrations of phospholipids and increased synthesis of triglycerides, phospholipids, cholesterol and free fatty acids. Diabetic rat treatments with olive and safflower oils reduced phospholipids, cholesterol, and free fatty acid concentrations and the de novo lipid synthesis in the fetuses. These effects were different from those observed in fetuses from control rats, and seem not to involve PPARγ activation. In conclusion, olive oil- and safflower oil-supplemented diets provide beneficial effects in maternal diabetes, as they prevent fetal impairments in 15dPGJ2 concentrations, lipid synthesis and lipid accumulation.  相似文献   

4.
5.
6.
Tetradecylthioacetic acid (TTA) is a hypolipidemic modified fatty acid and a peroxisome proliferator-activated receptor (PPAR) ligand. The mechanisms of TTA-mediated effects seem to involve the PPARs, but the effects have not been assigned to any specific PPAR subtype. PPARα−/− mice were employed to study the role of PPARα after TTA treatment. We also performed in vitro transfection assays to obtain mechanistic knowledge of how TTA affected PPAR activation in the presence of PPARγ coactivator (PGC)-1 and steroid receptor coactivators (SRC)-1 and SRC-2, which are associated with energy balance and mitochondrial biogenesis. We show that TTA increases hepatic fatty acid β-oxidation in PPARα−/− mice. TTA acts as a pan-PPAR ligand in vitro, and PGC-1, SRC-1 and SRC-2 have cell type and PPAR-specific effects together with TTA. In the absence of exogenous ligands, SRC-1 did not induce PPAR activity, while PGC-1 was the most potent PPAR coactivator. When the coactivators were overexpressed, pronounced effects of TTA were observed especially for PPARδ and PPARγ. We conclude that PPARα is involved in, but not required for, the hypolipidemic mechanisms of TTA. It appears that the activity of PPARδ, with substantial contribution of nuclear receptor coactivators, PGC-1 in special, is conducive to TTA's mechanism of action.  相似文献   

7.
AimsMaternal diabetes impairs placental development and metabolism. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear receptors relevant in metabolic homeostasis. We investigated the concentrations of PPARδ and its endogenous agonist prostacyclin (PGI2), as well as the effects of carbaprostacylin (cPGI2, a PPARδ agonist) on lipid metabolism in placentas from control and streptozotocin-induced diabetic rats on day 13.5 of gestation.Main methodsThe placentas were explanted to evaluate PPARδ expression and PGI2 concentrations, and cultured with cPGI2 for further analysis of lipid metabolism (concentrations and 14C-acetate derived synthesis of triglycerides, cholesteryl esters, phospholipids, cholesterol and free fatty acids; release of glycerol and lipid peroxidation).Key findingsReduced PGI2 concentrations were found in the placentas from diabetic rats when compared to controls. cPGI2 additions reduced the concentrations and synthesis of several lipid species, increased lipid catabolism and reduced lipid peroxidation in the placenta. These effects were more marked in diabetic tissues, which presented alterations in the lipid metabolic parameters evaluated. cPGI2 additions increased placental PPARδ and acyl-CoA oxidase expression, which are changes possibly involved in the catabolic effects observed.SignificanceThe present study reveals the capability of cPGI2 to regulate placental lipid metabolism and PPARδ expression, and suggests that preserving appropriate PGI2 concentrations in the placenta may help to metabolize maternal derived lipid overload in diabetic gestations.  相似文献   

8.
Developmental programming of hypertension is associated with vascular dysfunction characterized by impaired vasodilatation to nitric oxide, exaggerated vasoconstriction to ANG II, and microvascular rarefaction appearing in the neonatal period. Hypertensive adults have indices of increased oxidative stress, and newborns that were nutrient depleted during fetal life have decreased antioxidant defenses and increased susceptibility to oxidant injury. To test the hypothesis that oxidative stress participates in early life programming of hypertension, vascular dysfunction, and microvascular rarefaction associated with maternal protein deprivation, pregnant rats were fed a normal, low protein (LP), or LP plus lazaroid (lipid peroxidation inhibitor) isocaloric diet from the day of conception until delivery. Lazaroid administered along with the LP diet prevented blood pressure elevation, enhanced vasomotor response to ANG II, impaired vasodilatation to sodium nitroprusside, and microvascular rarefaction in adult offspring. Liver total glutathione was significantly decreased in LP fetuses, and kidney eight-isoprostaglandin F2alpha (8-isoPGF(2alpha)) levels were significantly increased in adult LP offspring; these modifications were prevented by lazaroid. Renal nitrotyrosine abundance and blood levels of 1,4-dihydroxynonene and 4-hydroxynonenal-protein adducts were not modified by antenatal diet exposure. This study shows in adult offspring of LP-fed dams prevention of hypertension, vascular dysfunction, microvascular rarefaction, and of an increase in indices of oxidative stress by the administration of lazaroid during gestation. Lazaroid also prevented the decrease in antioxidant glutathione levels in fetuses, suggesting an antenatal mild oxidative stress in offspring of LP-fed dams. These studies support the concept that perinatal oxidative insult can lead to permanent alterations in the cardiovascular system development.  相似文献   

9.
10.
Endothelial dysfunction plays a key role in the pathogenesis of diabetic vascular disease. Herein, we have analyzed if the peroxisome proliferator-activated receptor-β/-δ (PPARβ/δ) agonist GW0742 exerts protective effects on endothelial function in type 1 diabetic rats. The rats were divided into 4 groups: control, control-treated (GW0742, 5mgkg(-1)day(-1) for 5 weeks), diabetic (streptozotocin injection), and diabetic-treated. GW0742 administration in diabetic rats did not alter plasma glucose, systolic blood pressure, or heart rate, but reduced plasma triglyceride levels. The vasodilatation induced by acetylcholine was decreased in aortas from diabetic rats. GW0742 restored endothelial function, increasing eNOS phosphorylation. Superoxide production, NADPH oxidase activity, and mRNA expression of prepro endothelin-1, p22(phox), p47(phox), and NOX-1 were significantly higher in diabetic aortas, and GW0742 treatment prevented these changes. In addition, GW0742 prevented the endothelial dysfunction and the upregulation of prepro endothelin-1and p47(phox) after the in vitro incubation of aortic rings with high glucose and these effects were prevented by the PPARβ/δ antagonist GSK0660. PPARβ/δ activation restores endothelial function in type 1 diabetic rats. This effect seems to be related to an increase in nitric oxide bioavailability as a result of reduced NADPH oxidase-driven superoxide production and downregulation of prepro endothelin-1.  相似文献   

11.
Changes in lipid metabolism of fetal and maternal rat livers were investigated on day 20 of pregnancy after administration of either 3 mg/kg or 24 mg/kg triamcinolone-acetonide or 124 mg/kg hydrocortisone in crystalline suspension to the mothers on day 15 of pregnancy. Sudan black B and Nile red as well as the UV-Schiff reaction and thin layer chromatography were used to study qualitatively the response of lipids to these glucocorticoids. Generally, after application of triamcinolone-acetonide fetal livers accumulated more lipids as toxic response to this glucocorticoid than the maternal organ; the degree of lipid accumulation was clearly dose-dependent in the fetuses. After hydrocortisone treatment, lipids in maternal livers were slightly, those in the fetuses were not affected. Histochemistry and thin layer chromatography revealed an accumulation of neutral lipids, especially of triglycerides and fatty acids which both contained increased amounts of ethylene bonds after treatment with triamcinolone-acetonide. The results also show that using combined histochemistry and thin layer chromatography, the analysis of hepatic lipids is a promising tool for the assessment of toxic effects of glucocorticoids on fetal and maternal hepatocytes in rats.  相似文献   

12.
13.
Although maternal, fetal, and placental mechanisms compensate for disturbances in the fetal environment, any nutritional inadequacies present during pregnancy may affect fetal metabolism, and their consequences may appear in later life. The aim of the present study is to investigate the influence of maternal diet during gestation on Fe, Zn, and Cu levels in the livers and kidneys of adult rats. The study was carried out on the offspring (n?=?48) of mothers fed either a protein-balanced or a protein-restricted diet (18% vs. 9% casein) during pregnancy, with or without folic acid supplementation (0.005- vs. 0.002-g folic acid/kg diet). At 10?weeks of age, the offspring of each maternal group were randomly assigned to groups fed either the AIN-93G diet or a high-fat diet for 6?weeks, until the end of the experiment. The levels of Fe, Zn, and Cu in the livers and kidneys were determined by the F-AAS method. It was found that postnatal exposure to the high-fat diet was associated with increased hepatic Fe levels (p?相似文献   

14.
Summary Changes in lipid metabolism of fetal and maternal rat livers were investigated on day 20 of pregnancy after administration of either 3 mg/kg or 24 mg/kg triamcinclone-acetonide or 124 mg/kg hydrocortisone in crystalline suspension to the mothers on day 15 of pregnancy. Sudan black B and Nile red as well as the UV-Schiff reaction and thin layer chromatography were used to study qualitatively the response of lipids to these glucocorticoids. Generally, after application of triamcinolone-acetonide fetal livers accumulated more lipids as toxic response to this glucocorticoid than the maternal organ; the degree of lipid accumulation was clearly dose-dependent in the fetuses. After hydrocortisone treatment, lipids in maternal livers were slightly, those in the fetuses were not affected. Histochemistry and thin layer chromatography revealed an accumulation of neutral lipids, especially of triglycerides and fatty acids which both contained increased amounts of ethylene bonds after treatment with triamcinolone-acetonide. The results also show that using combined histochemistry and thin layer chromatography, the analysis of hepatic lipids is a promising tool for the assessment of toxic effects of glucocorticoids on fetal and maternal hepatocytes in rats.Supported by the Deutsche Forschungsgemeinschaft (Sfb 174)  相似文献   

15.
The molecular localization of maternal and fetal zinc and copper metalloproteins in diabetic and control rats was studied. Compared to controls, liver and kidneys of diabetic dams showed an increased concentration of zinc and copper that was associated with metallothionein. In contrast, fetuses of diabetic dams had lower zinc and metallothionein levels than fetuses from controls. The abnormal maternal trace element metabolism seen with diabetes resulted in alterations of zinc uptake and/or retention of their fetuses.  相似文献   

16.
17.
18.
Gestational diabetes mellitus (GDM) is associated with increased insulin resistance and a heightened level of oxidative stress (OS). Additionally, high iron consumption could also increase insulin resistance and OS, which could aggravate GDM risk. The aim of this study is to evaluate a high fructose diet (F) as an alternative experimental model of GDM on rats. We also have evaluated the worst effect of a fructose iron-enriched diet (FI) on glucose tolerance and OS status during pregnancy. Anthropometric parameters, plasma glucose levels, insulin, and lipid profile were assessed after delivery in rats fed an F diet. The effects observed in mothers (hyperglycemia, and hyperlipidemia) and on pups (macrosomia and hypoglycemia) are similar to those observed in women with GDM. Therefore, the fructose diet could be proposed as an experimental model of GDM. In this way, we can compare the effect of an iron-enriched diet on the metabolic and redox status of mother rats and their pups. The mothers’ glycemic was similar in the F and FI groups, whereas the glycemic was significantly different in the newborn. In rat pups born to mothers fed on an FI diet, the activities of the antioxidant enzyme glutathione peroxidase (GPx) and glutathione-S-transferase in livers and GPx in brains were altered and the gender analysis showed significant differences. Thus, alterations in the glycemic and redox status in newborns suggest that fetuses are more sensitive than their mothers to the effect of an iron-enriched diet in the case of GDM pregnancy. This study proposed a novel experimental model for GDM and provided insights on the effect of a moderate iron intake in adding to the risk of glucose disorder and oxidative damage on newborns.  相似文献   

19.
The effect of treadmill exercise prior to and during pregnancy on maternal and fetal outcome was studied in nondiabetic and streptozotocin-induced diabetic rats. Animals were exercised daily on a motorized treadmill (16.1 m/min, 45 min/d) for three weeks prior to mating and throughout gestation. The catabolic state of diabetes was evidenced by changes in maternal body composition. Overall, fetuses of diabetic dams were smaller, lighter, had less calcified skeletons and had more malformations compared to control fetuses. Exercise in the nondiabetic dams resulted in a retardation of skeletal ossification compared to fetuses from sedentary controls. However, exercise improved fetal outcome in diabetic rats, resulting in increased fetal weight and a lower frequency of malformations compared to fetuses from sedentary diabetic dams.  相似文献   

20.
The influence of streptozotocin-induced maternal diabetes on choline phosphate cytidylyltransferase activity (EC.2.7.7.15) glycogen content and disaturated phosphatidyl choline in fetal lung was studied between 19 and 21 days of gestation. In this experimental model, induction of maternal diabetes two days after mating, resulted in fetal hyperglycemia and hyperinsulinemia; the fetuses were neither macrosomic nor showed any evidence of fetal growth retardation. The glycogen content of lungs on days 19 and 20, but not on day 21 of gestation was significantly higher in fetuses of diabetic rats than in controls. The pulmonary cytosol cytidylyltransferase activity was similar in the two groups of fetuses on days 19 and 20. On day 21 of gestation the enzyme activity was significantly lower in fetuses of diabetic rats than in those of controls. On day 21 of gestation and in newborns of diabetic mothers, although there was no difference in the total pulmonary phospholipids, the levels of disaturated phosphatidyl cholines were significantly lower than in controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号