首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
Skin fibrosis, which is characterized by fibroblast proliferation and increased extracellular matrix, has no effective treatment. An increasing number of studies have shown that microRNAs (miRNAs/miRs) participate in the mechanism of skin fibrosis, such as in limited cutaneous systemic sclerosis and pathological scarring. The objective of the present study was to determine the role of miR-411-3p in bleomycin (BLM)-induced skin fibrosis and skin fibroblast transformation. Using Western blot analysis and real-time quantitative polymerase chain reaction assess the expression levels of miR-411-3p, collagen (COLI) and transforming growth factor (TGF)-β/Smad ubiquitin regulatory factor (Smurf)-2/Smad signalling factors both in vitro and in vivo with or without BLM. To explore the regulatory relationship between miR-411-3p and Smurf2, we used the luciferase reporter assay. Furthermore, miR-411-3p overexpression was identified in vitro and in vivo via transfection with Lipofectamine 2000 reagent and injection. Finally, we tested the dermal layer of the skin using haematoxylin and eosin and Van Gieson's staining. We found that miR-411-3p expression was decreased in bleomycin (BLM)-induced skin fibrosis and fibroblasts. However, BLM accelerated transforming growth factor (TGF)-β signalling and collagen production. Overexpression of miR-411-3p inhibited the expression of collagen, F-actin and the TGF-β/Smad signalling pathway factors in BLM-induced skin fibrosis and fibroblasts. In addition, miR-411-3p inhibited the target Smad ubiquitin regulatory factor (Smurf)-2. Furthermore, Smurf2 was silenced, which attenuated the expression of collagen via suppression of the TGF-β/Smad signalling pathway. We demonstrated that miR-411-3p exerts antifibrotic effects by inhibiting the TGF-β/Smad signalling pathway via targeting of Smurf2 in skin fibrosis.  相似文献   

3.
Platelet derived growth factor (PDGF) is involved in wound healing in various organ systems. Its potential role in the context of peritoneal injury following long-term peritoneal dialysis is unclear. We used an adenovirus expressing the B chain of PDGF (AdPDGF-B) to assess its effect on pro-fibrotic pathways in the peritoneal membrane. To assess the transforming growth factor (TGF) β independent effects of PDGF, we over-expressed PDGF-B in the peritoneum of either wild-type mice (Smad3+/+) or those with a deletion of the TGFβ signaling protein Smad3 (Smad3?/?). PDGF-B induced sustained angiogenesis in both Smad3+/+ and Smad3?/? mice. Despite increased collagen gene expression, collagen accumulation was transient and fibrogenesis was associated with induction of collagenase activity. We observed epithelial to mesenchymal transition (EMT) involving the peritoneal mesothelial cells, as shown by increased SNAIL and decreased E-Cadherin expression with evidence of mesothelial cells expressing both epithelial and mesenchymal markers. Unlike TGFβ-induced EMT, PDGF-B exposure did not lead to mobilization of the mesothelial cells; they remained as a single monolayer throughout the observation period. This “non-invasive” EMT phenomenon is a novel finding and may have implications concerning the role of EMT in peritoneal fibrosis and injury to other organ systems. The observed effects were similar in Smad3?/? and Smad3+/+ animals, suggesting that the PDGF-B effects were independent of TGFβ or Smad signaling.  相似文献   

4.
5.
Members of the bone morphogenetic protein (BMP) superfamily, including transforming growth factor-betas (TGFβ), regulate multiple aspects of chondrogenesis. Smad7 is an intracellular inhibitor of BMP and TGFβ signaling. Studies in which Smad7 was overexpressed in chondrocytes demonstrated that Smad7 can impact chondrogenesis by inhibiting BMP signaling. However, whether Smad7 is actually required for endochondral ossification in vivo is unclear. Moreover, whether Smad7 regulates TGFβ in addition to BMP signaling in developing cartilage is unknown. In this study, we found that Smad7 is required for both axial and appendicular skeletal development. Loss of Smad7 led to impairment of the cell cycle in chondrocytes and to defects in terminal maturation. This phenotype was attributed to upregulation of both BMP and TGFβ signaling in Smad7 mutant growth plates. Moreover, Smad7−/− mice develop hypocellular cores in the medial growth plates, associated with elevated HIF1α levels, cell death, and intracellular retention of types II and X collagen. Thus, Smad7 may be required to mediate cell stress responses in the growth plate during development.  相似文献   

6.
Cardiac fibrosis is characterized by aberrant proliferation of cardiac fibroblasts and exaggerated deposition of extracellular matrix (ECM) in the myocardial interstitial, and ultimately impairs cardiac function. It is still controversial whether microRNA-21 (miR-21) participates in the process of cardiac fibrosis. Our previous study confirmed that transforming growth factor beta receptor III (TGFβRIII) is a negative regulator of TGF-β pathway. Here, we aimed to decipher the relationship between miR-21 and TGFβRIII in the pathogenic process of myocardial fibrosis. We found that TGF-β1 and miR-21 were up-regulated, whereas TGFβRIII was down-regulated in the border zone of mouse hearts in response to myocardial infarction. After transfection of miR-21 into cardiac fibroblasts, TGFβRIII expression was markedly reduced and collagen content was increased. And, luciferase results confirmed that TGFβRIII was a target of miR-21. It suggests that up-regulation of miR-21 could increase the collagen content and at least in part through inhibiting TGFβRIII. Conversely, we also confirmed that overexpression of TGFβRIII could inhibit the expression of miR-21 and reduce collagen production in fibroblasts. Further studies showed that overexpression of TGFβRIII could also deactivate TGF-β1 pathway by decreasing the expression of TGF-β1 and phosphorylated-Smad3 (p-Smad3). TGF-β1 has been proven as a positive regulator of miR-21. Taken together, we found a novel reciprocal loop between miR-21 and TGFβRIII in cardiac fibrosis caused by myocardial infarction in mice, and targeting this pathway could be a new strategy for the prevention and treatment of myocardial remodeling.  相似文献   

7.
Obstructive nephropathy is the end result of a variety of diseases that block drainage from the kidney(s). Transforming growth factor‐β1 (TGF‐β1)/Smad3‐driven renal fibrosis is the common pathogenesis of obstructive nephropathy. In this study, we identified petchiether A (petA), a novel small‐molecule meroterpenoid from Ganoderma, as a potential inhibitor of TGF‐β1‐induced Smad3 phosphorylation. The obstructive nephropathy was induced by unilateral ureteral obstruction (UUO) in mice. Mice received an intraperitoneal injection of petA/vehicle before and after UUO or sham operation. An in vivo study revealed that petA protected against renal inflammation and fibrosis by reducing the infiltration of macrophages, inhibiting the expression of proinflammatory cytokines (interleukin‐1β and tumour necrosis factor‐α) and reducing extracellular matrix deposition (α‐smooth muscle actin, collagen I and fibronectin) in the obstructed kidney of UUO mice; these changes were associated with suppression of Smad3 and NF‐κB p65 phosphorylation. Petchiether A inhibited Smad3 phosphorylation in vitro and down‐regulated the expression of the fibrotic marker collagen I in TGF‐β1‐treated renal epithelial cells. Further, we found that petA dose‐dependently suppressed Smad3‐responsive promoter activity, indicating that petA inhibits gene expression downstream of the TGF‐β/Smad3 signalling pathway. In conclusion, our findings suggest that petA protects against renal inflammation and fibrosis by selectively inhibiting TGF‐β/Smad3 signalling.  相似文献   

8.
9.
Previous studies showed that prostacyclin inhibited fibrosis. However, both receptors of prostacyclin, prostacyclin receptor (IP) and peroxisome proliferator-activated receptor (PPAR), are abundant in cardiac fibroblasts. Here we investigated which receptor was vital in the anti-fibrosis effect of prostacyclin. In addition, the possible mechanism involved in protective effects of prostacyclin against cardiac fibrosis was also studied. We found that beraprost, a prostacyclin analogue, inhibited angiotensin II (Ang II)-induced neonatal rat cardiac fibroblast proliferation in a concentration-dependent and time-dependent manner. Beraprost also suppressed Ang II-induced collagen I mRNA expression and protein synthesis in cardiac fibroblasts. After IP expression was knocked down by siRNA, Ang II-induced proliferation and collagen I synthesis could no longer be rescued by beraprost. However, treating cells with different specific inhibitors of PPAR subtypes prior to beraprost and Ang II stimulation, all of the above attenuating effects of beraprost were still available. Moreover, beraprost significantly blocked transforming growth factor β (TGF β) expression as well as Smad2 phosphorylation and reduced Smad-DNA binding activity. Beraprost also increased phosphorylation of cAMP response element binding protein (CREB) at Ser133 in the nucleus. Co-immunoprecipitation analysis revealed that beraprost increased CREB but decreased Smad2 binding to CREB-binding protein (CBP) in nucleus. In conclusion, beraprost inhibits cardiac fibroblast proliferation by activating IP and suppressing TGF β-Smad signal pathway.  相似文献   

10.
Skin fibrosis, which is characterized by fibroblast proliferation and increased extracellular matrix, has no effective treatment. An increasing number of studies have shown that microRNAs (miRNAs/miRs) participate in the mechanism of skin fibrosis, such as in limited cutaneous systemic sclerosis and pathological scarring. The objective of the present study was to determine the role of miR‐411‐3p in bleomycin (BLM)‐induced skin fibrosis and skin fibroblast transformation. Using Western blot analysis and real‐time quantitative polymerase chain reaction assess the expression levels of miR‐411‐3p, collagen (COLI) and transforming growth factor (TGF)‐β/Smad ubiquitin regulatory factor (Smurf)‐2/Smad signalling factors both in vitro and in vivo with or without BLM. To explore the regulatory relationship between miR‐411‐3p and Smurf2, we used the luciferase reporter assay. Furthermore, miR‐411‐3p overexpression was identified in vitro and in vivo via transfection with Lipofectamine 2000 reagent and injection. Finally, we tested the dermal layer of the skin using haematoxylin and eosin and Van Gieson''s staining. We found that miR‐411‐3p expression was decreased in bleomycin (BLM)‐induced skin fibrosis and fibroblasts. However, BLM accelerated transforming growth factor (TGF)‐β signalling and collagen production. Overexpression of miR‐411‐3p inhibited the expression of collagen, F‐actin and the TGF‐β/Smad signalling pathway factors in BLM‐induced skin fibrosis and fibroblasts. In addition, miR‐411‐3p inhibited the target Smad ubiquitin regulatory factor (Smurf)‐2. Furthermore, Smurf2 was silenced, which attenuated the expression of collagen via suppression of the TGF‐β/Smad signalling pathway. We demonstrated that miR‐411‐3p exerts antifibrotic effects by inhibiting the TGF‐β/Smad signalling pathway via targeting of Smurf2 in skin fibrosis.  相似文献   

11.
Response gene to complement 32 (RGC-32) is a downstream target of transforming growth factor-β (TGF-β). TGF-β is known to play a pathogenic role in renal fibrosis. In this study, we investigated RGC-32 function in renal fibrosis following unilateral ureteral obstruction (UUO) in mice, a model of progressive tubulointerstitial fibrosis. RGC-32 is normally expressed only in blood vessels of mouse kidney. However, UUO induces RGC-32 expression in renal interstitial cells at the early stage of kidney injury, suggesting that RGC-32 is involved in interstitial fibroblast activation. Indeed, expression of smooth muscle α-actin (α-SMA), an indicator of fibroblast activation, is limited to the interstitial cells at the early stage, and became apparent later in both interstitial and tubular cells. RGC-32 knockdown by shRNA significantly inhibits UUO-induced renal structural damage, α-SMA expression and collagen deposition, suggesting that RGC-32 is essential for the onset of renal interstitial fibrosis. In vitro studies indicate that RGC-32 mediates TGF-β-induced fibroblast activation. Mechanistically, RGC-32 interacts with Smad3 and enhances Smad3 binding to the Smad binding element in α-SMA promoter as demonstrated by DNA affinity assay. In the chromatin setting, Smad3, but not Smad2, binds to α-SMA promoter in fibroblasts. RGC-32 appears to be essential for Smad3 interaction with the promoters of fibroblast activation-related genes in vivo. Functionally, RGC-32 is crucial for Smad3-mediated α-SMA promoter activity. Taken together, we identify RGC-32 as a novel fibrogenic factor contributing to the pathogenesis of renal fibrosis through fibroblast activation.  相似文献   

12.
Pancreatic fibrosis is the hallmark of chronic pancreatitis, currently an incurable disease. Pancreatitis fibrosis is caused by deposition of extracellular matrix (ECM) and the underlying pathological mechanism remains unclear. In addition to its broad biological activities, TGF-β is a potent pro-fibrotic factor and many in vitro studies using cell systems have implicated a functional role of TGF-β in the pathogenesis of pancreatic fibrosis. We analyzed the in vivo role of TGF-β pathway in pancreatic fibrosis in this study. Smad7, an intracellular inhibitory protein that antagonizes TGF-β signaling, was specifically expressed in the pancreas using a transgenic mouse model. Chronic pancreatitis was induced in the mouse with repeated administration of cerulein. Smad7 expression in the pancreas was able to significantly inhibit cerulein-induced pancreatic fibrosis. Consistently, the protein levels of collagen I and fibronectin were decreased in the Smad7 transgenic mice. In addition, α-smooth muscle actin, a marker of activated pancreas stellate cells, was reduced in the transgenic mice. Taken together, these data indicate that inhibition of TGF-β signaling by Smad7 is able to protect cerulein-induced pancreatic fibrosis in vivo.  相似文献   

13.
14.
Cardiac fibroblasts (CFs) can over-proliferate during the progression of cardiac fibrosis, accompanied by a net accumulation of extracellular matrix proteins. Based on the profibrotic actions of transforming growth factor beta 1 (TGFβ1), investigating the mechanisms of TGFβ1 function in CFs may provide new directions to treatment for cardiac fibrosis. microRNAs (miRNAs) could control CFs proliferation or remodeling via binding to 3′-untranslated region of messenger RNA (mRNA) to negatively regulate gene expression. In the present study, we downloaded several microarray analyses results from GEO attempting to identify miRNAs and possible downstream targets that may be involved in TGF-β1 function in CFs and to detect the cellular and molecular functions of the identified miRNA–mRNA axis. Here, we identified miR-675 as a downregulated miRNA by TGFβ1 by bioinformatics analyses and experimental verification. Upon TGFβ1 stimulation, the protein levels of Α-SMAΑ-SMA, collagen I, and POSTN, and the secreted collagen in the cell culture supernatant significantly increased, whereas the miR-675 expression decreased. Smads mediate TGFβ1-induced suppression on miR-675 via binding miR-675 promoter region. miR-675 overexpression could inhibit, whereas miR-675 inhibition could enhance TGFβ1-induced mouse CFs (MCF) remodeling and proliferation. TGFβ receptor 1 (TGFβR1), a critical receptor in TGFβ1/Smad signaling, is a direct downstream target of miR-675. TGFβR1 overexpression significantly reverses the effect of miR-675 overexpression on MCF remodeling and proliferation. In summary, miR-675 targets TGFβR1 to attenuate TGFβ1-induced MCF remodeling and proliferation. We demonstrate a novel mechanism of the Smads/miR-675/TGFβR1 axis modulating TGFβ1-induced MCF remodeling and proliferation.  相似文献   

15.
16.
Mammals respond to a myocardial infarction by irreversible scar formation. By contrast, zebrafish are able to resolve the scar and to regenerate functional cardiac muscle. It is not known how opposing cellular responses of fibrosis and new myocardium formation are spatially and temporally coordinated during heart regeneration in zebrafish. Here, we report that the balance between the reparative and regenerative processes is achieved through Smad3-dependent TGFβ signaling. The type I receptor alk5b (tgfbr1b) is expressed in both fibrotic and cardiac cells of the injured heart. TGFβ ligands are locally induced following cryoinjury and activate the signaling pathway both in the infarct area and in cardiomyocytes in the vicinity of the trauma zone. Inhibition of the relevant type I receptors with the specific chemical inhibitor SB431542 qualitatively altered the infarct tissue and completely abolished heart regeneration. We show that transient scar formation is an essential step to maintain robustness of the damaged ventricular wall prior to cardiomyocyte replacement. Taking advantage of the reversible action of the inhibitor, we dissected the multifunctional role of TGFβ signaling into three crucial processes: collagen-rich scar deposition, Tenascin C-associated tissue remodeling at the infarct-myocardium interface, and cardiomyocyte proliferation. Thus, TGFβ signaling orchestrates the beneficial interplay between scar-based repair and cardiomyocyte-based regeneration to achieve complete heart regeneration.  相似文献   

17.
Galectin-3 is highly expressed in notochordal nucleus pulposus (NP) and thought to play important physiological roles; however, regulation of its expression remains largely unexplored. The aim of the study was to investigate if TGFβ regulates Galectin-3 expression in NP cells. TGFβ treatment resulted in decreased Galectin-3 expression. Bioinformatic analysis using JASPAR and MatInspector databases cross-referenced with published ChIP-Seq data showed nine locations of highly probable Smad3 binding in the LGALS3 proximal promoter. In NP cells, TGFβ treatment resulted in decreased activity of reporters harboring several 5′ deletions of the proximal Galectin-3 promoter. While transfection of NP cells with constitutively active (CA)-ALK5 resulted in decreased promoter activity, DN-ALK5 blocked the suppressive effect of TGFβ on the promoter. The suppressive effect of Smad3 on the Galectin-3 promoter was confirmed using gain- and loss-of-function studies. Transfection with DN-Smad3 or Smad7 blocked TGFβ mediated suppression of promoter activity. We also measured Galectin-3 promoter activity in Smad3 null and wild type cells. Noteworthy, promoter activity was suppressed by TGFβ only in wild type cells. Likewise, stable silencing of Smad3 in NP cells using sh-Smad3 significantly blocked TGFβ-dependent decrease in Galectin-3 expression. Treatment of human NP cells isolated from tissues with different grades of degeneration showed that Galectin-3 expression was responsive to TGF-β-mediated suppression. Importantly, Galectin-3 synergized effects of TNF-α on inflammatory gene expression by NP cells. Together these studies suggest that TGFβ, through Smad3 controls Galectin-3 expression in NP cells and may have implications in the intervertebral disc degeneration.  相似文献   

18.
《Journal of Asia》2021,24(4):1087-1094
Transforming growth factor-beta (TGF-β) signaling pathway plays important roles in embryonic development, cell proliferation and tissue differentiation in vertebrates. Our previous studies demonstrated that TGF-β signal activates Smad1-POU-TFAM and PP2A-Akt pathways to regulate pupal diapause in Helicoverpa armigera. In this study, we investigated the function of TGF-β activates Smad2 pathway in H. armigera. Phylogenetic analysis of H. armigera TGF-β receptor I (TGFβRI), Smad2, Smad4 genes showed high conservation across species. In vitro experiments showed that TGFβRI was localized in the cell membrane where it binds Smad2 leading to the phosphorylation of Smad2. Smad4 was mainly localized in the cytoplasm, and bind to Smad2. Protein expression analysis showed that expression of TGFβRI, Smad4, Smad2, p-Smad2 were lower in diapause-destined pupae compared with nondiapause-destined pupae. Notably, treatment with 20-hydroxyecdysone (20E) increased expression of the above proteins. Inhibition of TGF-β/Smad2 signaling pathway delayed pupal development. These findings indicate that TGF-β/Smad2 pathway is involved in pupal development or diapause in H. armigera.  相似文献   

19.
Pulmonary fibrosis (PF) is chronic and irreversible damage to the lung characterized by fibroblast activation and matrix deposition. Although recently approved novel anti‐fibrotic agents can improve the lung function and survival of patients with PF, the overall outcomes remain poor. In this study, a novel imidazopurine compound, 3‐(2‐chloro‐6‐fluorobenzyl)‐1,6,7‐trimethyl‐1H‐imidazo[2,1‐f]purine‐2,4(3H,8H)‐dione (IM‐1918), markedly inhibited transforming growth factor (TGF)‐β‐stimulated reporter activity and reduced the expression of representative fibrotic markers, such as connective tissue growth factor, fibronectin, collagen and α‐smooth muscle actin, on human lung fibroblasts. However, IM‐1918 neither decreased Smad‐2 and Smad‐3 nor affected p38MAPK and JNK. Instead, IM‐1918 reduced Akt and extracellular signal‐regulated kinase 1/2 phosphorylation increased by TGF‐β. Additionally, IM‐1918 inhibited the phosphorylation of fibroblast growth factor receptors 1 and 3. In a bleomycin‐induced murine lung fibrosis model, IM‐1918 profoundly reduced fibrotic areas and decreased collagen and α‐smooth muscle actin accumulation. These results suggest that IM‐1918 can be applied to treat lung fibrosis.  相似文献   

20.
Bai D  Gao Q  Li C  Ge L  Gao Y  Wang H 《Cellular signalling》2012,24(7):1426-1432
Persistent fibroblast activation in wound repair is believed to be the key reason for fibrosis and transforming growth factor (TGF)β is considered as one of the key mediators for the fibrogenic response, with the detailed mechanism largely unknown. Here we found that TGFβ1 treatment could induce a significant increase of endogenous TGFβ1 expression by enhancing the mRNA stability in cardiac fibroblasts. Further study revealed that TGFβ1 treatment translocated the nuclear HuR into cytoplasm, which in turn bound the ARE in the 3'UTR of TGFβ1 and increased the mRNA stability as seen from the RNA-IP and reporter assay. Knockdown of HuR decreased the endogenous expression of TGFβ1 under exogenous TGFβ1 treatment, simultaneously with the decrease of Col1a, Col3a and fibronectin expression. Our study here established a TGFβ1/HuR feedback circuit regulating the fibrogenic response in fibroblasts, and targeting this feedback loop is of great potential to control fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号