共查询到20条相似文献,搜索用时 15 毫秒
1.
Salinity tolerance in Hyalophysa chattoni (Ciliophora, Apostomatida), a symbiont of the estuarine grass shrimp Palaemonetes pugio 总被引:1,自引:0,他引:1
The apostome ciliate Hyalophysa chattoni, a symbiont of the estuarine grass shrimp Palaemonetes pugio, was tested for its growth and reproductive ability in a wide range of salinities from 0.1 to 55 ppt. Shrimp, with their attached ciliates, were slowly acclimated to different salinities in order to assess protozoan cell size and division. The trophont and tomont stages of the ciliate life cycle were analyzed. In both stages, cell size increased with salinity from 0.1 to 20 ppt. Cell size leveled in the 20-35 ppt range, and decreased at higher salinities. The number of daughter cells produced per tomont cyst correlated with increased cell size, and also correlated with increased salinity. Additionally, increased salinity correlated with an increase in the percentage of cells able to divide and excyst as tomite stages. These results indicate that H. chattoni is able to grow and divide more effectively at salinities closer to seawater than in the estuarine environment from which they were collected. Though able to survive salinities from 0.1 to 55 ppt, the species is better adapted for an existence in the higher salt concentrations. 相似文献
2.
It has now been over twenty years since a novel herpesviral genome was identified in Kaposi's sarcoma biopsies. Since then, the cumulative research effort by molecular biologists, virologists, clinicians, and epidemiologists alike has led to the extensive characterization of this tumor virus, Kaposi's sarcoma-associated herpesvirus(KSHV; also known as human herpesvirus 8(HHV-8)), and its associated diseases. Here we review the current knowledge of KSHV biology and pathogenesis, with a particular emphasis on new and exciting advances in the field of epigenetics. We also discuss the development and practicality of various cell culture and animal model systems to study KSHV replication and pathogenesis. 相似文献
3.
Lina Rustanti Hongping Jin Dongsheng Li Mary Lor Haran Sivakumaran David Harrich 《中国病毒学》2018,33(2):142-152
4.
正Dear Editor,In December 2019, a novel human coronavirus caused an epidemic of severe pneumonia(Coronavirus Disease 2019,COVID-19) in Wuhan, Hubei, China(Wu et al. 2020; Zhu et al. 2020). So far, this virus has spread to all areas of China and even to other countries. The epidemic has caused 67,102 confirmed infections with 1526 fatal cases 相似文献
5.
Curcumin is the yellow pigment of turmeric that interacts irreversibly forming an adduct with thioredoxin reductase (TrxR), an enzyme
responsible for redox control of cell and defence against oxidative stress. Docking at both the active sites of TrxR was performed to compare
the potency of three naturally occurring curcuminoids, namely curcumin, demethoxy curcumin and bis-demethoxy curcumin. Results show
that active sites of TrxR occur at the junction of E and F chains. Volume and area of both cavities is predicted. It has been concluded by
distance mapping of the most active conformations that Se atom of catalytic residue SeCYS498, is at a distance of 3.56 from C13 of
demethoxy curcumin at the E chain active site, whereas C13 carbon atom forms adduct with Se atom of SeCys 498. We report that at least
one methoxy group in curcuminoids is necessary for interation with catalytic residues of thioredoxin. Pharmacophore of both active sites of
the TrxR receptor for curcumin and demethoxy curcumin molecules has been drawn and proposed for design and synthesis of most probable
potent antiproliferative synthetic drugs. 相似文献
6.
7.
8.
9.
RICHARD E. NORRIS 《Botanical journal of the Linnean Society. Linnean Society of London》1991,106(1):1-40
Comprises species occurring mostly in subtidal habitats in tropical, subtropical and warm-temperate areas of the world. An analysis of the type species, V. spiralis (Sonder) Lamouroux ex J. Agardh, a species from Australia, establishes basic characters for distinguishing species in the genus. These characters are (1) branching patterns of thalli, (2) flat blades that may be spiralled on their axis, (3) width of the blade, (4) primary or secondary derivation of sterile and fertile branchlets and (5) position of sterile and fertile branchlets on the thalli. Application of the latter two characters provides an important basic method for separation of species into three major groups. Osmundaria , a genus known only in southern Australia, was studied in relation to Vidalia , and its separation from the Vidalia assemblage is not accepted. Species of Vidalia therefore are transferred to the older genus name, Osmundaria. Two new species, Osmundaria papenfussii and Osmundaria oliveae are described from Natal. Confusion in the usage of the epithet, Vidalia fimbriala Brown ex Turner has been clarified, and Vidalia gregaria Falkenberg, described as an epiphyte on Osmundaria pro/ifera Lamouroux, is revealed to be young branches of the host, Osmundaria prolifera. 相似文献
10.
JOAN VALUÈS MONTSERRAT TORRELL NÚRIA GARCIA JACAS 《Botanical journal of the Linnean Society. Linnean Society of London》2001,137(4):399-407
Fifteen chromosome counts of six Artemisia taxa and one species of each of the genera Brachanthemum, Hippolytia, Kaschgaria, Lepidolopsis and Turaniphytum are reported from Kazakhstan. Three of them are new reports, two are not consistent with previous counts and the remainder are confirmations of very scarce (one to four) earlier records. All the populations studied have the same basic chromosome number, x = 9, with ploidy levels ranging from 2x to 6x. Some correlations between ploidy level, morphological characters and distribution are noted. 相似文献
11.
The young pistils in the melanthioid tribes, Hewardieae, Petrosavieae and Tricyrteae, are uniformly tricarpellate and syncarpous. They lack raphide idioblasts. All are multiovulate, with bitegmic ovules. The Petrosavieae are marked by the presence of septal glands and incomplete syncarpy. Tepals and stamens adhere to the ovary in the Hewardieae and the Petrosavieae but not in the Tricyrteae. Two vascular bundles occur in the stamens of the Hewartlieae and Tricyrtis latifolia. Ventral bundles in the upper part of the ovary of the Hewardieae are continuous with compound septal bundles and placental bundles in the lower part. Putative ventral bundles occur in the alternate position in the Tricyrteae and putative placental bundles in the opposite. position in the Petrosavieae. The dichtomously branched stigma in each carpel of the Tricyrteae is supplied by a bifurcated dorsal bundle. 相似文献
12.
Jie-Mei Yu Ze-Yin Liang Yuan-Hui Fu Xiang-Lei Peng Yan-Peng Zheng Yu-Jun Dong Jin-Sheng He 《中国病毒学》2024,39(4):705-707
Highlights1. Viral metagenomics analysis was conducted on samples from an HSCT recipient experiencing severe lingual papillomatosis.2. Coexistence of AAV2 with AdV18 in fecal and HSV-1 in tissue samples was detected.3. A second complete genome of AdV18 was obtained in this study and is available in public databases. 相似文献
13.
Yuan Zhou Qian Wang Qi Yang Jielin Tang Chonghui Xu Dongwei Gai Xinwen Chen Jizheng Chen 《中国病毒学》2018,33(5):418-428
14.
肝癌中HBV和HCV基因和抗原的分布及意义 总被引:1,自引:0,他引:1
采用原位分子杂交方法检测HCV
RNA及HBV X基因;采用免疫组织化学方法研究HCV核心抗原,非结构区C33c抗原及HBxAg在肝细胞肝癌中的定位及分布.结果表明(1)HCV
RNA、HBV X基因在肝细胞肝癌组织检出率分别为40%(55/136)和82%(112/136).HCV
RNA定位于癌细胞的胞浆内,阳性细胞呈散在、灶状及弥漫分布三种形式;HBV
X基因在肝癌细胞中的分布呈胞浆型、核型及核浆型,阳性细胞也呈上述三种分布形式;(2)HCV
C33c抗原、核心抗原在肝细胞肝癌中的阳性率为81%(133/164)及86%(141/164).C33c抗原定位于癌细胞及肝细胞的胞浆内;核心抗原既定位于癌细胞核中,又可定位于胞浆中.C33c抗原阳性细胞以灶状分布为主;而核心抗原阳性细 相似文献
15.
Shen Jia-Yuan Li Man Xie Lyu Mao Jia-Rong Zhou Hong-Ning Wang Pei-Gang Jiang Jin-Yong An Jing 《中国病毒学》2021,36(1):145-148
正Dear Editor,Chikungunya virus (CHIKV), an arbovirus in the family of Togaviridae, genus Alphavirus, is transmitted by the A.aegyptii or A. albopictus mosquito, and causes disease in humans characterized by fever, rash, and arthralgia (Silva and Dermody 2017; Suhrbier 2019). It was first reported in 1953 in Tanzania, and caused only a few outbreaks and sporadic cases in Africa and Asia in last century. However, in the epidemic in 2004, CHIKV acquired mutations that conferred enhanced transmission by the A. albopictus mosquito(Schuffenecker et al. 2006). Since then, it has successively caused outbreaks in Africa, the Indian Ocean, South East Asia, the South America, and Europe (Zeller et al. 2016). 相似文献
16.
鸡传染性法氏囊病病毒研究进展 总被引:3,自引:0,他引:3
传染性法氏囊病(Infection bursal disease, IBD)是由鸡传染性法氏囊病毒(Infectious bursal disease virus, IBDV)引起的鸡和火鸡的一种高度接触性传染病,给世界各国的禽养殖业带来了巨大损失.自IBDV发现至今新的变异株不断出现,分子结构的改变导致病毒致病力的改变及宿主对疫苗应答的改变,使得传统的疫苗已不能控制其流行,因此各国学者对其基因组结构和功能进行了广泛深入的研究,并积极研制新型有效的疫苗以达到防治的目的. 相似文献
17.
Shujuan Jiang Yujing Huang Ying Qi Rong He Zhongyang Liu Yanping Ma Xin Guo Yaozhong Shao Zhengrong Sun Qiang Ruan 《中国病毒学》2017,32(5):431-439
18.
Renfei Lu Xiuming Wu Zhenzhou Wan Yingxue Li Lulu Zuo Jianru Qin Xia Jin Chiyu Zhang 《中国病毒学》2020,35(3):344-347
In conclusion, the novel visual RT-LAMP assay is a simple, rapid, and sensitive approach for detection of SARS-CoV-2, and it is ready for application in primary care and community hospitals or health care centers, and even patients' own houses in response to the current SARS-CoV-2 epidemic because the assay does not require sophisticated equipment and skilled personnel. Furthermore, it is also ready to be used in fields for screening samples from wild animals and environments to facilitate the identification of potential intermediate hosts that mediate the cross-species transmission of SARS-CoV-2 from bats to humans. 相似文献
19.
Meng Miao Gang Deng Xiaobei Xiong Yang Qiu Wenda Huang Meng Yuan Fei Yu Shimei Bai Xi Zhou Xiaolu Zhao 《中国病毒学》2022,37(2):314-317
Highlights
1. The N-terminal tail of histone H3 is specifically cleaved during EV71 infection.
2. Viral protease 3C is identified as a protease responsible for proteolytically processing the N-terminal H3 tail.
3. Our finding reveals a new epigenetic regulatory mechanism for Enterovirus 71 in virus-host interactions. 相似文献
1. The N-terminal tail of histone H3 is specifically cleaved during EV71 infection.
2. Viral protease 3C is identified as a protease responsible for proteolytically processing the N-terminal H3 tail.
3. Our finding reveals a new epigenetic regulatory mechanism for Enterovirus 71 in virus-host interactions. 相似文献