首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Iron requirements were estimated from the results of the National Health and Nutrition Surveys of Japan 2003–2007 using the numerical analysis of requirements based on an integral equation. The numerical analysis used population-based data on iron nutriture, the prevalence of inadequate iron status, and the distribution of iron intakes. The cutoff value for inadequate iron status was defined as a serum ferritin concentration <30 ng/mL. Iron intakes and menstrual blood losses followed a log-normal distribution and published values were corrected accordingly to calculate usual values. For women aged 18–29 years old, the median of the estimated median iron requirement (corresponding to the estimated average requirement by using the terminology of the dietary reference intakes) was 7.59 mg (range, 6.86–8.11). The median of the estimated usual iron intake covering the needs of women with 80 mL per cycle of menstrual blood loss was 11.27 mg (range, 10.16–12.00), and the median of the usual iron intake covering the needs of 97.7% of women was 13.93 mg (range, 12.55–14.81). For women aged 30–49 years old, the corresponding figures were 8.13 mg (range, 7.96–8.69), 11.95 mg (range, 11.72–12.77), and 14.71 mg (range, 14.44–15.72).  相似文献   

2.
    
Kinetic isotope effects in reactions involving hydride transfer and their temperature dependence are powerful tools to explore dynamics of enzyme catalytic sites. In plant-type ferredoxin-NADP+ reductases the FAD cofactor exchanges a hydride with the NADP(H) coenzyme. Rates for these processes are considerably faster for the plastidic members (FNR) of the family than for those belonging to the bacterial class (FPR). Hydride transfer (HT) and deuteride transfer (DT) rates for the NADP+ coenzyme reduction of four plant-type FNRs (two representatives of the plastidic type FNRs and the other two from the bacterial class), and their temperature dependences are here examined applying a full tunnelling model with coupled environmental fluctuations. Parameters for the two plastidic FNRs confirm a tunnelling reaction with active dynamics contributions, but isotope effects on Arrhenius factors indicate a larger contribution for donor–acceptor distance (DAD) dynamics in the Pisum sativum FNR reaction than in the Anabaena FNR reaction. On the other hand, parameters for bacterial FPRs are consistent with passive environmental reorganisation movements dominating the HT coordinate and no contribution of DAD sampling or gating fluctuations. This indicates that active sites of FPRs are more organised and rigid than those of FNRs. These differences must be due to adaptation of the active sites and catalytic mechanisms to fulfil their particular metabolic roles, establishing a compromise between protein flexibility and functional optimisation. Analysis of site-directed mutants in plastidic enzymes additionally indicates the requirement of a minimal optimal architecture in the catalytic complex to provide a favourable gating contribution.  相似文献   

3.
    
José Ramón Peregrina 《BBA》2010,1797(9):1638-1264
Two transient charge-transfer complexes (CTC) form prior and upon hydride transfer (HT) in the reversible reaction of the FAD-dependent ferredoxin-NADP+ reductase (FNR) with NADP+/H, FNRox-NADPH (CTC-1), and FNRrd-NADP+ (CTC-2). Spectral properties of both CTCs, as well as the corresponding interconversion HT rates, are here reported for several Anabaena FNR site-directed mutants. The need for an adequate initial interaction between the 2′P-AMP portion of NADP+/H and FNR that provides subsequent conformational changes leading to CTC formation is further confirmed. Stronger interactions between the isoalloxazine and nicotinamide rings might relate with faster HT processes, but exceptions are found upon distortion of the active centre. Thus, within the analyzed FNR variants, there is no strict correlation between the stability of the transient CTCs formation and the rate of the subsequent HT. Kinetic isotope effects suggest that, while in the WT, vibrational enhanced modulation of the active site contributes to the tunnel probability of HT; complexes of some of the active site mutants with the coenzyme hardly allow the relative movement of isoalloxazine and nicotinamide rings along the HT reaction. The architecture of the WT FNR active site precisely contributes to reduce the stacking probability between the isoalloxazine and nicotinamide rings in the catalytically competent complex, modulating the angle and distance between the N5 of the FAD isoalloxazine and the C4 of the coenzyme nicotinamide to values that ensure efficient HT processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号