首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lung cancer is the leading cause of cancer-related death among both men and women every year, mainly due to metastasis. Although natural compound deguelin has been reported to inhibited cell migration and invasion in various cancer cells, the details of this regulation progress remain to be fully elucidated. In this study, we investigated the underlying mechanism of deguelin-suppressed metastasis of non-small cell lung cancer (NSCLC) cells. Our results demonstrate that deguelin inhibits NSCLC cell migration, invasion, and metastasis both in vitro and in vivo. These inhibitory effects of deguelin were mediated by suppressing of Cathepsin Z (CtsZ) expression and interrupting the interaction of CtsZ with integrin β3. Moreover, deguelin inhibits the activation of CtsZ downstream FAK/Src/Paxillin signaling. Knockdown of CtsZ mimicked the effect of deguelin on NSCLC cells migration and invasion. Our study reveals that deguelin exerts its anti-metastatic effect both in vitro and in vivo is partly dependent on the suppression of CtsZ signaling. Deguelin would be a potential anti-metastasis agent against NSCLC.  相似文献   

2.
The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB1 receptors could induce a non-invasive phenotype in breast metastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB1 antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB1 receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB1 receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo.  相似文献   

3.
4.
β-Mangostin is a natural mangostin with potent anticancer activity against various cancers. In this study, we further explored the anticancer activity of β-mangostin on cervical cancer cells. β-Mangostin did not affect cell viability and cell cycle distribution in HeLa and SiHa cells; however, it dose-dependently inhibited the migration and invasion of both the human cervical cancer cell lines. In addition, we observed that β-mangostin suppressed the expression of integrin αV and β3 and the downstream focal adhesion kinase/Src signaling. We also found that Snail was involved in the β-mangostin inhibited cell migration and invasion of HeLa cell. Then, our findings showed that β-mangostin reduced both nuclear translocation and messenger RNA expression of AP-1 and demonstrated that AP-1 could target to the Snail promoter and induce Snail expression. Kinase cascade analysis and reporter assay showed that JNK2 was involved in the inhibition of AP-1/Snail axis by β-mangostin in HeLa cells. These results indicate that β-mangostin can inhibit the mobility and invasiveness of cervical cancer cells, which may attribute to the suppression of both integrin/Src signaling and JNK2-mediated AP-1/Snail axis. This suggests that β-mangostin has potential antimetastatic potential against cervical cancer cells.  相似文献   

5.
Lung cancer remains a leading cause of death due to its metastasis to distant organs. We have examined the effect of honokiol, a bioactive constituent from the Magnolia plant, on human non-small cell lung cancer (NSCLC) cell migration and the molecular mechanisms underlying this effect. Using an in vitro cell migration assay, we found that treatment of A549, H1299, H460 and H226 NSCLC cells with honokiol resulted in inhibition of migration of these cells in a dose-dependent manner, which was associated with a reduction in the levels of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). Celecoxib, a COX-2 inhibitor, also inhibited cell migration. Honokiol inhibited PGE2-enhanced migration of NSCLC cells, inhibited the activation of NF-κB/p65, an upstream regulator of COX-2, in A549 and H1299 cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-κB, also inhibited migration of NSCLC cells. PGE2 has been shown to activate β-catenin signaling, which contributes to cancer cell migration. Therefore, we checked the effect of honokiol on β-catenin signaling. It was observed that treatment of NSCLC cells with honokiol degraded cytosolic β-catenin, reduced nuclear accumulation of β-catenin and down-regulated matrix metalloproteinase (MMP)-2 and MMP-9, which are the down-stream targets of β-catenin and play a crucial role in cancer cell metastasis. Honokiol enhanced: (i) the levels of casein kinase-1α, glycogen synthase kinase-3β, and (ii) phosphorylation of β-catenin on critical residues Ser45, Ser33/37 and Thr41. These events play important roles in degradation or inactivation of β-catenin. Treatment of celecoxib also reduced nuclear accumulation of β-catenin in NSCLC cells. FH535, an inhibitor of Wnt/β-catenin pathway, inhibited PGE2-enhanced cell migration of A549 and H1299 cells. These results indicate that honokiol inhibits non-small cell lung cancer cells migration by targeting PGE2-mediated activation of β-catenin signaling.  相似文献   

6.
Distant metastasis is the main cause of death in non-small cell lung cancer (NSCLC) patients. The mechanism of metastasis-associated protein 1(MTA1) in NSCLC has not been fully elucidated. This study aimed to reveal the mechanism of MTA1 in the invasion and metastasis of NSCLC.Bioinformatics analysis and our previous results showed that MTA1 was highly expressed in NSCLC tissues and correlated with tumor progression. Knockout of MTA1 by CRISPR/Cas9 significantly inhibited the migration and invasion of H1299 cells, but enhanced cell adhesion. Stable overexpression of MTA1 by lentivirus transfection had opposite effects on migration, invasion and adhesion of A549 cells. The results of in vivo experiments in nude mouse lung metastases model confirmed the promotion of MTA1 on invasion and migration. Tight junction protein 1 (TJP1) was identified by immunoprecipitation and mass spectrometry as an interacting protein of MTA1 involved in cell adhesion. MTA1 inhibited the expression level of TJP1 protein and weakened the tight junctions between cells. More importantly, the rescue assays confirmed that the regulation of MTA1 on cell adhesion, migration and invasion was partially attenuated by TJP1.In Conclusion, MTA1 inhibits the expression level of TJP1 protein co-localized in the cytoplasm and membrane of NSCLC cells, weakens the tight junctions between cells, and changes the adhesion, migration and invasion capabilities of cells, which may be the mechanism of MTA1 promoting the invasion and metastasis of NSCLC. Thus, targeting the MTA1-TJP1 axis may be a promising strategy for inhibiting NSCLC metastasis.  相似文献   

7.
Lung cancer is an significant cause of death worldwide, and non–small-cell lung cancer (NSCLC) is the most common type of lung cancer. MicroRNAs (miRNAs) have been identified to play key roles in NSCLC development. Recently, it has been reported that miR-605-5p is a cancer-related miRNA in several types of tumors. In this study, we study the role of miR-605-5p in NSCLC cells. We find that miR-605-5p is upregulated in NSCLC cells. Overexpression of miR-605-5p significantly promotes lung cancer invasion and migration in H460 and H1299 cells. Besides this, miR-605-5p also promotes lung cancer cell carcinoma proliferation and metastasis in vivo. However, downregulation of miR-605-5p inhibits cell invasion and migration by inhibiting lung cancer cell carcinoma proliferation and metastasis. In addition, the luciferase report assay identifies 3′-untranslated region tumor necrosis factor α-induced protein 3 (TNFAIP3) as a target of miR-605-5p. Silencing of TNFAIP3 promotes invasion and proliferation in lung cancer. In addition, the knockdown of TNFAIP3 restores the significant decrease in invasion and proliferation in miR-605-5p-inhibitor–transfected lung cancer cells. In conclusion, miR-605-5p promotes invasion and proliferation by targeting TNFAIP3 in NSCLC, and may provide possible biomarkers for NSCLC therapy.  相似文献   

8.
Intracellular polyamine levels are highly regulated by the activity of ornithine decarboxylase (ODC), which catalyzes the first rate-limiting reaction in polyamine biosynthesis, producing putrescine, which is subsequently converted to spermidine and spermine. We have shown that polyamines regulate proliferation, migration, and apoptosis in intestinal epithelial cells. Polyamines regulate key signaling events at the level of the EGFR and Src. However, the precise mechanism of action of polyamines is unknown. In the present study, we demonstrate that ODC localizes in lamellipodia and in adhesion plaques during cell spreading. Spermine regulates EGF-induced migration by modulating the interaction of the EGFR with Src. The EGFR interacted with integrin β3, Src, and focal adhesion kinase (FAK). Active Src (pY418-Src) localized with FAK during spreading and migration. Spermine prevented EGF-induced binding of the EGFR with integrin β3, Src, and FAK. Activation of Src and FAK was necessary for EGF-induced migration in HEK293 cells. EGFR-mediated Src activation in live HEK293 cells using a FRET based Src reporter showed that polyamine depletion significantly increased Src kinase activity. In vitro binding studies showed that spermine directly binds Src, and preferentially interacts with the SH2 domain of Src. The physical interaction between Src and the EGFR was severely attenuated by spermine. Therefore, spermine acts as a molecular switch in regulating EGFR-Src coupling both physically and functionally. Upon activation of the EGFR, integrin β3, FAK and Src are recruited to EGFR leading to the trans-activation of both the EGFR and Src and to the Src-mediated phosphorylation of FAK. The activation of FAK induced Rho-GTPases and subsequently migration. This is the first study to define mechanistically how polyamines modulate Src function at the molecular level.  相似文献   

9.
Migration is a complex process that, besides its various physiological functions in embryogenesis and adult tissues, plays a crucial role in cancer cell invasion and metastasis. The focus of this study is the involvement and collaboration of Akt, focal adhesion kinase (FAK), and Src kinases in migration and invasiveness of colorectal cancer cells. We show that all three kinases can be found in one protein complex; nevertheless, the interaction between Akt and Src is indirect and mediated by FAK. Interestingly, induced Akt signaling causes an increase in tyrosine phosphorylation of FAK, but this increase is attenuated by the Src inhibitor SU6656. We also show that active Akt strongly stimulates cell migration, but this phenomenon is fully blocked by FAK knockdown or partly by inhibition of Src kinase. In addition, we found that all three kinases were indispensable for the successful invasion of colorectal cancer cells. Altogether, the presented data bring new insights into the mechanism how the phosphatidylinositol-3-kinase (PI3-K)/Akt pathway can influence migration of colorectal adenocarcinoma cells. Because FAK is indispensable for cell movements and functions downstream of Akt, our results imply FAK kinase as a potential key molecule during progression of tumors with active PI3-K/Akt signaling.  相似文献   

10.
Cell migration is a critical mechanism controlling tissue morphogenesis, epithelial wound healing and tumor metastasis. Migrating cells depend on orchestrated remodeling of the plasma membrane and the underlying actin cytoskeleton, which is regulated by the spectrin-adducin-based membrane skeleton. Expression of adducins is altered during tumorigenesis, however, their involvement in metastatic dissemination of tumor cells remains poorly characterized. This study investigated the roles of α-adducin (ADD1) and γ-adducin (ADD3) in regulating migration and invasion of non-small cell lung cancer (NSCLC) cells. ADD1 was mislocalized, whereas ADD3 was markedly downregulated in NSCLC cells with the invasive mesenchymal phenotype. CRISPR/Cas9-mediated knockout of ADD1 and ADD3 in epithelial-type NSCLC and normal bronchial epithelial cells promoted their Boyden chamber migration and Matrigel invasion. Furthermore, overexpression of ADD1, but not ADD3, in mesenchymal-type NSCLC cells decreased cell migration and invasion. ADD1-overexpressing NSCLC cells demonstrated increased adhesion to the extracellular matrix (ECM), accompanied by enhanced assembly of focal adhesions and hyperphosphorylation of Src and paxillin. The increased adhesiveness and decreased motility of ADD1-overexpressing cells were reversed by siRNA-mediated knockdown of Src. By contrast, the accelerated migration of ADD1 and ADD3-depleted NSCLC cells was ECM adhesion-independent and was driven by the upregulated expression of pro-motile cadherin-11. Overall, our findings reveal a novel function of adducins as negative regulators of NSCLC cell migration and invasion, which could be essential for limiting lung cancer progression and metastasis.  相似文献   

11.
Src family kinases (SFKs) are crucial for signaling through a variety of cell surface receptors, including integrins. There is evidence that integrin activation induces focal adhesion kinase (FAK) autophosphorylation at Y397 and that Src binds to and is activated by FAK to carry out subsequent phosphorylation events. However, it has also been suggested that Src functions as a scaffolding molecule through its SH2 and SH3 domains and that its kinase activity is not necessary. To examine the role of SFKs in integrin signaling, we have expressed various Src molecules in fibroblasts lacking other SFKs. In cells plated on fibronectin, FAK could indeed autophosphorylate at Y397 independently of Src but with lower efficiency than when Src was present. This step was promoted by kinase-inactive Src, but Src kinase activity was required for full rescue. Src kinase activity was also required for phosphorylation of additional sites on FAK and for other integrin-directed functions, including cell migration and spreading on fibronectin. In contrast, Src mutations in the SH2 or SH3 domain greatly reduced binding to FAK, Cas, and paxillin but had little effect on tyrosine phosphorylation or biological assays. Furthermore, our indirect evidence indicates that Src kinase activity does not need to be regulated to promote cell migration and FAK phosphorylation. Although Src clearly plays important roles in integrin signaling, it was not concentrated in focal adhesions. These results indicate that the primary role of Src in integrin signaling is as a kinase. Indirect models for Src function are proposed.  相似文献   

12.
Endochondral skeletal development begins with the formation of a cartilaginous template where mesenchymal cells aggregate and increase in density prior to their overt differentiation into chondrocytes. Prechondrogenic condensation, in which mesenchymal cells aggregate, requires cell migration and proliferation. However, the molecular mechanisms promoting this aggregation remain to be elucidated. Here, we report that rottlerin suppresses migration and cell surface expression of integrin β1 in chondrogenic progenitors. Perturbation of integrin β1 function using an anti-integrin β1 blocking antibody suppressed the migration of wing bud mesenchymal cells. Furthermore, phosphorylation levels of Src and focal adhesion kinase (FAK) were decreased by rottlerin treatment. Cell treatment with PP2, an inhibitor of Src family kinase, or electroporation of FAK specific siRNA, suppressed cell migration in a wound-healing assay. Cells treated with rottlerin showed decreased phosphorylation of Akt, independent of PKCδ inhibition. In addition, an Akt inhibitor suppressed the migration of chick limb bud mesenchymal cells. Taken together, our results point to the novel finding that rottlerin may act as a negative regulator for cell migration, an essential step for prechondrogenic condensation, by regulating integrin β1 signaling at focal adhesion complexes via modulation of Akt activity.  相似文献   

13.
To search for factors promoting bone fracture repair, we investigated the effects of extracorporeal shock wave (ESW) on the adhesion, spreading, and migration of osteoblasts and its specific underlying cellular mechanisms. After a single period of stimulation by 10 kV (500 impulses) of shock wave (SW), the adhesion rate was increased as compared with the vehicle control. The data from both wound healing and transwell tests confirmed an acceleration in the migration of osteoblasts by SW treatment. RT-PCR, flow cytometry, and Western blotting showed that SW rapidly increased the surface expression of α5 and β1 subunit integrins, indicating that integrin β1 acted as an early signal for ESW-induced osteoblast adhesion and migration. It has also been found that a significant elevation occurred in the expression of phosphorylated β-catenin and focal adhesion kinase (FAK) at the site of tyrosine 397 in response to SW stimulation after the increasing expression of the integrin β1 molecule. When siRNAs of integrin α5 and β1 subunit were added, the level of FAK phosphorylation elevated by SW declined. Interestingly, the adhesion and migration of osteoblasts were decreased when these siRNA reagents as well as the ERK1/2 signaling pathway inhibitors, U0126 and PD98059, were present. Further studies demonstrated that U0126 could inhibit the downstream integrin-dependent signaling pathways, such as the FAK signaling pathway, whereas it had no influence on the synthesis of integrin β1 molecule. In conclusion, these data suggest that ESW promotes the adhesion and migration of osteoblasts via integrin β1-mediated expression of phosphorylated FAK at the Tyr-397 site; in addition, ERK1/2 are also important for osteoblast adhesion, spreading, migration, and integrin expression.  相似文献   

14.
Non-small-cell lung cancer (NSCLC) accounts for approximately 80% of lung cancer cases. TBC1D23, a member of the TBC/RABGAP family, is widely expressed in human tissues; however, its role in NSCLC is currently unknown. Immunohistochemical analysis was conducted on 173 paraffin-embedded lung tissue sections from patients with NSCLC from 2014 to 2018 at the First Affiliated Hospital of China Medical University. MTT, colony formation assay, cell cycle assay, scratch assay, transwell assay, Western blotting and real-time PCR were employed on multiple NSCLC cell lines modified to knock down or overexpress TBC1D23/RAB11A. Immunoprecipitation, immunoprecipitation-mass spectrometry, immunofluorescence and flow cytometry were performed to explore the interaction between TBC1D23 and RAB11A and TBC1D23 involvement in the interaction between RAB11A and β1 integrin in the para-nucleus. TBC1D23 was correlated with tumour size, differentiation degree, metastasis, TNM stage and poor prognosis. TBC1D23 was involved in the interaction between RAB11A and β1 integrin in the para-nucleus, thus activating the β1 integrin/FAK/ERK signalling pathway to promote NSCLC. Furthermore, TBC1D23 promoted NSCLC progression by inducing cell proliferation, migration and invasion. This study indicated the relationship between TBC1D23 expression and the adverse clinicopathological characteristics of patients with NSCLC, suggesting that TBC1D23 may be an important target for NSCLC treatment.  相似文献   

15.
Cell adhesion and migration play important roles in physiological and pathological states, including embryonic development and cancer invasion and metastasis. The type I transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) is expressed mainly in brain and prostate and its expression is deregulated in prostate cancer. We have previously shown that TMEFF2 can function as a tumor suppressor by inhibiting cell migration and invasion of prostate cells. However, the molecular mechanisms involved in this inhibition are not clear. In this study we demonstrate that TMEFF2 affects cell adhesion and migration of prostate cancer cells and that this effect correlates with changes in integrin expression and RhoA activation. Deletion of a 13 basic-rich amino acid region in the cytoplasmic domain of TMEFF2 prevented these effects. Overexpression of TMEFF2 reduced cell attachment and migration on vitronectin and caused a concomitant decrease in RhoA activation, stress fiber formation and expression of αv, β1 and β3 integrin subunits. Conversely, TMEFF2 interference in 22Rv1 prostate cancer cells resulted in an increased integrin expression. Results obtained with a double TRAMP/TMEFF2 transgenic mouse also indicated that TMEFF2 expression reduced integrin expression in the mouse prostate. In summary, the data presented here indicate an important role of TMEFF2 in regulating cell adhesion and migration that involves integrin signaling and is mediated by its cytoplasmic domain.  相似文献   

16.
Reticulocalbin1 (RCN1) is implicated in tumorigenesis and tumour progression. However, whether RCN1-mediated bone metastasis of non-small cell lung cancer (NSCLC) cells was elusive. Here, we assessed the effect of osteoblast-conditioned medium (CM) on proliferation and migration of NSCLC cell line, NCI-H1299 and NCI-H460 cells, and identified the soluble mediators in CMs from osteoblasts and NSCLC cells using MTT, Clonogenicity, Transwell, wound healing, RT-PCR, and Western blotting assays, and LC-MS/MS analysis, respectively. Furthermore, the role of RCN1 was investigated in NSCLC cells cultured with or without osteoblast-CM. Tumour growth and bone resorption were measured in a nude mouse model bearing NCI-H1299 cells transduced with shRNA/RCN1 vector using in vivo imaging technique and micro-CT. The results showed that RCN1 with a higher abundance in osteoblast-CM, which was present in extracellular vesicles (EVs), enhanced RCN1 expression in NSCLC cells. Osteoblast-CM partially offset the inhibitory effect of RCN1 depletion on proliferation and migration of NSCLC cells. RCN1 depletion-induced endoplasmic reticulum (ER) stress caused by increasing GRP78, CHOP, IRE1α, p-IRE1α, p-PERK and p-JNK, which was positively regulated by self-induced autophagy, contributed to suppression of proliferation and migration in NCI-H1299 cells. Therefore, osteoblasts produced RCN1 to transfer into NSCLC cells partially through EVs, facilitating proliferation and migration of NSCLC cells via blocking ER stress. RCN1 could be required for proliferation and migration of NSCLC cells regulated by osteoblast-CM.  相似文献   

17.
KM Lee  JH Ju  K Jang  W Yang  JY Yi  DY Noh  I Shin 《Cellular signalling》2012,24(11):2132-2142
To determine the role of CD24 in breast cancer cells, we knocked down CD24 in MCF-7 human breast cancer cells by retroviral delivery of shRNA. MCF-7 cells with knocked down CD24 (MCF-7 hCD24 shRNA) exhibited decreased cell proliferation and cell adhesion as compared to control MCF-7 mCD24 shRNA cells. Decreased proliferation of MCF-7 hCD24 shRNA cells resulted from the inhibition of cell cycle progression from G1 to S phase. The specific inhibition of MEK/ERK signaling by CD24 ablation might be responsible for the inhibition of cell proliferation. Phosphorylation of Src/FAK and TGF-β1-mediated epithelial to mesenchymal transition was also down-regulated in MCF-7 hCD24 shRNA cells. Reduced Src/FAK activity was caused by a decrease in integrin β1 bound with CD24 and subsequent destabilization of integrin β1. Our results suggest that down-regulation of Raf/MEK/ERK signaling via Src/FAK may be dependent on integrin β1 function and that this mechanism is largely responsible for the CD24 ablation-induced decreases in cell proliferation and epithelial to mesenchymal transition.  相似文献   

18.
Fibronectin (FN) is the foremost proliferation‐associated extracellular matrix component promoting cell adhesion, migration, and survival. We examined the effect of FN on cell proliferation and the related signaling pathways in mouse embryonic stem (ES) cells. FN increased integrin β1, Src, focal adhesion kinase (FAK), and caveolin‐1 phosphorylation levels in a time‐dependent manner. Phosphorylation of Src, FAK, and caveolin‐1 was attenuated by integrin β1 neutralizing antibody. Integrin β1, Src, and FAK coimmunoprecipitated with caveolin‐1 in the presence of FN. In addition, FN increased RhoA and Rho kinase activation, which were completely blocked by PP2, FAK small interfering RNA (siRNA), caveolin‐1 siRNA, or the caveolar disruptor methyl‐β‐cyclodextrin (MβCD). FN also increased phosphorylation of Akt and ERK 1/2, which were significantly blocked by either FAK siRNA, caveolin‐1 siRNA, MβCD, GGTI‐286 (RhoA inhibitor), or Y‐27632 (Rho kinase inhibitor). FN‐induced increase of protooncogenes (c‐fos, c‐myc, and c‐Jun) and cell‐cycle regulatory proteins (cyclin D1/CDK4 and cyclin E/CDK2) expression levels were attenuated by FAK siRNA or caveolin‐1 siRNA. Furthermore, inhibition of each pathway such as integrin β1, Src, FAK, caveolin‐1, RhoA, Akt, and ERK 1/2 blocked FN‐induced [3H]‐thymidine incorporation. We conclude that FN stimulates mouse ES cell proliferation via RhoA‐PI3K/Akt‐ERK 1/2 pathway through caveolin‐1 phosphorylation. J. Cell. Physiol. 226: 267–275, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
α4-laminins, such as laminins 411 and 421, are mesenchymal laminins expressed by blood and lymphatic vessels and some tumor cells. Laminin-411 promotes migration of leukocytes and endothelial cells, but the effect of this laminin and laminin-421 on tumor cells is poorly understood. In the present study, we demonstrate that laminin-411 and, to a greater extent, laminin-421 significantly promote migration of tumor cells originated from melanomas, gliomas and different carcinomas via α6β1 integrin. In solid-phase binding assays, both laminins similarly bound α6β1 integrin but only laminin-421, among several laminin isoforms, readily bound MCAM (CD146), a cell-surface adhesion molecule strongly associated with tumor progression. Accordingly, a function-blocking mAb to MCAM inhibited tumor cell migration on laminin-421 but not on laminins 411 or 521. In tumor tissues, melanoma cells co-expressed MCAM, laminin α4, β1, β2 and γ1 chains, and integrin α6 and β1 chains. The present data highlight the novel role of α4-laminins in tumor cell migration and identify laminin-421 as a primary ligand for MCAM and a putative mediator of tumor invasion and metastasis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号