首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated plasma levels of low-density lipoprotein-C (LDL-C) increase the risk of atherosclerotic cardiovascular disease. Circulating LDL is derived from very low-density lipoprotein (VLDL) metabolism and cleared by LDL receptor (LDLR). We have previously demonstrated that cargo receptor Surfeit 4 (Surf4) mediates VLDL secretion. Inhibition of hepatic Surf4 impairs VLDL secretion, significantly reduces plasma LDL-C levels, and markedly mitigates the development of atherosclerosis in LDLR knockout (Ldlr?/?) mice. Here, we investigated the role of Surf4 in lipoprotein metabolism and the development of atherosclerosis in another commonly used mouse model of atherosclerosis, apolipoprotein E knockout (apoE?/?) mice. Adeno-associated viral shRNA was used to silence Surf4 expression mainly in the liver of apoE?/? mice. In apoE?/? mice fed a regular chow diet, knockdown of Surf4 expression significantly reduced triglyceride secretion and plasma levels of non-HDL cholesterol and triglycerides without causing hepatic lipid accumulation or liver damage. When Surf4 was knocked down in apoE?/? mice fed the Western-type diet, we observed a significant reduction in plasma levels of non-HDL cholesterol, but not triglycerides. Knockdown of Surf4 did not increase hepatic cholesterol and triglyceride levels or cause liver damage, but significantly diminished atherosclerosis lesions. Therefore, our findings indicate the potential of hepatic Surf4 inhibition as a novel therapeutic strategy to reduce the risk of atherosclerotic cardiovascular disease.  相似文献   

2.
Monocyte chemotactic protein-1 (MCP-1) is an adipokine with demonstrated carcinogenic potential. However, there is a lack of evidence whether adipose-produced MCP-1 contributes to breast cancer. We tested the hypothesis that adipose-produced MCP-1 contributes to mammary tumorigenesis in this study. In a breast cancer model of mouse mammary tumor virus-polyomavirus middle T-antigen (MMTV-PyMT), mice with or without adipose MCP-1 knockout [designated as Mcp-1−/− or wild-type (WT)] were fed the standard AIN93G diet (16% of energy from soybean oil) or a high-fat diet (HFD, 45% of energy from soybean oil). Adipose MCP-1 knockout reduced Mcp-1 expression in adipose tissue and concentrations of MCP-1 in plasma. Mcp-1−/− mice fed the HFD had less body fat than their WT counterparts. Adipose MCP-1 knockout attenuated HFD-enhanced mammary tumorigenesis, evidenced by lower mammary tumor volume. Furthermore, Mcp-1−/− mice, regardless of diet, had a longer tumor latency and less tumor weight than WT mice. When fed the HFD, Mcp-1−/− mice, compared to WT mice, exhibited lower concentrations of insulin, leptin, resistin, vascular endothelial growth factor and hepatic growth factor in plasma. In summary, adipose MCP-1 deficiency attenuated HFD-enhanced MMTV-PyMT mammary tumorigenesis. This attenuation can be attributed to less body adiposity, improvement in insulin sensitivity and down-regulation in protumorigenic inflammation cytokines and angiogenic factors in Mcp-1−/− mice. It concludes that adipose-produced MCP-1 contributes to mammary tumorigenesis in the MMTV-PyMT mouse model.  相似文献   

3.
Background and aimsFargesin mainly functions in the improvement of lipid metabolism and the inhibition of inflammation, but the role of fargesin in atherogenesis and the molecular mechanisms have not been defined. We aimed to explore if and how fargesin affects atherosclerosis by regulating lipid metabolism and inflammatory response.Methods and resultsApoE−/− mice were fed a high-fat diet to form atherosclerotic plaques and then administrated with fargesin or saline via gavage. Oil Red O, HE and Masson staining were performed to assess atherosclerostic plaques in apoE−/− mice. [3H] labeled cholesterol was used to detect cholesterol efflux and reverse cholesterol transport (RCT) efficiency. Enzymatic methods were performed to analyze plasma lipid profile in apoE−/− mice. Immunohistochemistry was used to analyze macrophage infiltration. THP-1-derived macrophages were incubated with fargesin or not. Both Western blot and qRT-PCR were applied to detect target gene expression. Oil Red O staining was applied to examine lipid accumulation in THP-1-derived macrophages. ELISA and qRT-PCR were used to examine the levels of inflammatory mediotors. We found that fargesin reduced atherosclerotic lesions by elevating efficiency of RCT and decreasing inflammatory response via upregulation of ABCA1 and ABCG1 expression in apoE−/− mice. Further, fargesin reduced lipid accumulation in THP-1-derived macrophages. Besides, fargesin increased phosphorylation of CEBPα in Ser21 and then upregulated LXRα, ABCA1 and ABCG1 expression in THP-1-derived macrophages. In addition, fargesin could reduce ox-LDL-induced inflammatory response by inactivation of the TLR4/NF-κB pathway.ConclusionThese results suggest that fargesin inhibits atherosclerosis by promoting RCT process and reducing inflammatory response via CEBPαS21/LXRα and TLR4/NF-κB pathways, respectively.  相似文献   

4.
Trimethylamine N-oxide (TMAO) is produced from the phosphatidylcholine metabolism of gut flora and acts as a risk factor of cardiovascular disease. However, the underlying mechanisms for its proatherogenic action remain unclear. This study aimed to observe the effect of TMAO on endothelial cell pyroptosis and explore the underlying mechanisms. Our results showed that TMAO promoted the progression of atherosclerotic lesions in apolipoprotein E-deficient (apoE−/−) mice fed a high-fat diet. Pyroptosis and succinate dehydrogenase complex subunit B (SDHB) upregulation were detected in the vascular endothelial cells of apoE−/− mice and in cultured human umbilical vein endothelial cells (HUVECs) treated with TMAO. Overexpression of SDHB in HUVECs enhanced pyroptosis and impaired mitochondria and high reactive oxygen species (ROS) level. Pyroptosis in the SDHB overexpression of endothelial cells was inhibited by the ROS scavenger NAC. In summary, TMAO promotes vascular endothelial cell pyroptosis via ROS induced through SDHB upregulation, thereby contributing to the progression of atherosclerotic lesions.  相似文献   

5.
Methionine sulfoxide reductase A (MsrA), a specific enzyme that converts methionine-S-sulfoxide to methionine, plays an important role in the regulation of protein function and the maintenance of redox homeostasis. In this study, we examined the impact of hepatic MsrA overexpression on lipid metabolism and atherosclerosis in apoE-deficient (apoE−/−) mice. In vitro study showed that in HepG2 cells, lentivirus-mediated human MsrA (hMsrA) overexpression upregulated the expression levels of several key lipoprotein-metabolism-related genes such as liver X receptor α, scavenger receptor class B type I, and ABCA1. ApoE−/− mice were intravenously injected with lentivirus to achieve high-level hMsrA expression predominantly in the liver. We found that hepatic hMsrA expression significantly reduced plasma VLDL/LDL levels, improved plasma superoxide dismutase, and paraoxonase-1 activities, and decreased plasma serum amyloid A level in apoE−/− mice fed a Western diet, by significantly altering the expression of several genes in the liver involving cholesterol selective uptake, conversion and excretion into bile, TG biosynthesis, and inflammation. Moreover, overexpression of hMsrA resulted in reduced hepatic steatosis and aortic atherosclerosis. These results suggest that hepatic MsrA may be an effective therapeutic target for ameliorating dyslipidemia and reducing atherosclerosis-related cardiovascular diseases.  相似文献   

6.
CYP7B1 catalyzes mitochondria-derived cholesterol metabolites such as (25R)26-hydroxycholesterol (26HC) and 3β-hydroxy-5-cholesten-(25R)26-oic acid (3βHCA) and facilitates their conversion to bile acids. Disruption of 26HC/3βHCA metabolism in the absence of CYP7B1 leads to neonatal liver failure. Disrupted 26HC/3βHCA metabolism with reduced hepatic CYP7B1 expression is also found in nonalcoholic steatohepatitis (NASH). The current study aimed to understand the regulatory mechanism of mitochondrial cholesterol metabolites and their contribution to onset of NASH. We used Cyp7b1−/− mice fed a normal diet (ND), Western diet (WD), or high-cholesterol diet (HCD). Serum and liver cholesterol metabolites as well as hepatic gene expressions were comprehensively analyzed. Interestingly, 26HC/3βHCA levels were maintained at basal levels in ND-fed Cyp7b1−/− mice livers by the reduced cholesterol transport to mitochondria, and the upregulated glucuronidation and sulfation. However, WD-fed Cyp7b1−/− mice developed insulin resistance (IR) with subsequent 26HC/3βHCA accumulation due to overwhelmed glucuronidation/sulfation with facilitated mitochondrial cholesterol transport. Meanwhile, Cyp7b1−/− mice fed an HCD did not develop IR or subsequent evidence of liver toxicity. HCD-fed mice livers revealed marked cholesterol accumulation but no 26HC/3βHCA accumulation. The results suggest 26HC/3βHCA-induced cytotoxicity occurs when increased cholesterol transport into mitochondria is coupled to decreased 26HC/3βHCA metabolism driven with IR. Supportive evidence for cholesterol metabolite-driven hepatotoxicity is provided in a diet-induced nonalcoholic fatty liver mouse model and by human specimen analyses. This study uncovers an insulin-mediated regulatory pathway that drives the formation and accumulation of toxic cholesterol metabolites within the hepatocyte mitochondria, mechanistically connecting IR to cholesterol metabolite-induced hepatocyte toxicity which drives nonalcoholic fatty liver disease.  相似文献   

7.
BackgroundDisruption of epithelial tight junctions (TJ), gut barrier dysfunction and endotoxemia play crucial role in the pathogenesis of alcoholic tissue injury. Occludin, a transmembrane protein of TJ, is depleted in colon by alcohol. However, it is unknown whether occludin depletion influences alcoholic gut and liver injury.MethodsWild type (WT) and occludin deficient (Ocln−/−) mice were fed 1–6% ethanol in Lieber–DeCarli diet. Gut permeability was measured by vascular-to-luminal flux of FITC-inulin. Junctional integrity was analyzed by confocal microscopy. Liver injury was assessed by plasma transaminase, histopathology and triglyceride analyses. The effect of occludin depletion on acetaldehyde-induced TJ disruption was confirmed in Caco-2 cell monolayers.ResultsEthanol feeding significantly reduced body weight gain in Ocln−/− mice. Ethanol increased inulin permeability in colon of both WT and Ocln−/− mice, but the effect was 4-fold higher in Ocln−/− mice. The gross morphology of colonic mucosa was unaltered, but ethanol disrupted the actin cytoskeleton, induced redistribution of occludin, ZO-1, E-cadherin and β-catenin from the junctions and elevated TLR4, which was more severe in Ocln−/− mice. Occludin knockdown significantly enhanced acetaldehyde-induced TJ disruption and barrier dysfunction in Caco-2 cell monolayers. Ethanol significantly increased liver weight and plasma transaminase activity in Ocln−/− mice, but not in WT mice. Histological analysis indicated more severe lesions and fat deposition in the liver of ethanol-fed Ocln−/− mice. Ethanol-induced elevation of liver triglyceride was also higher in Ocln−/− mice.ConclusionThis study indicates that occludin deficiency increases susceptibility to ethanol-induced colonic mucosal barrier dysfunction and liver damage in mice.  相似文献   

8.
AimsDysfunction of adipose tissue increases the risk of cardiovascular disease. It was well established that obesity aggravates atherosclerosis, but the effect of adipose tissue loss on atherosclerosis has been less studied. AGPAT2 is the first causative gene of congenital generalized lipodystrophy (CGL), but the role of AGPAT2 on atherosclerosis has not been reported. Hypertriglyceridemia is one of the clinical manifestations of CGL patients, but it is usually absent in CGL mouse model on a normal diet. This study will investigate the effect of Agpat2 on hyperlipidemia and atherosclerosis.Methods and resultsIn this study, Agpat2 knockout (Agpat2−/−) mice were generated using CRISPR/Cas system, which showed severe loss of adipose tissue and fatty liver, consistent with previous reports. Agpat2−/− mice were then crossed with hypercholesterolemic and atherosclerotic prone LDL receptor knockout (Ldlr−/−) mice to obtain double knockout mouse model (Agpat2−/−Ldlr−/−). Plasma lipid profile, insulin resistance, fatty liver, and atherosclerotic lesions were observed after 12 weeks of the atherogenic high-fat diet (HFD) feeding. We found that compared with Ldlr−/− mice, Agpat2−/−Ldlr−/− mice showed significantly higher plasma total cholesterol and triglycerides after HFD feeding. Agpat2−/−Ldlr−/− mice also developed hyperglycemia and hyperinsulinemia, with increased pancreatic islet area. The liver weight of Agpat2−/−Ldlr−/− mice was about 4 times higher than that of Ldlr−/− mice. The liver lipid deposition was severe and Sirius red staining showed liver fibrosis. In addition, in Agpat2−/−Ldlr−/− mice, the area of atherosclerotic lesions in aortic arch and aortic root was significantly increased.ConclusionsOur results show that Agpat2 deficiency led to more severe hyperlipidemia, liver fibrosis and aggravation of atherosclerosis in Ldlr−/− mice. This study provided additional insights into the role of adipose tissue in hyperlipidemia and atherosclerosis.  相似文献   

9.
Cathepsin E is an intracellular aspartic proteinase, which is predominantly distributed in immune-related and epithelial cells. However, the role of the enzyme in adipose tissues remains unknown. In this study, we investigated the characteristics of cathepsin E-deficient (CatE−/−) mice fed a high-fat diet (HFD), as a mouse model of obesity. HFD-fed CatE−/− mice displayed reduced body weight gain and defective development of white adipose tissue (WAT) and brown adipose tissue (BAT), compared with HFD-fed wild-type mice. Moreover, fat-induced CatE−/− mice showed abnormal lipid accumulation in non-adipose tissues characterized by hepatomegaly, which is probably due to defective adipose tissue development. Detailed pathological and biochemical analyses showed that hepatomegaly was accompanied by hepatic steatosis and hypercholesterolemia in HFD-induced CatE−/− mice. In fat-induced CatE−/− mice, the number of macrophages infiltrating into WAT was significantly lower than in fat-induced wild-type mice. Thus, the impaired adipose tissue development in HFD-induced CatE−/− mice was probably due to reduced infiltration of macrophages and may lead to hepatomegaly accompanied by hepatic steatosis and hypercholesterolemia.  相似文献   

10.
11.
Serum amyloid A (SAA) is predictive of CVD in humans and causes atherosclerosis in mice. SAA has many proatherogenic effects in vitro. However, HDL, the major carrier of SAA in the circulation, masks these effects. The remodeling of HDL by cholesteryl ester transfer protein (CETP) liberates SAA restoring its proinflammatory activity. Here, we investigated whether deficiency of SAA suppresses the previously described proatherogenic effect of CETP. ApoE−/− mice and apoE−/− mice deficient in the three acute-phase isoforms of SAA (SAA1.1, SAA2.1, and SAA3; “apoE−/− SAA-TKO”) with and without adeno-associated virus-mediated expression of CETP were studied. There was no effect of CETP expression or SAA genotype on plasma lipids or inflammatory markers. Atherosclerotic lesion area in the aortic arch of apoE−/− mice was 5.9 ± 1.2%; CETP expression significantly increased atherosclerosis in apoE−/− mice (13.1 ± 2.2%). However, atherosclerotic lesion area in the aortic arch of apoE−/− SAA-TKO mice (5.1 ± 1.1%) was not significantly increased by CETP expression (6.2 ± 0.9%). The increased atherosclerosis in apoE−/− mice expressing CETP was associated with markedly increased SAA immunostaining in aortic root sections. Thus, SAA augments the atherogenic effects of CETP, which suggests that inhibiting CETP may be of particular benefit in patients with high SAA.  相似文献   

12.
13.
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR−/−) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR−/− mice fed MCD diet (FXR−/−/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR−/−/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR−/−/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR−/−/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.  相似文献   

14.
The mismatch between maternal undernutrition and adequate nutrition after birth increases the risk of developing metabolic diseases. We aimed to investigate whether the hyperghrelinemia during maternal undernourishment rewires the hypothalamic development of the offspring and contributes to the conversion to an obese phenotype when fed a high-fat diet (HFD). Pregnant C57BL/6 J, wild type (WT) and ghrelin receptor (GHSR)−/− mice were assigned to either a normal nourished (NN) group, or an undernutrition (UN) (30% food restricted) group. All pups were fostered by NN Swiss mice. After weaning, pups were fed a normal diet, followed by a HFD from week 9. Plasma ghrelin levels peaked at postnatal day 15 (P15) in both C57BL/6 J UN and NN pups. Hypothalamic Ghsr mRNA expression was upregulated at P15 in UN pups compared to NN pups and inhibited agouti-related peptide (AgRP) projections. Adequate lactation increased body weight of UN WT but not of GHSR−/− pups compared to NN littermates. After weaning with a HFD, body weight and food intake was higher in WT UN pups but lower in GHSR−/− UN pups than in NN controls. The GHSR prevented a decrease in ambulatory activity and oxygen consumption in UN offspring during ad libitum feeding. Maternal undernutrition triggers developmental changes in the hypothalamus in utero which were further affected by adequate feeding after birth during the postnatal period by affecting GHSR signaling. The GHSR contributes to the hyperphagia and the increase in body weight when maternal undernutrition is followed by an obesity prone life environment.  相似文献   

15.
Lysosomal acid lipase (LAL)-dependent lipolysis degrades cholesteryl ester (CE) and triglyceride in the lysosome. LAL deficiency in human and mice leads to hypercholesterolemia, hepatic CE deposition, and atherosclerosis. Despite its hepatocyte-specific deficiency leads to CE accumulation, the regulation of LAL in cholesterol metabolic disease remains elusive. For the in vitro study, the target gene Lipa was transfected with recombinant shRNA or lentiviral vector in Hepa1-6 cells. It was found that LAL silencing in cells affected lysosomal function by reducing LAL activity and proteolytic activity, and altered the expression of genes related to cholesterol metabolism and autophagy, leading to cholesterol accumulation; whereas LAL overexpression improved the above effects. To explore the impacts of hepatic LAL on cholesterol metabolic disease in vivo, apolipoprotein E deficient (ApoE−/−) mice were intravenously injected with lentivirus to achieve hepatic LAL overexpression and fed a Western diet for 16 weeks. The results showed that hepatic LAL overexpression significantly reduced plasma lipid levels, alleviated inflammation and oxidative status in plasma and liver, and attenuated hepatic steatosis and fibrosis in ApoE−/− mice. Mechanically, hepatic LAL promoted cholesterol transport and biliary excretion by increasing liver X receptor alpha (LXRα) and its downstream genes, and modulated the compliance of the autophagy-lysosomal pathway. Our data provide the original evidence of the validity of hepatic LAL in controlling cholesterol metabolism and liver homeostasis, suggesting that targeting hepatic LAL may provide a promising approach to rescue cholesterol metabolic disorders, such as hypercholesterolemia and liver disease.  相似文献   

16.
Infection of mice with Plasmodium berghei NK65 represents a well-recognized malaria model in which infection is accompanied by an intense hepatic inflammatory response. Enzyme-inducible nitric oxide synthase is an important regulator of inflammation and leukocyte recruitment in microvessels, but these functions have yet to be evaluated in experimental malaria. In this study, we assessed the involvement of inducible nitric oxide synthase in inflammatory responses to murine experimental malaria induced by P. berghei NK65. We observed that wild type (WT) and nitric oxide synthase (iNOS)-deficient mice (iNOS−/−) mice showed similar levels of parasitemia following P. berghei NK65 infection, although infected iNOS−/− mice presented early mortality. Inducible nitric oxide synthase deficiency led to increased leukocyte rolling and adhesion to the liver in iNOS−/− mice relative to the WT animals, as observed via intravital microscopy. Infected iNOS−/− mice also exhibited increased hepatic leukocyte migration and subsequent liver damage, which was associated with high serum levels of the cytokines TNF-α, IL-6 and IL-10. Our data suggest potential role for the iNOS enzyme as a regulator of hepatic inflammatory response induced by P. berghei NK65-infection, and its absence leads to exacerbated inflammation and sequential associated-hepatic damage in the animals.  相似文献   

17.
Milk sphingomyelin (SM), a polar lipid (PL) component of milk fat globule membranes, is protective against dyslipidemia. However, it is unclear whether ingestion of milk PLs protect against atherosclerosis. To determine this, male LDLr−/− mice (age 6 weeks) were fed ad libitum either a high-fat, added-cholesterol diet (CTL; 45% kcal from fat, 0.2% cholesterol by weight; n=15) or the same diet supplemented with 1% milk PL (1% MPL; n=15) or 2% milk PL (2% MPL; n=15) added by weight from butter serum. After 14 weeks on diets, mice fed 2% MPL had significantly lower serum cholesterol (−51%) compared to CTL (P<.01), with dose-dependent effects in lowering VLDL- and LDL-cholesterol. Mice fed 2% MPL displayed lower inflammatory markers in the serum, liver, adipose and aorta. Notably, milk PLs reduced atherosclerosis development in both the thoracic aorta and the aortic root, with 2% MPL-fed mice having significantly lower neutral lipid plaque size by 59% (P<.01) and 71% (P<.02) compared to CTL, respectively. Additionally, the 2% MPL-fed mice had greater relative abundance of Bacteroidetes, Actinobacteria and Bifidobacterium, and lower Firmicutes in cecal feces compared to CTL. Milk PL feeding resulted in significantly different microbial communities as demonstrated by altered beta diversity indices. In summary, 2% MPL strongly reduced atherogenic lipoprotein cholesterol, modulated gut microbiota, lowered inflammation and attenuated atherosclerosis development. Thus, milk PL content may be important to consider when choosing dairy products as foods for cardiovascular disease prevention.  相似文献   

18.
Oxidative stress has a considerable influence on endothelial cell dysfunction and atherosclerosis. Acacetin, an anti-inflammatory and antiarrhythmic, is frequently used in the treatment of myocarditis, albeit its role in managing atherosclerosis is currently unclear. Thus, we evaluated the regulatory effects of acacetin in maintaining endothelial cell function and further investigated whether the flavonoid could attenuate atherosclerosis in apolipoprotein E deficiency (apoE−/−) mice. Different concentrations of acacetin were tested on EA.hy926 cells, either induced or non-induced by human oxidized low-density lipoprotein (oxLDL), to clarify its influence on cell viability, cellular reactive oxidative stress (ROS) level, apoptotic ratios and other regulatory effects. In vivo, apoE−/− mice were fed either a Western diet or a chow diet. Acacetin pro-drug (15 mg/kg) was injected subcutaneously two times a day for 12 weeks. The effects of acacetin on the atherosclerotic process, plasma inflammatory factors and lipid metabolism were also investigated. Acacetin significantly increased EA.hy926 cell viability by reducing the ratios of apoptotic and necrotic cells at 3 μmol/L. Moreover, 3 μmol/L acacetin clearly decreased ROS levels and enhanced reductase protein expression through MsrA and Nrf2 pathway through phosphorylation of Nrf2 and degradation of Keap1. In vivo, acacetin treatment remarkably attenuated atherosclerosis by increasing reductase levels in circulation and aortic roots, decreasing plasma inflammatory factor levels as well as accelerating lipid metabolism in Western diet-fed apoE−/− mice. Our findings demonstrate the anti-oxidative and anti-atherosclerotic effects of acacetin, in turn suggesting its potential therapeutic value in atherosclerotic-related cardiovascular diseases (CVD).  相似文献   

19.
[目的]研究葛仙米多糖对高脂饲料喂养小鼠血脂和肠道微生物的影响.[方法]将健康的8周龄雄性小鼠分成5组,每组10只:正常组C57/6CNC小鼠(N:灌胃生理盐水,喂饲标准饲料),对照组ApoE-/-小鼠(C:灌胃生理盐水,喂饲标准饲料),模型组ApoE-/-小鼠(M:灌胃生理盐水,喂饲高脂高胆固醇饲料),葛仙米多糖低剂...  相似文献   

20.
AimsTo investigate whether haematopoietic TLR4 deletion attenuates perivascular brown adipose tissue inflammation in atherosclerotic mice.Methods and ResultsExperiments were performed using irradiated LDL receptor-deficient (LDLR−/−) mice with marrow from either TLR4-deficient (TLR4−/−) or age-matched wild-type (WT) mice. After 12 weeks of being fed a high-cholesterol diet, TLR4−/−  LDLR−/− mice developed fewer atherosclerotic lesions in the aorta compared to WT  LDLR−/− mice. This effect was associated with an increase in multilocular lipid droplets and mitochondria in perivascular adipose tissue (PVAT). Immunofluorescence analysis confirmed that there was an increase in capillary density and M2 macrophage infiltration, accompanied by a decrease in tumour necrosis factor (TNF)-α expression in the localized PVAT of TLR4−/−  LDLR−/− mice. In vitro studies indicated that bone marrow-derived macrophages (BMDMs) from WT mice demonstrated an M1-like phenotype and expression of inflammatory cytokines induced by palmitate. These effects were attenuated in BMDMs isolated from TLR4−/− mice. Furthermore, brown adipocytes incubated with conditioned medium (CM) derived from palmitate-treated BMDMs, exhibited larger and more unilocular lipid droplets, and reduced expression of brown adipocyte-specific markers and perilipin-1 compared to those observed in brown adipocytes exposed to CM from palmitate-treated BMDMs of TLR4−/− mice. This decreased potency was primarily due to TNF-α, as demonstrated by the capacity of the TNF-α neutralizing antibody to reverse these effects.ConclusionsThese results suggest that haematopoietic-specific deletion of TLR4 promotes PVAT homeostasis, which is involved in reducing macrophage-induced TNF-α secretion and increasing mitochondrial biogenesis in brown adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号