首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of benz[f]indole-4,9-diones, based on the antitumor activity of 1,4-naphthoquinone, were synthesized and evaluated for their cytotoxic activity in cultured human cancer cell lines A549 (lung cancer), Col2 (colon cancer), and SNU-638 (stomach cancer), and also for the inhibition of human DNA topoisomerases I and II activity in vitro. Several compounds including 2-amino-3-ethoxycarbonyl-N-methyl-benz[f]indole-4,9-dione showed a potential cytotoxic activity judged by IC50<20.0 μg/ml in the panel of cancer cell lines. Especially, 2-hydroxy-3-ethoxycarbonyl-N-(3,4-dimethylphenyl)-benz[f]indole-4,9-dione had potential selective cytotoxicity against lung cancer cells (IC50=0.4 μg/ml)) compared to colon (IC50>20.0 μg/ml) and stomach (IC50>20.0 μg/ml) cancer cells. To further investigate the cytotoxic mechanism, the effects of test compounds on DNA topoisomerase I and II activities were used. In a topoisomerase I-mediated relaxation assay using human placenta DNA topoisomerase I and supercoiled pHOTI plasmid DNA, 2-amino-3-ethoxycarbonyl-N-(4-fluorophenyl)-benz[f]indole-4,9-dione had the most potent inhibitory activity among the compounds tested. However, most of the compounds showed only weak inhibition of the DNA topoisomerase II-mediated KDNA (Kinetoplast DNA) decatenation assay, except for 2-amino-3-ethoxycarbonyl-N-(4-methylphenyl)-benz[f]indole-4,9-dione and 2-amino-3-ethoxycarbonyl-N-(2-bromoehtyl)-benz[f]indole-4,9-dione with a moderate inhibitory activity. These results suggest that several active compounds had relatively selective inhibitory activity against toposiomearse I compared to toposiomerase II. No obvious correlation was observed between the cytotoxicity of the individual compound and the inhibitory activity of DNA relaxation and decatenation by topoisomerase I and II, respectively, in vitro.  相似文献   

2.
The induction of conformationally restricted N-(aryl or heteroaryl)-3-azabicyclo[3.1.0]hexane derivatives at P2 region of compounds of 2-cyanopyrrolidine class was explored to develop novel DPP-IV inhibitors. The synthesis, structure–activity relationship, and selectivity against related proteases are delineated.  相似文献   

3.
New secondary benzenesulphonamide-substituted coumarylthiazole derivatives were synthesized and their inhibitory effects on purified carbonic anhydrase I and II were evaluated using CO2 as a substrate. The result showed that all the synthesized compounds exhibited inhibitory activity on both hCA I and hCA II with N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)naphthalene-2-sulphonamide (5f, IC50 value of 5.63 and 8.48?µM, against hCA I and hCA II, respectively) as the strongest inhibitor revealed from this study. Structure–activity relationship revealed that the inhibitory activity of the synthesized compounds is related to the type of the halogen and bulky substituent on the phenyl ring. In addition, the cupric reducing antioxidant capacities (CUPRAC) and ABTS cation radical scavenging abilities of the synthesized compounds were assayed. 4-methoxy-N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)benzenesulphonamide (5e) exhibited the strongest ABTS and CUPRAC activity with IC50 value of 48.83?µM and A0.50 value of 23.29?µM, respectively.  相似文献   

4.
Dipeptidyl peptidase-IV (DPP-IV) is a protease responsible for the degradation of the incretin hormone. A number of DPP-IV inhibitors have been approved for use in the treatment of type 2 diabetes. While these inhibitors are effective for this treatment, methods for the prevention of this disease are also required as diabetes patient numbers are currently increasing rapidly worldwide. We screened the DPP-IV inhibitory activities of edible plant extracts with the intention of using these extracts in a functional food supplement for the prevention of diabetes. Rose (Rosa gallica) bud extract powder was a promising material with high inhibitory activity. In this study, seven ellagitannins were isolated as active compounds through activity-guided fractionations, and their DPP-IV inhibitory activities were measured. Among them, rugosin A and B showed the highest inhibitory activities and rugosin B was shown as the major contributing compound in rose bud extract powder.  相似文献   

5.
New coumaryl-carboxamide derivatives with the thiourea moiety as a linker between the alkyl chains and/or the heterocycle nucleus were synthesized and their inhibitory activity against the human carbonic anhydrase (hCA) isoforms hCA I, II, VII and IX were evaluated. While the hCA I, II and VII isoforms were not inhibited by the investigated compounds, the tumour-associated isoform hCA IX was inhibited in the high nanomolar range. 2-Oxo-N-((2-(pyrrolidin-1-yl)ethyl)carbamothioyl)-2H-chromene-3-carboxamide (e11) exhibited a selective inhibitory action against hCA IX with the Ki of 107.9?nM. In order to better understand the inhibitory profiles of studied molecules, multiscale molecular modeling approaches were used. Different molecular docking algorithms were used to investigate binding poses and predicted binding energies of studied compounds at the active sites of the CA I, II, VII and IX isoforms.  相似文献   

6.
The inhibitory activity of an angiotensin I-converting enzyme (ACE) detected in soy sauce was fractionated into two major fractions of high molecular weight (Hw) and low molecular weight (Lw) by gel filtration chromatography on Bio-gel P-2 after treating with ethanol. The Hw fraction reduced the blood pressure in hypertensive rats after orally administering, while the Lw fraction did not. The ACE inhibitor in the Hw fraction was further purified by Dowex 50W ion-exchange chromatography and four subsequent steps of HPLC. On the basis of the SIMS-mass spectrum, NMR spectrum and other characteristics, the purified ACE inhibitor was identified as nicotianamine (N-[N-(3-amino-3-carboxypropyl)-3-amino-3- carboxypropyl]azetidine-2-carboxylic acid). The IC50 value for this ACE was 0.26 µM.  相似文献   

7.
Two novel proton transfer compounds were prepared between 2,4-dichloro-5-sulphamoylbenzoic acid (lasamide) (Hsba) and ethylenediamine (en), namely ethane-1,2-diaminium 2,4-dichloro-5-sulphamoylbenzoate (1), and also between Hsba and 2-amino-3-methylpyridine (2-amino-3-picoline) (amp), namely 2-amino-3-methylpyridinium 2,4-dichloro-5-sulphamoylbenzoate (2). All these were characterised by elemental, spectral (IR and UV-vis), thermal analyses, and single crystal X-ray diffraction studies. Compounds 1 and 2 crystallised in the P-1 and P21/c space groups, respectively. Intermolecular non-covalent interactions, such as ion pairing, hydrogen bonding, and π-π stacking were observed for these ionic compounds. The free ligands Hsba, en and amp, the products 1 and 2, and acetazolamide (AAZ) as the control compound, were also evaluated for their in vitro inhibitor effects on the human carbonic anhydrase isoenzymes (hCA I and hCA II) purified from erythrocyte cells by affinity chromatography for their hydratase and esterase activities. The half maximal inhibitory concentration (IC50) values for products 1 and 2 with respect to hydratase activity are 0.15 and 0.32 µM for hCA I and 0.06 and 0.15 µM for hCA II, respectively. The IC50 values of the same inhibitors for esterase activity are 0.13 and 0.8 µM for hCA I and 0.14 and 0.1 µM for hCA II, respectively. In relation to esterase activities, the inhibition equilibrium constants (Ki) were also determined and found to be 0.137 and 0.99 µM on hCA I and 0.157 and 0.075 µM on hCA II for 1 and 2, respectively. The comparison of the inhibition studies of the newly synthesised compounds 1 and 2 to the parent compounds Hsba and amp and also to AAZ indicated that 1 and 2 have an effective inhibitory activity on hCA I and II, and might be used as potential inhibitors.  相似文献   

8.
Benzothiazepine compounds have a wide range of applications such as antibacterial, antidepressants, anticonvulsants, antihypertensives, antibiotics, antifungal, hypnotic, enzyme inhibitors, antitumor, anticancer and anti‐HIV agents. In this study, the synthesis of novel tetralone‐based benzothiazepine derivatives ( 1–16 ) and their in vitro antibacterial activity and human carbonic anhydrase isoenzymes I and II (hCA I and II) inhibitory effects were investigated. Both isoenzymes were purified by sepharose‐4B‐l ‐tyrosine‐sulfanilamide affinity chromatography from fresh human red blood cells. All compounds demonstrated the low nanomolar inhibitory effects on both isoenzymes using esterase activity. Benzothiazepine derivative 2 demonstrated the best hCA I inhibitory effect with Ki value of 18.19 nM. Also, benzothiazepine derivative 7 showed the best hCA II inhibitory effect with Ki value of 11.31 nM. On the other hand, acetazolamide clinically used as CA inhibitor, showed Ki value of 19.92 nM against hCA I and 33.60 nM against hCA II, respectively.  相似文献   

9.
The endophytic extracts from 19 endophytes, isolated from 13 species of Taiwanese plants, were evaluated for biological activity, including cytotoxicity, anti-platelet aggregation, and anti-inflammatory activity. The extracts of 12 endophytes exhibited inhibitory effects on collagen-induced platelet aggregation with IC50 values of 19.85–87.64 μg/ml. Four strains, Rahnella aquatilis, Pantoea agglomerans, Rhodotorula sp., and Penicillium paxilli, also showed inhibitory effects on thrombin-induced platelet aggregation with IC50 values of 42.80–61.54 μg/ml. Additionally 12 extracts of endophytes exhibited cytotoxicities with IC50 values of 0.12–19.83 μg/ml. However, eight extracts revealed inhibitory effects on superoxide anion generation induced by fMLP (N-formyl-l-methionyl-l-leucyl-l-phenylalanine) in human neutrophils. The extract of Rahnella aquatilis showed anti-platelet aggregation activity, and bioassay-directed fractionation led to the isolation of six compounds, including one isoalloxazine: lumichrome (1); two isoflavones: genistein (2) and daidzein (3); two cyclic peptides: cyclo-Pro-Val (4) and cyclo-Pro-Phe (5); and one benzenoid: methyl 2,4,5-trimethoxybenzoate (6). These results indicated that endophytes from Taiwanese herbal plants could be useful sources for research and development of bioactive lead compounds from nature.  相似文献   

10.
Selected synthetic dipeptides and milk protein hydrolysates were evaluated for their dipeptidyl peptidase IV (DPP-IV) inhibitory properties, and their superoxide (SO) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities. DPP-IV inhibition was seen with eight out of the twelve dipeptides and 5 of the twelve hydrolysates studied. Trp-Val inhibited DPP-IV, however, inhibition was not observed with the reverse peptide Val-Trp. The most potent hydrolysate inhibitors were generated from casein (CasH2) and lactoferrin (LFH1). Two Trp containing dipeptides, Trp-Val and Val-Trp, and three lactoferrin hydrolysates scavenged DPPH. The dipeptides had higher SO EC50 values compared to the milk protein hydrolysates (arising from three lactoferrin and one whey protein hydrolysates). Higher molecular mass fractions of the milk protein hydrolysates were associated with the SO scavenging activity. Trp-Val and one lactoferrin hydrolysate (LFH1) were multifunctional displaying both DPP-IV inhibitory and antioxidant (SO and DPPH scavenging) activities. These compounds may have potential as dietary ingredients in the management of type 2 diabetes by virtue of their ability to scavenge reactive oxygen species and to extend the half-life of incretin molecules.  相似文献   

11.
Quantitative structure activity type models were developed in an attempt to predict the key features of peptide sequences having dipeptidyl peptidase IV (DPP-IV) inhibitory activity. The models were then employed to help predict the potential of peptides, which are currently reported in the literature to be present in the intestinal tract of humans following milk/dairy product ingestion, to act as inhibitors of DPP-IV. Two models (z- and v-scale) for short (2–5 amino acid residues) bovine milk peptides, behaving as competitive inhibitors of DPP-IV, were developed. The z- and the v-scale models (p < 0.05, R2 of 0.829 and 0.815, respectively) were then applied to 56 milk protein-derived peptides previously reported in the literature to be found in the intestinal tract of humans which possessed a structural feature of DPP-IV inhibitory peptides (P at the N2 position). Ten of these peptides were synthetized and tested for their in vitro DPP-IV inhibitory properties. There was no agreement between the predicted and experimentally determined DPP-IV half maximal inhibitory concentrations (IC50) for the competitive peptide inhibitors. However, the ranking for DPP-IV inhibitory potency of the competitive peptide inhibitors was conserved. Furthermore, potent in vitro DPP-IV inhibitory activity was observed with two peptides, LPVPQ (IC50 = 43.8 ± 8.8 μM) and IPM (IC50 = 69.5 ± 8.7 μM). Peptides present within the gastrointestinal tract of human may have promise for the development of natural DPP-IV inhibitors for the management of serum glucose.  相似文献   

12.
Tyramine derivatives 3–27 were synthesized by using conventional and environmental friendly ultrasonic techniques. These derivatives were then evaluated for the first time for their α-glucosidase (Sources: Saccharomyces cerevisiae and mammalian rat-intestinal acetone powder) inhibitory activity by using in vitro mechanism-based biochemical assays. Compounds 7, 14, 20, 21 and 26 were found to be more active (IC50?=?49.7?±?0.4, 318.8?±?3.7, 23.5?±?0.9, 302.0?±?7.3 and 230.7?±?4.0?μM, respectively) than the standard drug, acarbose (IC50?=?840.0?±?1.73?μM (observed) and 780?±?0.028?μM (reported)) against α-glucosidase obtained from Saccharomyces cerevisiae. Kinetic studies were carried out on the most active members of the series in order to determine their mode of inhibition and dissociation constants. Compounds 7, 20 and 26 were found to be the competitive inhibitors of α-glucosidase. These compounds were also screened for their protein antiglycation, and dipeptidyl peptidase-IV (DPP-IV) inhibitory activities. Only compounds 20, 22 and 27 showed weak antiglycation activity with IC50 values 505.27?±?5.95, 581.87?±?5.50 and 440.58?±?2.74?μM, respectively. All the compounds were found to be inactive against DDP-IV enzyme. Inhibition of α-glucosidase, DPP-IV enzymes and glycation of proteins are valid targets for the discovery of antidiabetic drugs. Cytotoxicity of compounds 327 was also evaluated by using mouse fibroblast 3T3 cell lines. All the compounds were found to be noncytotoxic. The current study describes the synthesis α-glucosidase inhibitory activity of derivatives, based on a natural product tyramine template. The compounds reported here may serve as the starting point for the design and development of novel α-glucosidase inhibitors as antidiabetic agents.  相似文献   

13.

Type 2 diabetes mellitus (T2DM) is a multifactorial disease that requires multiple therapeutic strategies for its management. Bioactive peptides with multiple anti-diabetic targets are attractive therapeutic molecules. The present study was conducted to identify additional anti-diabetic targets of α-glucosidase inhibitory peptides, SVPA, SEPA, STYV, and STY. The α-glucosidase inhibitory activity of the peptides was in the order STYV?>?STY?>?SEPA?>?SVPA while molecular docking against human dipeptidyl peptidase IV (DPP-IV) showed that SVPA had the best binding affinity. In contrast, in vitro studies indicated that SEPA had a significantly higher (P?<?0.05) DPP-IV inhibitory activity (IC50?=?5.78?±?0.19 mM) than other peptides. SVPA and SEPA showed mixed inhibition pattern while STYV and STY were uncompetitive inhibitors of the enzyme. IPI (diprotin A), STYV and STY were not cytotoxic while SEPA displayed some cytotoxicity. In differentiated 3T3-L1 adipocytes, SVPA and STYV were found to induce a significant (P?<?0.05) decrease in intracytoplasmic lipid accumulation when added during the differentiation process while STY, GSH and IPI caused significant reduction (P?<?0.05) in the lipid accumulation when added after the differentiation. The SVPA, SEPA and STYV were better scavengers of methylglyoxal than STY but STYV had the best scavenging activities toward reactive oxygen species and nitric oxide. It was concluded that the four α-glucosidase inhibitory peptides including IPI have multiple targets against type T2DM but, overall, of the four peptides evaluated, STYV tends to have better potential for application as a multifunctional anti-diabetic peptide.

  相似文献   

14.
Abstract

Fibroblast growth-factor receptor (FGFR) is a potential target for cancer therapy. We designed three novel series of FGFR1 inhibitors bearing indazole, benzothiazole, and 1H-1,2,4-triazole scaffold via fragment-based virtual screening. All the newly synthesised compounds were evaluated in vitro for their inhibitory activities against FGFR1. Compound 9d bearing an indazole scaffold was first identified as a hit compound, with excellent kinase inhibitory activity (IC50 = 15.0?nM) and modest anti-proliferative activity (IC50 = 785.8?nM). Through two rounds of optimisation, the indazole derivative 9?u stood out as the most potent FGFR1 inhibitors with the best enzyme inhibitory activity (IC50 = 3.3?nM) and cellular activity (IC50 = 468.2?nM). Moreover, 9?u also exhibited good kinase selectivity. In addition, molecular docking study was performed to investigate the binding mode between target compounds and FGFR1.  相似文献   

15.
In this study, we synthesized a new congener series of N-sulphonylhydrazones designed as candidate ROCK inhibitors using the molecular hybridization of the clinically approved drug fasudil (1) and the IKK-β inhibitor LASSBio-1524 (2). Among the synthesized compounds, the N-methylated derivative 11 (LASSBio-2065) showed the best inhibitory profile for both ROCK isoforms, with IC50 values of 3.1 and 3.8?µM for ROCK1 and ROCK2, respectively. Moreover, these compounds were also active in the scratch assay performed in human breast cancer MDA-MB 231 cells and did not display toxicity in MTT and LDH assays. Molecular modelling studies provided insights into the possible binding modes of these N-sulphonylhydrazones, which present a new molecular architecture capable of being optimized and developed as therapeutically useful ROCK inhibitors.  相似文献   

16.
Cynoglossum creticum Mill (Boraginaceae) is used traditionally as a remedy to manage several human ailments. In this context, the present study aimed to perform multiple pharmacological investigations on the hydroalcoholic extracts prepared from Cynoglossum roots and aerial parts (leaves and flowers). We evaluated the antioxidant and enzyme inhibitory (against cholinesterases, α-glucosidase, α-amylase, lipase and tyrosinase) activity of the extracts. The protective effect(s) of the extracts on cardiomyocyte C2C12 and intestinal HCT116 cell lines challenged with hydrogen peroxide (H2O2) was studied. We found that the aerial parts harbored the highest amount of phenolic compounds. Generally, aerial parts showed significant antioxidant and enzyme inhibitory effects. Leaves exhibited the best lipase inhibitory activity (173.15 mgOE/g extract), followed by flowers and roots. The root and aerial extracts were equally able to blunt intracellular H2O2 induced reactive oxygen species production from both C2C12 and HCT116 cell lines. Both cells lines could be treated with scalar concentrations of root and flower extracts in the range 50–300?μg/mL without interferences on cell viability. In conclusion, the present study showed protective effects exerted by Cynoglossum extracts, which could serve as a foundation for the development of pharmaceuticals and nutraceuticals derived from Cynoglossum.  相似文献   

17.

Background

There has been great interest in determining whether natural products show biological activity toward protein targets of pharmacological relevance. One target of particular interest is DPP-IV whose most important substrates are incretins that, among other beneficial effects, stimulates insulin biosynthesis and secretion. Incretins have very short half-lives because of their rapid degradation by DPP-IV and, therefore, inhibiting this enzyme improves glucose homeostasis. As a result, DPP-IV inhibitors are of considerable interest to the pharmaceutical industry. The main goals of this study were (a) to develop a virtual screening process to identify potential DPP-IV inhibitors of natural origin; (b) to evaluate the reliability of our virtual-screening protocol by experimentally testing the in vitro activity of selected natural-product hits; and (c) to use the most active hit for predicting derivatives with higher binding affinities for the DPP-IV binding site.

Methodology/Principal Findings

We predicted that 446 out of the 89,165 molecules present in the natural products subset of the ZINC database would inhibit DPP-IV with good ADMET properties. Notably, when these 446 molecules were merged with 2,342 known DPP-IV inhibitors and the resulting set was classified into 50 clusters according to chemical similarity, there were 12 clusters that contained only natural products for which no DPP-IV inhibitory activity has been previously reported. Nine molecules from 7 of these 12 clusters were then selected for in vitro activity testing and 7 out of the 9 molecules were shown to inhibit DPP-IV (where the remaining two molecules could not be solubilized, preventing the evaluation of their DPP-IV inhibitory activity). Then, the hit with the highest activity was used as a lead compound in the prediction of more potent derivatives.

Conclusions/Significance

We have demonstrated that our virtual-screening protocol was successful in identifying novel lead compounds for developing more potent DPP-IV inhibitors.  相似文献   

18.
In this study, the synthesis and potential enzyme interactions of new Pyrrolo[2,3-d]pyrimidine derivatives along with their inhibitory activity against SFK enzymes such as Fyn, Lyn, Hck, and c-Src were reported. The results indicated that compounds were slightly active of tested SFK enzymes in comparison with PP2 for Fyn, A-419259 for Lyn and CGP77675 for c-Src. Compound N-((2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)methyl)-4-(3,4-dimethoxyphenyl)butanamide (5) was identified as a non-selective slight inhibitor against Fyn, Lyn and c-Src. However, compounds did not show any inhibitory effects on Hck. Docking studies were performed to analyze the binding mode of compounds against SFKs. The best interaction was obtained between compound 5 and the active site of Fyn and c-Src enzymes in comparison with reference compounds PP2 and CGP77675, respectively.  相似文献   

19.
Molecular docking of a library of all 8000 possible tripeptides to the active site of DPP-IV was used to determine their binding potential. A number of tripeptides were selected for experimental testing, however, there was no direct correlation between the Vina score and their in vitro DPP-IV inhibitory properties. While Trp-Trp-Trp, the peptide with the best docking score, was a moderate DPP-IV inhibitor (IC50 216 μM), Lineweaver and Burk analysis revealed its action to be non-competitive. This suggested that it may not bind to the active site of DPP-IV as assumed in the docking prediction. Furthermore, there was no significant link between DPP-IV inhibition and the physicochemical properties of the peptides (molecular mass, hydrophobicity, hydrophobic moment (μH), isoelectric point (pI) and charge). LIGPLOTs indicated that competitive inhibitory peptides were predicted to have both hydrophobic and hydrogen bond interactions with the active site of DPP-IV. DPP-IV inhibitory peptides generally had a hydrophobic or aromatic amino acid at the N-terminus, preferentially a Trp for non-competitive inhibitors and a broader range of residues for competitive inhibitors (Ile, Leu, Val, Phe, Trp or Tyr). Two of the potent DPP-IV inhibitors, Ile-Pro-Ile and Trp-Pro (IC50 values of 3.5 and 44.2 μM, respectively), were predicted to be gastrointestinally/intestinally stable. This work highlights the needs to test the assumptions (i.e. competitive binding) of any integrated strategy of computational and experimental screening, in optimizing screening. Future strategies targeting allosteric mechanisms may need to rely more on structure–activity relationship modeling, rather than on docking, in computationally selecting peptides for screening.  相似文献   

20.
The antimutagenic effects of methanolic extracts of peanut hulls (MEPH) were evaluated by the Ames test. MEPH inhibited the mutagenicity of 4-nitroquinoline-N-oxide (NQNO), a direct-acting mutagen. MEPH also inhibited the mutagenicity of some indirect-acting mutagens and decreased in the order of 2-amino-3-methylimidazo(4,5-f)quinoline (IQ)>aflatoxin B1 (AFB1)>2-amino-6-methyldipyrido(1,2-a : 3′, 2′-d)imidazole (Glu-P-1) > 3-amino-1,4-dimethyl-5H-pyridol(4,3-b)indole (Trp-P-1) > benzo(a)pyrene (B(a)P) for 5. typhimurium TA98, and IQ > Trp-P-1 > Glu-P-1 > AFB1 > B(a)P for S. typhimurium TA100.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号