首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostate cancer (PCa) is the most frequent malignancy in the male population of Western countries. Although earlier detection and more active surveillance have improved survival, it is still a challenge how to treat advanced cases. Since androgen receptor (AR) and AR-related signaling pathways are fundamental in the growth of normal and neoplastic prostate cells, targeting androgen synthesis or AR activity constitutes the basis of the current hormonal therapies in PCa. However, resistance to these treatments develops, both by AR-dependent and -independent mechanisms. Thus, alternative therapeutic approaches should be developed to target more efficiently advanced disease. Protein tyrosine phosphatases (PTPs) are direct regulators of the protein- and residue-specific phosphotyrosine (pTyr) content of cells, and dysregulation of the cellular Tyr phosphorylation/dephosphorylation balance is a major driving event in cancer, including PCa. Here, we review the current knowledge on the role of classical PTPs in the growth, differentiation, and survival of epithelial prostate cells, and their potential as important players and therapeutic targets for modulation in PCa.  相似文献   

2.
Prostate cancer (PCa) is one of the most common cancers and the fifth most common reason for cancer deaths in the males. Surgical castration combined with androgen deprivation therapy, antiandrogens, and androgen synthesis inhibitors is the current therapeutic modalities for PCa. These strategies inhibit androgen synthesis or reduce its binding to the androgen receptor (AR) but the development of resistance to these therapies and transient responsiveness are challenging issues in the treatment of this cancer. Deregulation of ARs has a vital role in the initiation and progression of PCa. Also, recent findings imply that micro RNAs (miRNAs) are involved in the evolution of PCa and mediate drug resistance in different cancers. Hence, discovering and targeting miRNAs might represent a novel therapeutic approach. This review paid particular attention to the AR pathway and existing information on the possible roles of miRNAs associated with AR pathway and drug resistance to two second-generation antiandrogens, that is, enzalutamide and abiraterone.  相似文献   

3.
4.
Aberrant androgen receptor (AR) signaling plays a critical role in androgen-dependent prostate cancer (PCa), as well as in castration-resistant PCa (CRPC). Oxidative stress seems to contribute to the tumorigenesis and progression of PCa, as well as the development of CRPC, via activation of AR signaling. This notion is supported by the fact that there is an aberrant or improper regulation of the redox status in these disorders. Additionally, androgen-deprivation-induced oxidative stress seems to be involved in the pathogenesis of several disorders caused by androgen-deprivation therapy (ADT), including osteoporosis, neurodegenerative disease, and cardiovascular disease. Oxidative stress can be suppressed with antioxidants or via a reduction in reactive oxygen species production. Thus, developing new therapeutic agents that reduce oxidative stress might be useful in preventing the conversion of androgen-dependent PCa into CRPC, as well as reducing the adverse effects associated with ADT. The objective of this review is to provide an overview regarding the relationship between oxidative stress and AR signaling in the context of PCa and especially CRPC. Additionally, we discuss the potential use of antioxidant therapies in the treatment of PCa.  相似文献   

5.
6.
7.
Metabolomic studies have proven to provide a unique perspective of the cellular dysfunction developing as a result of prostate cancer (PCa) onset and progression, facilitated primarily by mass spectrometry (MS) and nuclear magnetic resonance (NMR) techniques. PCa develops as an androgen-dependent disease with the expression of the androgen receptor (AR), where patient treatment typically involves androgen ablation therapy. In response, it is theorized that PCa transforms to an androgen-hypersensitive or androgen-independent state, where treatment options are severely reduced. Under the hypothesis that AR stimulation increases the aggressivity of pre-existing PCa, NMR spectroscopy was utilized in the delineation of the metabonomic response of an androgen-dependent PCa cell line (LnCAP) as a result of AR activation. Metabolite profiles were determined after 12, 24, and 48?h of exposure to methyltrienolone (R1881), an AR agonist. Principal components analysis revealed the relative myo-inositol and phosphocholine levels were severely altered after androgen treatment. Furthermore, univariate analysis revealed multiple metabolic perturbations in response to R1881 exposure, including amino acid, choline, the phosphocholine/glycerophosphocholine ratio, and UDP-coupled sugar metabolism, which are consistent with reported measurements between normal and PCa samples. These results suggest that androgen-sensitive PCa may transform to an aggressive phenotype upon AR activation.  相似文献   

8.
Prostate cancer (PCa) is the second-leading cause of cancer-related mortality, after lung cancer, in men from developed countries. In its early stages, primary tumor growth is dependent on androgens, thus generally can be controlled by androgen deprivation therapy (ADT). Eventually however, the disease progresses to castration-resistant prostate cancer (CRPC), a lethal form in need of more effective treatments. G-protein coupled receptors (GPCRs) comprise a large clan of cell surface proteins that have been implicated as therapeutic targets in PCa growth and progression. The findings reported here provide intriguing evidence of a role for the newly characterized glutamate family member GPR158 in PCa growth and progression. We found that GPR158 promotes PCa cell proliferation independent of androgen receptor (AR) functionality and that this requires its localization in the nucleus of the cell. This suggests that GPR158 acts by mechanisms different from other GPCRs. GPR158 expression is stimulated by androgens and GPR158 stimulates AR expression, implying a potential to sensitize tumors to low androgen conditions during ADT via a positive feedback loop. Further, we found GPR158 expression correlates with a neuroendocrine (NE) differentiation phenotype and promotes anchorage-independent colony formation implying a role for GPR158 in therapeutic progression and tumor formation. GPR158 expression was increased at the invading front of prostate tumors that formed in the genetically defined conditional Pten knockout mouse model, and co-localized with elevated AR expression in the cell nucleus. Kaplan-Meier analysis on a dataset from the Memorial Sloan Kettering cancer genome portal showed that increased GPR158 expression in tumors is associated with lower disease-free survival. Our findings strongly suggest that pharmaceuticals targeting GPR158 activities could represent a novel and innovative approach to the prevention and management of CRPC.  相似文献   

9.
Long non-coding RNAs (lncRNAs) have been found to play critical roles in regulating gene expression, but their function in translational control is poorly understood. We found lnc-OPHN1-5, which lies close to the androgen receptor (AR) gene on chromosome X, increased prostate cancer (PCa) Enzalutamide (Enz) sensitivity via decreasing AR protein expression and associated activity. Mechanism dissection revealed that lnc-OPHN1-5 interacted with AR-mRNA to minimize its interaction with the RNA binding protein (RBP) hnRNPA1. Suppressing lnc-OPHN1-5 expression promoted the interaction between AR-mRNA and hnRNPA1, followed by an increase of ribosome association with AR-mRNA and translation. This effect was reversed by increasing lnc-OPHN1-5 expression. Consistently, the in vivo mice model confirmed that knocking down lnc-OPHN1-5 expression in tumors significantly increased the tumor formation rate and AR protein expression compared with the control group. Furthermore, knocking down hnRNPA1 blocked/reversed shlnc-OPHN1-5-increased AR protein expression and re-sensitized cells to Enz treatment efficacy. Evidence from Enz-resistant cell lines, patient-derived xenograft (PDX) models, clinical samples, and a human PCa study accordantly suggested that patients with low expression of lnc-OPHN1-5 likely have unfavorable prognoses and probably are less sensitive to Enz treatment. In summary, targeting this newly identified lnc-OPHN1-5/AR/hnRNPA1 complex may help develop novel therapies to increase Enz treatment sensitivity for suppressing the PCa at an advanced stage.Subject terms: Prostate cancer, Drug regulation  相似文献   

10.
The androgen receptor (AR) plays a central role in prostate, muscle, bone and adipose tissue. Moreover, dysregulated AR activity is a driving force in prostate cancer (PCa) initiation and progression. Consequently, antagonizing AR signalling cascades via antiandrogenic therapy is a crucial treatment option in PCa management. Besides, very high androgen levels also inhibit PCa cells’ growth, so this effect could also be applied in PCa therapy. However, on the molecular and cellular level, these mechanisms have hardly been investigated so far. Therefore, the present study describes the effects of varying androgen concentrations on the viability of PCa cells as well as localization, transactivation, and protein stability of the AR. For this purpose, cell viability was determined via WST1 assay. Alterations in AR transactivity were detected by qPCR analysis of AR target genes. A fluorescent AR fusion protein was used to analyse AR localization microscopically. Changes in AR protein expression were detected by Western blot. Our results showed that high androgen concentrations reduce the cell viability in LNCaP and C4-2 cell lines. In addition, androgens have been reported to increase AR transactivity, AR localization, and AR protein expression levels. However, high androgen levels did not reduce these parameters. Furthermore, this study revealed an androgen-induced increase in AR protein synthesis. In conclusion, inhibitory effects on cell viability by high androgen levels are due to AR downstream signalling or non-genomic AR activity. Moreover, hormonal activation of the AR leads to a self-induced stabilization of the receptor, resulting in increased AR activity. Therefore, in clinical use, a therapeutic reduction in androgen levels represents a clinical target and would lead to a decrease in AR activity and, thus, AR-driven PCa progression.  相似文献   

11.
12.
Heat shock proteins (HSPs) are molecular chaperones that play a pivotal role in correct folding, stabilization and intracellular transport of many client proteins including those involved in oncogenesis. HSP70, which is frequently overexpressed in prostate cancer (PCa), has been shown to critically contribute to tumor cell survival, and might therefore represent a potential therapeutic target. We treated both the androgen receptor (AR)-positive LNCaP and the AR-negative PC-3 cell lines with the pharmacologic HSP70 inhibitor VER155008. Although we observed antiproliferative effects and induction of apoptosis upon HSP70 inhibition, the apoptotic effect was more pronounced in AR-positive LNCaP cells. In addition, VER155008 treatment induced G1 cell cycle arrest in LNCaP cells and decreased AR expression. Further analysis of the HSP system by Western blot analysis revealed that expression of HSP27, HOP and HSP90β was significantly inhibited by VER155008 treatment, whereas the HSP40, HSP60, and HSP90α expression remained unchanged. Taken together, VER155008 might serve as a novel therapeutic option in PCa patients independent of the AR expression status.  相似文献   

13.
Prostate cancer (PCa) is the second leading cause of cancer-related death in males in the United States. Majority of prostate cancers are originally androgen-dependent and sensitive to androgen-deprivation therapy (ADT), however, most of them eventually relapse and progress into incurable castration-resistant prostate cancer (CRPC). Of note, the activity of androgen receptor (AR) is still required in CRPC stage. The mitotic kinase polo-like kinase 1 (Plk1) is significantly elevated in PCa and its expression correlates with tumor grade. In this study, we assess the effects of Plk1 on AR signaling in both androgen-dependent and androgen-independent PCa cells. We demonstrate that the expression level of Plk1 correlated with tumorigenicity and that inhibition of Plk1 caused reduction of AR expression and AR activity. Furthermore, Plk1 inhibitor BI2536 down-regulated SREBP-dependent expression of enzymes involved in androgen biosynthesis. Of interest, Plk1 level was also reduced when AR activity was inhibited by the antagonist MDV3100. Finally, we show that BI2536 treatment significantly inhibited tumor growth in LNCaP CRPC xenografts. Overall, our data support the concept that Plk1 inhibitor such as BI2536 prevents AR signaling pathway and might have therapeutic potential for CRPC patients.  相似文献   

14.
The syndromes of androgen resistance revisited   总被引:1,自引:0,他引:1  
A revisit to the existing complexities of the androgen resistance syndromes within the frame of our current knowledge was undertaken. Recent contributions of these and other laboratories are presented according to the topographic intracellular location of the underlying abnormalities causing these inherited disorders. Thus, the clinical spectrum, inherited pattern and biochemical features of defective androgen action at the pre-receptor, receptor, and post-receptor levels are examined. In addition, the effects of androgens on the development of gender role is discussed, with particular focus on patients with pre-receptor defects. It was concluded that a better understanding of the nature of the altered events in these syndromes has been achieved over recent years, although several important issues still remain unsolved.  相似文献   

15.
Androgen (AR) and glucocorticoid (GR) receptor signaling play opposing roles in prostate tumorigenesis: in prostate, AR acts as an oncogene, and GR is a tumor suppressor. Recently, we found that non-steroidal phyto-chemical Compound A (CpdA) is AR/GR modulator acting as anti-inflammatory anti-androgen. CpdA inhibits AR and prevents GR transactivation while enhancing GR transrepression. GR and AR are controlled by proteasomal degradation. We found that prolonged exposure of LNCaP, LNCaP-GR, DU145 and PC3 prostate carcinoma (PCa) cells to proteasome inhibitor Bortezomib (BZ) caused AR degradation and GR accumulation. BZ enhanced CpdA ability to inhibit AR and to augment GR transrepression. We also found that CpdA+BZ differentially regulated GR/AR to cooperatively suppress PCa cell growth and survival and to induce endoplasmic reticulum stress (ERS). Importantly, CpdA+BZ differentially regulated GR-responsive genes. CpdA+BZ blocked activation of glucocorticoid-responsive pro-survival genes, including SGK1, but activated BZ-induced ERS-related genes BIP/HSPA5 and CHOP /GADD153. Using ChIP, we showed that SGK1, BIP/HSPA5 and CHOP regulation was due to effects of CpdA and CpdA+BZ on GR loading on their promoters. We also found that AR and GR are abundant in advanced PCa from patients treated by androgen ablation and/or chemotherapy: 56% of carcinomas from treated patients expressed both receptors, and the other 27% expressed either GR or AR. Overall, our data validate the concept of dual AR/GR targeting in prostate cancer (PC) and suggest that BZ combination with dual-target steroid receptor modulator CpdA has high potential for PC therapy.  相似文献   

16.
17.
18.
19.
Androgen (AR) and glucocorticoid (GR) receptor signaling play opposing roles in prostate tumorigenesis: in prostate, AR acts as an oncogene, and GR is a tumor suppressor. Recently, we found that non-steroidal phyto-chemical compound A (CpdA) is AR/GR modulator acting as anti-inflammatory anti-androgen. CpdA inhibits AR and prevents GR transactivation while enhancing GR transrepression. GR and AR are controlled by proteasomal degradation. We found that prolonged exposure of LNCaP, LNCaP-GR, DU145 and PC3 prostate carcinoma (PCa) cells to proteasome inhibitor Bortezomib (BZ) caused AR degradation and GR accumulation. BZ enhanced CpdA ability to inhibit AR and to augment GR transrepression. We also found that CpdA+BZ differentially regulated GR/AR to cooperatively suppress PCa cell growth and survival and to induce endoplasmic reticulum stress (ERS). Importantly, CpdA+BZ differentially regulated GR-responsive genes. CpdA+BZ blocked activation of glucocorticoid-responsive pro-survival genes, including SGK1, but activated BZ-induced ERS-related genes BIP/HSPA5 and CHOP/GADD153. Using ChIP, we showed that SGK1, BIP/HSPA5 and CHOP regulation was due to effects of CpdA and CpdA+BZ on GR loading on their promoters. We also found that AR and GR are abundant in advanced PCa from patients treated by androgen ablation and/or chemotherapy: 56% of carcinomas from treated patients expressed both receptors, and the other 27% expressed either GR or AR. Overall, our data validate the concept of dual AR/GR targeting in prostate cancer (PC) and suggest that BZ combination with dual-target steroid receptor modulator CpdA has high potential for PC therapy.Key words: prostate cancer, proteasome inhibitor, non-steroidal modulator, apoptosis, ER stress  相似文献   

20.
Prostate cancer (PCa) is one of the leading causes of cancer-related deaths in men. Localised PCa can be treated effectively, but most patients relapse/progress to more aggressive disease. One possible mechanism underlying this progression is alternative splicing of the androgen receptor, with AR variant 7(ARV7) considered to play a major role. Using viability assays, we confirmed that ARV7-positive PCa cells were less sensitive to treatment with cabazitaxel and an anti-androgen-enzalutamide. Also, using live-holographic imaging, we showed that PCa cells with ARV7 exhibited an increased rate of cell division, proliferation, and motility, which could potentially contribute to a more aggressive phenotype. Furthermore, protein analysis demonstrated that ARV7 knock-down was associated with a decrease in insulin-like growth factor-2 (IGFBP-2) and forkhead box protein A1(FOXA1). This correlation was confirmed in-vivo using PCa tissue samples. Spearman rank correlation analysis showed significant positive associations between ARV7 and IGFBP-2 or FOXA1 in tissue from patients with PCa. This association was not present with the AR. These data suggest an interplay of FOXA1 and IGFBP-2 with ARV7-mediated acquisition of an aggressive prostate cancer phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号