首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluated the diversity of cultivable plant growth-promoting (PGP) bacteria associated with apple trees cultivated under different crop management systems and their antagonistic ability against Colletotrichum gloeosporioides. Samples of roots and rhizospheric soil from apple trees cultivated in organic and conventional orchards in southern Brazil were collected, together with soil samples from an area never used for agriculture (native field). Bacteria were identified at the genus level by PCR-RFLP and partial sequencing of the 16S rRNA, and were evaluated for some PGP abilities. The most abundant bacterial genera identified were Enterobacter (27.7%), Pseudomonas (18.7%), Burkholderia (13.7%), and Rahnella (12.3%). Sixty-nine isolates presented some antagonist activity against C. gloeosporioides. In a greenhouse experiment, five days after exposure to C. gloeosporioides, an average of 30% of the leaf area of plants inoculated with isolate 89 (identified as Burkholderia sp.) were infected, whereas 60 to 73% of the leaf area of untreated plants was affected by fungal attack. Our results allowed us to infer how anthropogenic activity is affecting the bacterial communities in soil associated with apple tree crop systems, and to obtain an isolate that was able to delay the emergence of an important disease for this culture.  相似文献   

2.

Background and Aims

This study was aimed at assessing the diversity of putatively diazotrophic rhizobacteria associated with sunflower (Helianthus annuus L.) cropped in the south of Brazil, and to examine key plant growth promotion (PGP) characteristics of the isolates for the purposes of increasing plant productivity.

Methods

299 strains were isolated from the roots and rhizosphere of sunflower cultivated in five different areas using N-free media. 16S rDNA PCR-RFLP and 16S rRNA partial sequencing were used for identification and the Shannon index was used to evaluate bacterial diversity. Production of siderophores and indolic compounds (ICs), as well phosphate solubilization activities of each isolate were also evaluated in vitro. On the basis of multiple PGP activities, eight isolates were selected and tested for their N-fixation ability, and their capacity as potential PGPR on sunflower plants was also assessed.

Results

All except three Gram-positive strains (phylum Actinobacteria) belonged to the Gram-negative Proteobacteria subgroups [Gamma (167), Beta (78), and Alpha (50)] and the family Flavobacteriaceae (1)]. Shannon indexes ranged from 0.96 to 2.13 between the five sampling sites. Enterobacter and Burkholderia were the predominant genera isolated from roots and rhizosphere, respectively. Producers of siderophores and ICs were widely found amongst the isolates, but only 19.8% of them solubilized phosphate. About 8% of the isolates exhibited all three PGP traits, and these mostly belonged to the genus Burkholderia. Four isolates were able to stimulate the growth of sunflower plants under gnotobiotic conditions.

Conclusions

Enterobacter and Burkholderia were the dominant rhizospheric bacterial genera associated with sunflower plants. Inoculation with isolates belonging to the genera Achromobacter, Chryseobacterium, Azospirillum, and Burkholderia had a stimulatory effect on plant growth.  相似文献   

3.
The genetic diversity of endophytic bacteria in banana ‘Prata Anã’ roots was characterized. Two hundred and one endophytic bacteria were isolated, 151 of which were classified as Gram-positive and 50 as Gram-negative. No hypersensitivity response was observed in any of the isolates. The rep-PCR technique generated different molecular profiles for each primer set (REP, ERIC and BOX). Fifty readable loci were obtained and all of the fragments were polymorphic. Amplified ribosomal DNA restriction analysis (ARDRA) of the isolates based on cleavage with four restriction enzymes yielded 45 polymorphic bands and no monomorphic bands. PCR amplified the nifH gene in 24 isolates. 16S rDNA sequencing of the 201 bacterial isolates yielded 102 high-quality sequences. Sequence analyses revealed that the isolates were distributed among ten bacterial genera (Agrobacterium, Aneurinibacillus, Bacillus, Enterobacter, Klebsiella, Lysinibacillus, Micrococcus, Paenibacillus, Rhizobium and Sporolactobacillus) and included 15 species. The greatest number of isolates belonged to the genus Bacillus. The bacteria identified in this study may be involved in promoting growth, phosphate solubilization, biological control and nitrogen fixation in bananas.  相似文献   

4.
There is currently an increasing demand for the characterization of endophytic bacteria isolated from different parts of plants (rhizosphere, roots, fruit, leaf) in order to improve the organic agriculture practices. The current research was performed to identify both rhizospheric bacteria isolated from the rhizosphere of Ficus carica in three different sites in the north of Tunisia and endophytic bacteria isolated from dried figs. We then characterized them for a diversity of plant growth-promoting (PGP) activities. A collection of 120 isolates from rhizospheric soil and 9 isolates from dried figs was obtained and purified. 16SrDNA gene amplification of rhizospheric bacteria revealed significant diversity and allowed for the assigning of the isolates to 6 phyla: Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Representative strains of the collection (90 strains) were tested for numerous PGP activities and resistance to abiotic stresses. The most common PGP trait for all bacteria from the three regions was siderophore production (62%), followed by cellulase (38%), then protease activity (37%), then by lipases activity (17%) and lastly by solubilization of phosphates (9%). Twenty -three strains that showed most PGP traits were selected, 8 strains presented 12 or more, and 15 strains displayed between 7 and 11 of 17 PGP activities. The majority of the isolates manifested a possible adaptation to abiotic stress and unfavorable environments. PCR-DGGE analysis of soil rhizosphere of the three sites allowed also for the acquisition of a Cluster analysis of rhizospheric bacterial communities. Our current study identified and characterized for the first time in Tunisia rhizospheric and endophytic bacteria from dried fruit of Ficus carica.  相似文献   

5.

Aims

The present study was planned to investigate the diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing bacteria from the rhizosphere of wheat plants and subsequent evaluation of selected PGPR on growth enhancement of wheat seedlings under drought and saline conditions.

Methods

ACC deaminase producing plant growth promoting rhizobacteria (PGPR) were isolated from the rhizosphere of wheat and identified using 16S rRNA gene sequence analysis. Isolates were evaluated for various direct and indirect plant growth promoting (PGP) traits. Plant inoculation experiment was conducted using isolates IG 19 and IG 22 in wheat to assess their plant growth promotion potential under salinity and drought stress.

Results

Thirty-eight ACC deaminase producing PGPR were isolated which belonged to 12 distinct genera and falling into four phyla γ-proteobacteria, β-proteobacteria, Flavobacteria and Firmicutes. Klebsiella sp. was the most abundant genera and followed by Enterobacter sp. The isolates exhibited ACC deaminase activities ranging from 0.106–0.980 μM α- ketobutyrate μg protein?1 h?1. The isolates showed multiple PGP traits such as IAA production, phosphate, zinc, potassium solubilization and siderophore production. Enterobacter cloacae (IG 19) and Citrobacter sp. (IG 22) inoculated wheat seedlings showed notable increases in fresh and dry biomass under non-stress as well as under stressed condition.

Conclusion

To the best of our knowledge this is the first report of presence of ACC deaminase activity and other PGP traits from the genus Citrobacter and Empedobacter. Our finding revealed that the γ-proteobacteria group dominated the wheat rhizosphere. Plant inoculation with PGPR could be a sustainable approach to alleviate abiotic stresses in wheat plants. These native PGPR isolates could be used as potential biofertilizers for sustainable agriculture.
  相似文献   

6.
Sugarcane is an important crop around the world. Burkholderia genus has emerged as an important plant associated bacteria in the last years. In this study, the occurrence of Burkholderia species associated with two sugarcane varieties cultivated in Mexico was assessed. Burkholderia species were isolated with and without diazotrophs enrichment from sugarcane. Burkholderia strains were identified using a semi-selective set of primers and clustered by restriction analysis of 16S rRNA. The isolates were characterized by 16S rRNA, recA and nifH sequence analysis, whole-cell protein patterns, and plant-growth promotion (PGP) characteristics. Diazotrophic B. unamae and B. tropica were predominant using diazotroph enrichment method. Non-diazotrophic B. cepacia complex (Bcc) species were predominant without enrichment. Among non-diazotrophs, B. tropica was identified. The diazotrophic Burkholderia species exhibit in vitro PGP activities: biosynthesis of indolic compounds, phosphate solubilization, siderophores production and acdS gene presence, which encodes the enzyme ACC (1-aminocyclopropane-1-carboxylate) deaminase. The present study confirms the broad environmental and geographic distribution of diazotrophic B. unamae and B. tropica, and reveals the riches of Bcc and other Burkholderia species associated with sugarcane field-grown in Mexico. This work also shows the potential activities in PGP.  相似文献   

7.
Bacteria were isolated from the rhizosphere and from inside the roots and stems of sugarcane plants grown in the field in Brazil. Endophytic bacteria were found in both the roots and the stems of sugarcane plants, with a significantly higher density in the roots. Many of the cultivated endophytic bacteria were shown to produce the plant growth hormone indoleacetic acid, and this trait was more frequently found among bacteria from the stem. 16S rRNA gene sequence analysis revealed that the selected isolates of the endophytic bacterial community of sugarcane belong to the genera of Burkholderia, Pantoea, Pseudomonas, and Microbacterium. Bacterial isolates belonging to the genus Burkholderia were the most predominant among the endophytic bacteria. Many of the Burkholderia isolates produced the antifungal metabolite pyrrolnitrin, and all were able to grow at 37°C. Phylogenetic analyses of the 16S rRNA gene and recA gene sequences indicated that the endophytic Burkholderia isolates from sugarcane are closely related to clinical isolates of the Burkholderia cepacia complex and clustered with B. cenocepacia (gv. III) isolates from cystic fibrosis patients. These results suggest that isolates of the B. cepacia complex are an integral part of the endophytic bacterial community of sugarcane in Brazil and reinforce the hypothesis that plant-associated environments may act as a niche for putative opportunistic human pathogenic bacteria.  相似文献   

8.
A total of 74 morphologically distinct bacterial colonies were selected during isolation of bacteria from different parts of tomato plant (rhizoplane, phylloplane and rhizosphere) as well as nearby bulk soil. The isolates were screened for plant growth promoting (PGP) traits such as production of indole acetic acid, siderophore, chitinase and hydrogen cyanide as well as phosphate solubilization. Seven isolates viz., NR4, NR6, RP3, PP1, RS4, RP6 and NR1 that exhibited multiple PGP traits were identified, based on morphological, biochemical and 16S rRNA gene sequence analysis, as species that belonged to four genera Aeromonas, Pseudomonas,Bacillus and Enterobacter. All the seven isolates were positive for 1-aminocyclopropane-1-carboxylate deaminase. Isolate NR6 was antagonistic to Fusarium solani and Fusarium moniliforme, and both PP1 and RP6 isolates were antagonistic to F. moniliforme. Except RP6, all isolates adhered significantly to glass surface suggestive of biofilm formation. Seed bacterization of tomato, groundnut, sorghum and chickpea with the seven bacterial isolates resulted in varied growth response in laboratory assay on half strength Murashige and Skoog medium. Most of the tomato isolates positively influenced tomato growth. The growth response was either neutral or negative with groundnut, sorghum and chickpea. Overall, the results suggested that bacteria with PGP traits do not positively influence the growth of all plants, and certain PGP bacteria may exhibit host-specificity. Among the isolates that positively influenced growth of tomato (NR1, RP3, PP1, RS4 and RP6) only RS4 was isolated from tomato rhizosphere. Therefore, the best PGP bacteria can also be isolated from zones other than rhizosphere or rhizoplane of a plant.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-014-0470-z) contains supplementary material, which is available to authorized users.  相似文献   

9.
杨娜  杨波 《生态学报》2011,31(5):1203-1212
为了研究褐斑病与蕙兰根部内生细菌群落结构和多样性的关联,从野生蕙兰健株和褐斑病株根部分离出内生细菌112株,采用核糖体DNA扩增片段限制性酶切分析(ARDRA),研究了健株和病株内生细菌多样性与群落结构。将内生细菌纯培养物扩增近全长的16S rDNA,并用ARDRA (Amplified Ribosomal DNA Restriction Analysis) 对所分离的菌株进行分型,根据酶切图谱的差异,将健株中的内生细菌分成8个ARDRA型,病株分成13个ARDRA型。并选取代表性菌株进行16S rDNA序列测定。结果表明,健株分离出内生细菌6个属,优势菌群为Bacillus;病株分离出11个属,优势菌群为 MitsuariaFlavobacterium。通过回接兰花植物和初步拮抗实验发现,从病株分离出的H5号菌株 (Flavobacterium resistens)使兰花产生病症,而健株中的B02 (Bacillus cereus) 和B22号菌株 (Burkholderia stabilis) 对菌株H5有拮抗作用。  相似文献   

10.
Actinobacteria from special habitats are of interest due to their producing of bioactive compounds and diverse ecological functions. However, little is known of the diversity and functional traits of actinobacteria inhabiting coastal salt marsh soils. We assessed actinobacterial diversity from eight coastal salt marsh rhizosphere soils from Jiangsu Province, China, using culture-based and 16S rRNA gene high throughput sequencing (HTS) methods, in addition to evaluating their plant growth-promoting (PGP) traits of isolates. Actinobacterial sequences represented 2.8%–43.0% of rhizosphere bacterial communities, as determined by HTS technique. The actinobacteria community comprised 34 families and 79 genera. In addition, 196 actinobacterial isolates were obtained, of which 92 representative isolates were selected for further 16S rRNA gene sequencing and phylogenetic analysis. The 92 strains comprised seven suborders, 12 families, and 20 genera that included several potential novel species. All representative strains were tested for their ability of producing indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate deaminase (ACCD), hydrolytic enzymes, and phosphate solubilization. Based on the presence of multiple PGP traits, two strains, Streptomyces sp. KLBMP S0051 and Micromonospora sp. KLBMP S0019 were selected for inoculation of wheat seeds grown under salt stress. Both strains promoted seed germination, and KLBMP S0019 significantly enhanced seedling growth under NaCl stress. Our study demonstrates that coastal salt marsh rhizosphere soils harbor a diverse reservoir of actinobacteria that are potential resources for the discovery of novel species and functions. Moreover, several of the isolates identified here are good candidates as PGP bacteria that may contribute to plant adaptions to saline soils.  相似文献   

11.

Background

Traditional agro-systems in arid areas are a bulwark for preserving soil stability and fertility, in the sight of “reverse desertification”. Nevertheless, the impact of desert farming practices on the diversity and abundance of the plant associated microbiome is poorly characterized, including its functional role in supporting plant development under drought stress.

Methodology/Principal Findings

We assessed the structure of the microbiome associated to the drought-sensitive pepper plant (Capsicum annuum L.) cultivated in a traditional Egyptian farm, focusing on microbe contribution to a crucial ecosystem service, i.e. plant growth under water deficit. The root system was dissected by sampling root/soil with a different degree of association to the plant: the endosphere, the rhizosphere and the root surrounding soil that were compared to the uncultivated soil. Bacterial community structure and diversity, determined by using Denaturing Gradient Gel Electrophoresis, differed according to the microhabitat, indicating a selective pressure determined by the plant activity. Similarly, culturable bacteria genera showed different distribution in the three root system fractions. Bacillus spp. (68% of the isolates) were mainly recovered from the endosphere, while rhizosphere and the root surrounding soil fractions were dominated by Klebsiella spp. (61% and 44% respectively). Most of the isolates (95%) presented in vitro multiple plant growth promoting (PGP) activities and stress resistance capabilities, but their distribution was different among the root system fractions analyzed, with enhanced abilities for Bacillus and the rhizobacteria strains. We show that the C. annuum rhizosphere under desert farming enriched populations of PGP bacteria capable of enhancing plant photosynthetic activity and biomass synthesis (up to 40%) under drought stress.

Conclusions/Significance

Crop cultivation provides critical ecosystem services in arid lands with the plant root system acting as a “resource island” able to attract and select microbial communities endowed with multiple PGP traits that sustain plant development under water limiting conditions.  相似文献   

12.
Novel, root-associated Pseudomonas and Burkholderia strains with biological control and plant growth-promoting (PGP) traits are being sought for biotechnological application in agriculture. We present a new isolation approach for recovery of rhizoplane and/or endophytic Pseudomonas and Burkholderia spp. with desirable biocontrol and PGP phenotypes. The method may enable better targeted biodiscovery of these two important genera.  相似文献   

13.
We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA) and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%), release ammonium (39%), secrete siderophores (38%) and a limited part of them synthetized IAA and IAA-like molecules (5%). Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP) of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards.  相似文献   

14.
This study was conducted to investigate the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase in Pseudomonas fluorescens strain REN1 and its ability to reduce ethylene levels produced during stress, endophytically colonize and promote the elongation of the roots of rice seedlings under gnotobiotic conditions. We isolated 80 bacteria from inside roots of rice plants grown in the farmers’ fields in Guilan, Iran. All of the isolates were characterized for plant growth promoting (PGP) traits. In addition, the colonization assay of these isolates on rice seedlings was carried out to screen for competent endophytes. The best bacterial isolate, based on ACC deaminase production, was identified and used for further study. 16S rDNA sequence analysis revealed that the endophyte was closely related to Pseudomonas fluorescens. The results of this study showed ACC deaminase containing P. fluorescens REN1 increased in vitro root elongation and endophytically colonized the root of rice seedlings significantly, as compared to control under constant flooded conditions. The trait of low amount of indole-3-acetic acid (IAA) production (<15 μg mL−1) and the high production of ACC deaminase by bacteria may be main factors in colonizing rice seedling roots compared to other PGP traits (siderophore production and phosphate solubilization) in this study. Endophytic IAA and ACC deaminase-producing bacteria may be preferential selections by rice seedlings. Therefore, it may be suggested that the utilization of ACC as a nutrient gives the isolates advantages in more endophytic colonization and increase of root length of rice seedlings.  相似文献   

15.
Actinobacterial isolates randomly obtained on nitrogen-free BAP medium from surface sterilized root nodules of Alnus glutinosa, Casuarina glauca and Elaeagnus angustifolia sampled from fields were reported. They were assigned on the basis of partial 16S rRNA sequences to Micromonospora, Nocardia and Streptomyces genera. The isolates have been screened for hydrolytic activities, indole acetic acid (IAA) and siderophores production, phosphate solubilization and antagonistic activities. Results suggest putative traits as plant growth promoting bacteria proprieties of the isolates that occur in unique association in root nodules of the three analysed actinorhizal host species.  相似文献   

16.
In this study, bacteria were isolated from the rhizosphere and inside the roots and nodules of berseem clover plants grown in the field in Iran. Two hundred isolates were obtained from the rhizosphere (120 isolates), interior roots (57 isolates), and nodules (23 isolates) of clover plants grown in rotation with rice plants. Production of chitinase, pectinase, cellulase, siderophore, salicylic acid, hydrogen cyanide, indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, solubilization of phosphate, antifungal activity against various rice plant pathogen fungi, N2 fixation, and colonization assay on rice seedlings by these strains was evaluated and compared (endophytic isolates vs. rhizosphere bacteria). The results showed both the number and the ability of plant growth-promoting (PGP) traits were different between endophytic and rhizosphere isolates. A higher percentage of endophytic isolates were positive for production of IAA, ACC deaminase, and siderophore than rhizosphere isolates. Therefore, it is suggested that clover plant may shape its own associated microbial community and act as filters for endophyte communities, and rhizosphere isolates with different (PGP) traits. We also studied the PGP effect of the most promising endophytic and rhizosphere isolates on rice seedlings. A significant relationship among IAA and ACC deaminase production, the size of root colonization, and plant growth (root elongation) in comparison with siderophore production and phosphate solubilization for the isolates was observed. The best bacterial isolates (one endophytic isolate and one rhizosphere isolate), based on their ability to promote rice growth and colonize rice roots, were identified. Based on 16S rDNA sequence analysis, the endophytic isolate CEN7 and the rhizosphere isolate CEN8 were closely related to Pseudomonas putida and Pseudomonas fluorescens, respectively. It seems that PGP trait production (such as IAA, ACC deaminase) may be required for endophytic and rhizosphere competence as compared to other PGP traits in rice seedlings under constant flooded conditions. The study also shows that the presence of diverse rhizobacteria with effective growth-promoting traits associated with clover plants may be used for sustainable crop management under field conditions.  相似文献   

17.
Brazil is the largest sugarcane producer in the world, mainly due to the development of different management strategies. Recently, microbial-plant related studies revealed that bacterial isolates belonging to the genus Burkholderia are mainly associated with this plant and are responsible for a range of physiological activity. In this study, we properly evaluate the physiological activity and genetic diversity of endophytic and rhizospheric Burkholderia spp. isolates from sugarcane roots grown in the field in Brazil. In total, 39 isolates previously identified as Burkholderia spp. were firstly evaluated for the capability to fix nitrogen, produce siderophores, solubilise inorganic phosphates, produce indole-acetic acid and inhibit sugarcane phytopathogens in vitro. These results revealed that all isolates present at least two positive evaluated activities. Furthermore, a phylogenetic study was carried out using 16S rRNA and gyrB genes revealing that most of the isolates were affiliated with the Burkholderia cepacia complex. Hence, a clear separation given by endophytic or rhizospheric niche occupation was not observed. These results presented an overview about Burkholderia spp. isolates from sugarcane roots and supply information about the physiological activity and genetic diversity of this genus, given direction for further studies related to achieve more sustainable cultivation of sugarcane.  相似文献   

18.

Background

All plants in nature harbor a diverse community of endophytic bacteria which can positively affect host plant growth. Changes in plant growth frequently reflect alterations in phytohormone homoeostasis by plant-growth-promoting (PGP) rhizobacteria which can decrease ethylene (ET) levels enzymatically by 1-aminocyclopropane-1-carboxylate (ACC) deaminase or produce indole acetic acid (IAA). Whether these common PGP mechanisms work similarly for different plant species has not been rigorously tested.

Methodology/ Principal Findings

We isolated bacterial endophytes from field-grown Solanum nigrum; characterized PGP traits (ACC deaminase activity, IAA production, phosphate solubilization and seedling colonization); and determined their effects on their host, S. nigrum, as well as on another Solanaceous native plant, Nicotiana attenuata. In S. nigrum, a majority of isolates that promoted root growth were associated with ACC deaminase activity and IAA production. However, in N. attenuata, IAA but not ACC deaminase activity was associated with root growth. Inoculating N. attenuata and S. nigrum with known PGP bacteria from a culture collection (DSMZ) reinforced the conclusion that the PGP effects are not highly conserved.

Conclusions/ Significance

We conclude that natural endophytic bacteria with PGP traits do not have general and predictable effects on the growth and fitness of all host plants, although the underlying mechanisms are conserved.  相似文献   

19.
Study of rhizospheric bacteria from important plants is very essential, as they are known to influence plant growth and productivity, and also produce industrially important metabolites. Origanum vulgare is a perennial medicinal aromatic plant rich in phenolic antioxidants. Present study investigates the diversity of culturable root-associated bacteria from this plant in Palampur, India, which constitutes a unique ecosystem due to high rain fall, wide temperature fluctuations and acidic soil. Both root endophytes and rhizospheric soil bacteria were isolated, which resulted in a total of 120 morphologically different isolates. They were found to group into 21 phylotypes based on restriction fragment length polymorphism analysis. Growth medium composition had significant effect on the diversity of the isolated bacterial populations. The isolates were characterized for various metabolic, plant growth promoting (PGP) and other biotechnologically useful activities, based on which they were clustered into groups by principal component analysis. Majority of the isolates belonged to ??-Proteobacteria and Firmicutes. Pseudomonas and Stenotrophomonas were the most dominant species and together constituted 27.5?% of the total isolates. Many isolates, especially ??-Proteobacteria, showed very high PGP activities. Few isolates exhibited very high antioxidant activity, which may find potential applications in food and health industries. Firmicutes were catabolically the most versatile group and produced several hydrolytic enzymes. To the best of our knowledge, it is the first study describing rhizospheric microbial community of O. vulgare.  相似文献   

20.
Recent studies have revealed that some bacteria can inhabit plant seeds, and they are likely founders of the bacterial community in the rhizosphere of or inside plants at the early developmental stage. Given that the seedling establishment is a critical fitness component of weedy plant species, the effects of seed endophytic bacteria (SEB) on the seedling performance are of particular interest in weed ecology. Here, we characterized the SEB in natural populations of Capsella bursapastoris, a model species of weed ecology. The composition of endophytic bacterial community was evaluated using deep sequencing of a 16S rDNA gene fragment. Additionally, we isolated bacterial strains from seeds and examined their plant growth‐promoting traits. Actinobacteria, Firmicutes, Alpha‐, and Gammaproteobacteria were major bacterial phyla inside seeds. C. bursapastoris natural populations exhibited variable seed microbiome such that the proportion of Actinobacteria and Alphaproteobacteria differed among populations, and 60 out of 82 OTUs occurred only in a single population. Thirteen cultivable bacterial species in six genera (Bacillus, Rhodococcus, Streptomyces, Staphylococcus, Paenibacillus, Pseudomonas) were isolated, and none of them except Staphylococcus haemolyticus were previously reported as seed endophytes. Eight isolates exhibited plant growth‐promoting traits like phosphate solubilization activity, indole‐3‐acetic acid, or siderophore production. Despite the differences in the bacterial communities among plant populations, at least one isolated strain from each population stimulated shoot growth of either C. bursapastoris or its close relative A. thaliana when grown with plants in the same media. These results suggest that a weedy plant species, C. bursapastoris, contains bacterial endophytes inside their seeds, stimulating seedling growth and thereby potentially affecting seedling establishment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号