首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Myofibroblasts play an important role in morphogenesis, inflammation, and fibrosis in most tissues. The amniotic membrane stroma can maintain keratocytes in cultures and prevent them from differentiating into myofibroblasts. However, it is unknown whether the AM stroma can also reverse differentiated myofibroblasts. In this study, we found that amniotic membrane stromal cells (AMSCs), which adopted fibroblastic phenotype in vivo, quickly and completely differentiated into myofibroblasts during ex vivo culture in DMEM/FBS on plastic within 2 passages. When cultured on type I collagen, the myofibroblasts maintained their phenotype, however, when these myofibroblasts were re-seeded onto a cryopreserved amniotic membrane stromal surface, they reversed to the fibroblast phenotype. Moreover, we found that the amniotic membrane stromal extract not only helps maintain primary AMSCs fibroblastic phenotype in vitro, but also can reverse differentiated myofibroblasts back to fibroblasts. This reversal was not coupled with cell proliferation. We concluded that the amniotic membrane stroma contains soluble factors that can regulate the mesenchymal cell differentiation. Further investigation into the identity of these factors and the control mechanisms may unravel a new scar-reversing strategy.  相似文献   

3.
Cigarette smoke has been directly implicated in the disease pathogenesis of a plethora of different human cancer subtypes, including breast cancers. The prevailing view is that cigarette smoke acts as a mutagen and DNA damaging agent in normal epithelial cells, driving tumor initiation. However, its potential negative metabolic effects on the normal stromal microenvironment have been largely ignored. Here, we propose a new mechanism by which carcinogen-rich cigarette smoke may promote cancer growth, by metabolically “fertilizing” the host microenvironment. More specifically, we show that cigarette smoke exposure is indeed sufficient to drive the onset of the cancer-associated fibroblast phenotype via the induction of DNA damage, autophagy and mitophagy in the tumor stroma. In turn, cigarette smoke exposure induces premature aging and mitochondrial dysfunction in stromal fibroblasts, leading to the secretion of high-energy mitochondrial fuels, such as L-lactate and ketone bodies. Hence, cigarette smoke induces catabolism in the local microenvironment, directly fueling oxidative mitochondrial metabolism (OXPHOS) in neighboring epithelial cancer cells, actively promoting anabolic tumor growth. Remarkably, these autophagic-senescent fibroblasts increased breast cancer tumor growth in vivo by up to 4-fold. Importantly, we show that cigarette smoke-induced metabolic reprogramming of the fibroblastic stroma occurs independently of tumor neo-angiogenesis. We discuss the possible implications of our current findings for the prevention of aging-associated human diseases and, especially, common epithelial cancers, as we show that cigarette smoke can systemically accelerate aging in the host microenvironment. Finally, our current findings are consistent with the idea that cigarette smoke induces the “reverse Warburg effect,” thereby fueling “two-compartment tumor metabolism” and oxidative mitochondrial metabolism in epithelial cancer cells.  相似文献   

4.
The major cellular components of tumor microenvironment, referred to as the cancer stroma, are composed of cancer-associated fibroblasts that support tumor epithelial growth, invasion and therapeutic resistance. Thus when we speak of developing therapies that address tumor heterogeneity it is not only a matter of different mutations within the tumor epithelia. While individual mutations in the stromal compartment are controversial, the heterogeneity in fibroblastic population in a single tumor is not up for debate. Cooperative interaction among heterotypic fibroblasts and tumor cells contribute to cancer progression. Therefore to tackle solid tumors, we need to understand its complex microenvironment. Here we review some seminal developments in the field of tumor microenvironment, mainly focusing on cancer-associated fibroblast.  相似文献   

5.
The major cellular components of tumor microenvironment, referred to as the cancer stroma, are composed of cancer-associated fibroblasts that support tumor epithelial growth, invasion and therapeutic resistance. Thus when we speak of developing therapies that address tumor heterogeneity it is not only a matter of different mutations within the tumor epithelia. While individual mutations in the stromal compartment are controversial, the heterogeneity in fibroblastic population in a single tumor is not up for debate. Cooperative interaction among heterotypic fibroblasts and tumor cells contribute to cancer progression. Therefore to tackle solid tumors, we need to understand its complex microenvironment. Here we review some seminal developments in the field of tumor microenvironment, mainly focusing on cancer-associated fibroblast.  相似文献   

6.
The role of hematopoietic microenvironments in the regulation of maturation and differentiation of hematopoietic cells, although heavily debated, remains uncertain. Several investigators have suggested that the adherent “stromal” cell populations, which grow as colonies in cultures of lymphomyeloid tissues, include the cells involved in such regulatory processes. Grossly, the colonies described by several investigators appear similar morphologically, and the cells giving rise to them have been variously termed (1) fibroblast colony forming cells (FCFC), (2) plaque forming units-culture (PFU-C), (3) macrophage colonies, and (4) marrow stromal cells. FCFC have been reported to re-establish their parent microenvironment when transplanted in an allogeneic system. In this study, cloned and enriched cell populations obtained from such colonies in cultures of murine lymphomyeloid tissues have been characterized by their growth in culture and using morphological, histochemical, and electron microscopic techniques. The results demonstrated that, although the initial stromal colonies appeared to be identical, the constituent cell types varied considerably. Some colonies were comprised primarily of macrophages, while others appeared to contain predominantly fibroblasts; two additional cell types that established colonies have not yet been satisfactorily identified. These results demonstrate the heterogeneity of lymphomyeloid stromal colonies. There is a need for caution in the analysis of experiments in which uncharacterized stromal cell colonies are transplanted or employed as supporting monolayers in culture systems in experiments designed to evaluate the origins and functions of lymphohematopoietic stroma.  相似文献   

7.
8.
An increase in intermediate filaments has been reported in rat uterine stromal cells undergoing decidualization in vivo and in vitro. In order to identify biochemical correlates of this morphological change, we have identified (two dimensional gel electrophoresis, Western blots, indirect immunofluorescent staining) the constitutive intermediate filament proteins of stromal cells decidualizing in vivo and isolated stroma decidualizing in vitro as vimentin and desmin. Vimentin is common to all uterine stromal cells but increases, proportional to total cell protein, in decidualized stroma. Barely detectable in nondecidualized stroma, desmin, unlike vimentin, increases during decidualization at a rate greater than the increase in total cell protein. Neither the increase in vimentin or desmin is observed in hormonally sensitized, nondecidual stromal cells. Desmin, because it is selectively expressed in decidualizing stroma, could be considered unique enough to serve as a marker of decidual cell differentiation.  相似文献   

9.
Due to tumor heterogeneity, most believe that effective treatments should be tailored to the features of an individual tumor or tumor subclass. It is still unclear, however, what information should be considered for optimal disease stratification, and most prior work focuses on tumor genomics. Here, we focus on the tumor microenvironment. Using a large‐scale coculture assay optimized to measure drug‐induced cell death, we identify tumor–stroma interactions that modulate drug sensitivity. Our data show that the chemo‐insensitivity typically associated with aggressive subtypes of breast cancer is not observed if these cells are grown in 2D or 3D monoculture, but is manifested when these cells are cocultured with stromal cells, such as fibroblasts. Furthermore, we find that fibroblasts influence drug responses in two distinct and divergent manners, associated with the tissue from which the fibroblasts were harvested. These divergent phenotypes occur regardless of the drug tested and result from modulation of apoptotic priming within tumor cells. Our study highlights unexpected diversity in tumor–stroma interactions, and we reveal new principles that dictate how fibroblasts alter tumor drug responses.  相似文献   

10.
The ontogenetic development of IgM-containing cells is described as demonstrated by immunoperoxidase staining with a mouse anti-trout IgM monoclonal antibody and the differentiation of enzyme-histochemical markers in the non-lymphoid cells forming the stroma of the thymus, spleen and kidney of the rainbow trout. The first lymphoid cells staining with the monoclonal antibody occurred at day 4-5 after hatching in the renal lympho-haemopoietic tissue. By 1 month after hatching IgM-positive cells also appeared in the spleen and thymus. Enzyme-histochemical demonstration of the alkaline and acid phosphatase and non-specific σ-naphthyl acetate esterase enzymatic activities in the non-lymphoid cells indicated that a certain degree of maturation of the cellular stroma of the developing lymphoid organs of trout was reached before or at the time when IgM-expressing cells could be observed. The relationships of the stromal components of the various lymphoid organs to the development of IgM-positive cells, and the possible role of the renal lympho-haemopoietic tissue as a primary lymphoid organ for B-cell differentiation in the trout are discussed.  相似文献   

11.
In the past century, gradual but sustained advances in our understanding of the molecular mechanisms involved in the growth and invasive properties of cancer cells have led to better management of tumors. However, many tumors still escape regulation and progress to advanced disease. Until recently, there has not been an organized and sustained focus on the “normal” cells in the vicinity of tumors. Interactions between the tumor and these host cells, as well as autonomous qualities of the host cells themselves, might explain why tumors in people with histologically similar cancers often behave and respond differently to treatment. Cells of the tumor microenvironment, variously referred to as cancer stroma, reactive stroma or carcinoma-associated fibroblasts (CAF), exist in close proximity to the cancer epithelium. Both stromal and epithelial phenotypes co-evolve during tumorigenesis and it is now becoming clear that these stromal cells may not be the innocent bystanders they had been widely thought to be, but rather may be active contributors to carcinogenesis. Our group and others have shown the important role that CAF play in the progression of cancer. In this article we will address current trends in the study of the interactions between cancer stroma and tumor cells in different organs. We will also highlight perceived knowledge gaps and suggest research areas that need to be further explored to provide new targets for anticancer therapies.  相似文献   

12.
The bone marrow microenvironment consists of stromal cells and extracellular matrix components which act in concert to regulate the growth and differentiation of hematopoietic stem cells. There is little understanding of the mechanisms which modulate the regulatory role of stromal cells. This study examined the hypothesis that mesenchymal growth factors such as basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) modulate stromal cell activities and thereby influence the course of hematopoiesis. Both bFGF and EGF were potent mitogens for marrow stroma. However, both factors proved to be inhibitory to hematopoiesis in primary log-term marrow cultures. Inhibition was also observed when hematopoietic cells and bFGF or EGF were added to subconfluent irradiated stromal layers, demonstrating that the decline of hematopoiesis was not due to overgrowth of the stromal layer. Loss of hematopoietic support in bFGF and EGF was dose-dependent. Removal of bFGF and EGF permitted stromal layers to regain their normal capacity to support hematopoiesis. In stroma-free long-term cultures, neither factor affected CFU-GM expansion. Basic FGF slightly enhanced granulocyte-macrophage colony forming unit (CFU-GM) cloning efficiency in short-term agarose culture. Basic FGF did not reduce the levels of interleukin-6 (IL-6), GM-CSF, or G-CSF released by steady state or IL-1-stimulated stroma. Similarly, the constitutive levels of steel factor (SF) mRNA and protein were not affected by bFGF. Basic FGF did not alter the level of TGF-β1 in stromal cultures. We conclude that bFGF and EGF can act as indirect negative modulators of hematopoietic growth in stromal cultures. The actual mediators of regulation, whether bound or soluble, remain to be identified. © 1995 Wiley-Liss, Inc.  相似文献   

13.
14.
Cardiac fibroblasts are a cell population that controls the homeostasis of the extracellular matrix and orchestrates a damage response to maintain cardiac architecture and performance. Due to these functions, fibroblasts play a central role in cardiac fibrosis development, and there are large differences in matrix protein secretion profiles between fibroblasts from aged versus young animals.Senescence is a multifactorial and complex process that has been associated with inflammatory and fibrotic responses. After damage, transient cellular senescence is usually beneficial, as these cells promote tissue repair. However, the persistent presence of senescent cells within a tissue is linked with fibrosis development and organ dysfunction, leading to aging-related diseases such as cardiovascular pathologies. In the heart, early cardiac fibroblast senescence after myocardial infarction seems to be protective to avoid excessive fibrosis; however, in non-infarcted models of cardiac fibrosis, cardiac fibroblast senescence has been shown to be deleterious. Today, two new classes of drugs, termed senolytics and senostatics, which eliminate senescent cells or modify senescence-associated secretory phenotype, respectively, arise as novel therapeutical strategies to treat aging-related pathologies. However, further studies will be needed to evaluate the extent of the utility of senotherapeutic drugs in cardiac diseases, in which pathological context and temporality of the intervention must be considered.  相似文献   

15.
Tumor stroma plays an important role in cancer development. In a variety of tumors, such as breast carcinomas, a desmoplastic response, characterized by stromal fibroblast and collagen accumulation, is observed having synergistic effects on tumor progression. However, the effect of known anticancer drugs on stromal cells has not been thoroughly investigated. Imatinib mesylate is a selective inhibitor of several protein tyrosine kinases, including the receptor of platelet-derived growth factor, an important mediator of desmoplasia. Recently, we have shown that imatinib inhibits the growth and invasiveness of human epithelial breast cancer cells. Here, we studied the effect of imatinib on the proliferation and collagen accumulation in breast stromal fibroblasts. We have shown that it blocks the activation of the extracellular signal-regulated kinase and Akt signaling pathways and up-regulates cyclin-dependent kinase inhibitor p21(WAF1), leading to the inhibition of fibroblast proliferation, by arresting them at the G(0)/G(1) phase of the cell cycle. Imatinib inhibits more potently the platelet-derived growth factor-mediated stimulation of breast fibroblast proliferation. By using specific inhibitors, we have found that this is due to the inhibition of the Akt pathway. In addition, imatinib inhibits fibroblast-mediated collagen accumulation. Conventional and quantitative PCR analysis, as well as gelatin zymography, indicates that this is due to the down-regulation of mRNA synthesis of collagen I and collagen III-the main collagen types in breast stroma-and not to the up-regulation or activation of collagenases matrix metalloproteinase 2 and matrix metalloproteinase 9. These data indicate that imatinib has an antifibrotic effect on human breast stromal fibroblasts that may inhibit desmoplastic reaction and thus tumor progression.  相似文献   

16.
17.
Osteopontin (OPN) is a component of the extracellular matrix that interacts with cell surface receptors, including integrins, to mediate cell adhesion, migration, differentiation, survival, and immune function. In pregnant mice and primates, OPN has been detected in decidualized stroma and is considered to be a gene marker for decidualization. Decidualization involves transformation of spindle-like fibroblasts into polygonal epithelial-like cells that are hypothesized to limit conceptus trophoblast invasion through the uterine wall during invasive implantation. Decidualization is not considered characteristic of species with noninvasive implantation, such as domestic animals. However, the extent of trophoblast invasion between sheep and pigs differs, with sheep exhibiting erosion of the uterine luminal epithelium (LE) and fusion of trophectoderm with LE to form syncytia, and pigs maintaining an intact LE throughout pregnancy. Therefore, the present study measured changes in the decidualization marker genes OPN, desmin, and alpha smooth muscle actin (alphaSMA) in ovine and porcine uterine stroma throughout pregnancy. The morphology of endometrial stromal cells in pregnant ewes changes following conceptus attachment, with cells increasing in size and becoming polyhedral in shape by Day 35 of pregnancy. Expression of OPN mRNA and protein, as well as desmin and alphaSMA proteins, was observed in this same uterine stromal compartment. In contrast, no morphological changes in uterine stroma nor induction of OPN mRNA and protein, or desmin protein, were detected during porcine pregnancy. Interestingly, alphaSMA protein was absent on Day 20, but prominent in uterine stroma of pregnant pigs on Day 45. Collectively, these results indicate that the uterine stroma of sheep undergoes a program of differentiation similar to decidualization in invasive implanting species, whereas porcine stroma exhibits differentiation that is more limited than that in sheep, rodents, or primates. Results suggest that uterine stromal decidualization is common to species with different types of placentation, but the extent is variable and correlates with the depth of trophoblast invasion during implantation.  相似文献   

18.
19.
Y Akasaka 《Human cell》1990,3(3):193-200
Bone marrow and spleen are the major hematopoietic tissue in adult mice. However, little is known about the specific mechanism regulating hematopoiesis within these tissues. Since Dexter et al. first described conditions to maintain bone marrow hematopoiesis, long term bone marrow culture (LTBMC) has been developed in order to analyze the mechanism of the maintenance of proliferation and differentiation of hematopoietic stem cells in vitro. Furthermore, several stromal cell lines which are able to support the growth and differentiation of hematopoietic lineage, has been established from LTBMC. Although it is well known that bone marrow stromal cell lines are able to produce colony stimulating factors, it has been suggested that the stromal cell factors which involve membrane bound moieties must have a key role in the regulation of hematopoiesis. We expect that monoclonal antibodies to the surface of bone marrow stromal cells could detect such a critical stroma-associated protein that bounds the cell surface of the bone marrow stroma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号