首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
2.
Context: Histone modifications regulate gene expression; dysregulation has been linked with cardiovascular diseases. Associations between histone modification levels and blood pressure in humans are unclear.

Objective: We examine the relationship between global histone concentrations and various markers of blood pressure.

Materials and methods: Using the Beijing Truck Driver Air Pollution Study, we investigated global peripheral white blood cell histone modifications (H3K9ac, H3K9me3, H3K27me3, and H3K36me3) associations with pre- and post-work measurements of systolic (SBP) and diastolic (DBP) blood pressure, mean arterial pressure (MAP), and pulse pressure (PP) using multivariable mixed-effect models.

Results: H3K9ac was negatively associated with pre-work SBP and MAP; H3K9me3 was negatively associated with pre-work SBP, DBP, and MAP; and H3K27me3 was negatively associated with pre-work SBP. Among office workers, H3K9me3 was negatively associated with pre-work SBP, DBP, and MAP. Among truck drivers, H3K9ac and H3K27me were negatively associated with pre-work SBP, and H3K27me3 was positively associated with post-work PP.

Discussion and conclusion: Epigenome-wide H3K9ac, H3K9me3, and H3K27me3 were negatively associated with multiple pre-work blood pressure measures. These associations substantially changed during the day, suggesting an influence of daily activities. Blood-based histone modification biomarkers are potential candidates for studies requiring estimations of morning/pre-work blood pressure.  相似文献   


3.
组蛋白赖氨酸甲基转移酶2D (histone-lysine N-methyltransferase 2D, KMT2D) 作为主要的组蛋白3第4位赖氨酸 (H3K4) 甲基转移酶,在调控胚胎发育、组织分化、代谢和肿瘤抑制方面发挥重要作用。在小鼠体内,敲除Kmt2d会导致严重的心脏发育缺陷最终造成胚胎期死亡。低氧诱导因子-1α (hypoxia-inducible factor 1α, HIF-1α) 作为调节细胞应对低氧的关键转录因子,能够调控多种下游基因转录。有相关研究揭示,表观遗传调控者能够调节HIF-1α的稳定性和活性。同样,作为表观遗传调控者的组蛋白甲基转移酶KMT2D是否参与低氧条件下HIF-1α对下游基因的调控,目前仍未知。在本研究中,观察在Kmt2d正常或缺乏的情况下,心肌细胞H9c2对低氧环境的应答反应。结果显示,与常氧条件相比,低氧状态下HIF-1α、组蛋白乙酰化酶P300、KMT2D及其介导的H3K4一甲基化 (H3K4 mono-methylation, H3K4me1)的蛋白质水平增加 (P<0.05);HIF-1α下游基因血管内皮生长因子 (vascular endothelial growth factor, Vegf) 的mRNA表达水平明显上调 (P<0.01)。染色质免疫共沉淀实验 (chromatin immunoprecipitation assay, ChIP-qPCR) 检测结果显示,H3K4me1和组蛋白3第27位赖氨酸乙酰化 (histone 3 lysine 27 acetylation, H3K27ac) 在Vegf基因启动子区域的结合丰度明显增加 (P<0.05)。低氧条件下沉默Kmt2d之后,H3K4me1蛋白水平和Vegf的mRNA表达下降 (P<0.05)。本研究表明,低氧条件下KMT2D参与调控HIF-1α和下游基因Vegf的表达。  相似文献   

4.
组蛋白赖氨酸甲基转移酶2D (histone-lysine N-methyltransferase 2D, KMT2D) 作为主要的组蛋白3第4位赖氨酸 (H3K4) 甲基转移酶,在调控胚胎发育、组织分化、代谢和肿瘤抑制方面发挥重要作用。在小鼠体内,敲除Kmt2d会导致严重的心脏发育缺陷最终造成胚胎期死亡。低氧诱导因子-1α (hypoxia-inducible factor 1α, HIF-1α) 作为调节细胞应对低氧的关键转录因子,能够调控多种下游基因转录。有相关研究揭示,表观遗传调控者能够调节HIF-1α的稳定性和活性。同样,作为表观遗传调控者的组蛋白甲基转移酶KMT2D是否参与低氧条件下HIF-1α对下游基因的调控,目前仍未知。在本研究中,观察在Kmt2d正常或缺乏的情况下,心肌细胞H9c2对低氧环境的应答反应。结果显示,与常氧条件相比,低氧状态下HIF-1α、组蛋白乙酰化酶P300、KMT2D及其介导的H3K4一甲基化 (H3K4 mono-methylation, H3K4me1)的蛋白质水平增加 (P<0.05);HIF-1α下游基因血管内皮生长因子 (vascular endothelial growth factor, Vegf) 的mRNA表达水平明显上调 (P<0.01)。染色质免疫共沉淀实验 (chromatin immunoprecipitation assay, ChIP-qPCR) 检测结果显示,H3K4me1和组蛋白3第27位赖氨酸乙酰化 (histone 3 lysine 27 acetylation, H3K27ac) 在Vegf基因启动子区域的结合丰度明显增加 (P<0.05)。低氧条件下沉默Kmt2d之后,H3K4me1蛋白水平和Vegf的mRNA表达下降 (P<0.05)。本研究表明,低氧条件下KMT2D参与调控HIF-1α和下游基因Vegf的表达。  相似文献   

5.
6.
Epigenetic mechanisms have important roles in carcinogenesis. We certified that the mRNA translation-related gene cytoplasmic polyadenylation element-binding protein 1 (CPEB1) is hypomethylated and overexpressed in glioma cells and tissues. The knockdown of CPEB1 reduced cell senescence by regulating the expression or distribution of p53 in glioma cells. CPEB1 is also regulated directly by the tumor suppressor miR-101, a potential marker of glioma. It is known that the histone methyltransferase enhancer of zeste homolog 2 (EZH2) and embryonic ectoderm development (EED) are direct targets of miR-101. We demonstrated that miR-101 downregulated the expression of CPEB1 through reversing the methylation status of the CPEB1 promoter by regulating the presence on the promoter of the methylation-related histones H3K4me2, H3K27me3, H3K9me3 and H4K20me3. The epigenetic regulation of H3K27me3 on CPEB1 promoter is mediated by EZH2 and EED. EZH2 has a role in the regulation of H3K4me2. Furthermore, the downregulation of CPEB1 induced senescence in a p53-dependent manner.  相似文献   

7.
Objective: To investigate the dynamic variation in H3K4me3 and HP1 with employment length in nickel smelting workers.

Methods: Blood samples were collected from 140 nickel smelting workers and 140 age-matched office workers to test for H3K4me3, and HP1 levels.

Results: H3K4me3 was statistically significantly different (p?<?0.05) between the two groups and positively correlated with employment length (rs?=?0.267). HP1 was not correlated with employment length (p?=?0.066) but was significantly different between the two groups.

Conclusions: Chronic exposure to nickel can induce oxidative damage, and increase H3K4me3 expression and inhibit HP1 expression.  相似文献   


8.
The mechanisms that underlie metal carcinogenesis are the subject of intense investigation; however, data from in vitro and in vivo studies are starting to piece together a story that implicates epigenetics as a key player. Data from our lab has shown that nickel compounds inhibit dioxygenase enzymes by displacing iron in the active site. Arsenic is hypothesized to inhibit these enzymes by diminishing ascorbate levels – an important co-factor for dioxygenases. Inhibition of histone demethylase dioxygenases can increase histone methylation levels, which also may affect gene expression. Recently, our lab conducted a series of investigations in human subjects exposed to high levels of nickel or arsenic compounds. Global levels of histone modifications in peripheral blood mononuclear cells (PBMCs) from exposed subjects were compared to low environmentally exposed controls. Results showed that nickel increased H3K4me3 and decreased H3K9me2 globally. Arsenic increased H3K9me2 and decreased H3K9ac globally. Other histone modifications affected by arsenic were sex-dependent. Nickel affected the expression of 2756 genes in human PBMCs and many of the genes were involved in immune and carcinogenic pathways. This review will describe data from our lab that demonstrates for the first time that nickel and arsenic compounds affect global levels of histone modifications and gene expression in exposed human populations.  相似文献   

9.
Preadipocyte factor-1 (Pref-1) is a secretory soluble protein, which exerts pleiotropic effects on maintenance of cancer stem cell characteristics and commitment of mesenchymal stem cell lineages by inhibiting adipogenesis. Observations that obesity renders the microenvironment of adipose tissues hypoxic and that hypoxia inhibits adipogenesis lead us to investigate whether hypoxia increases the expression of anti-adipogenic Pref-1 in preadipocytes, mature adipocytes, and adipose tissues from obese mouse. In 3T3-L1 preadipocytes, hypoxia induces Pref-1 by a hypoxia-inducible factor 1 (HIF-1)-dependent mechanism accompanied by increase in the levels of the active histone mark, acetylated H3K9/14 (H3K9/14Ac). Adipogenesis increased the levels of the heterochromatin histone mark, trimethylated H3K27 (H3K27me3), whereas it decreased the levels of H3K4me3 and H3K9/14Ac euchromatin marks of the mouse Pref-1 promoter. However, differently from preadipocytes, in mature adipocytes hypoxia failed to reverse the repressive epigenetic changes of Pref-1 promoter and to increase its expression. Short term (8 weeks) high fat diet (HFD) increased HIF-1α protein in subcutaneous and epididymal adipose tissues, but did not increase Pref-1 expression. Unlike in 3T3-L1 preadipocytes, HIF-1α did not increase Pref-1 expression in adipose tissues in which mature adipocytes constitute the main population. Interestingly, long term (35 weeks) HFD increased Pref-1 in serum but not in obese adipose tissues. This study suggests that Pref-1 is an endocrine factor which is synergistically increased by obesity and age.  相似文献   

10.
Hyperglycemia/hyperinsulinemia are leading cause for the induction type 2 diabetes and the role of post-translational histone modifications in dysregulating the expression of genes has emerged as potential important contributor in the progression of disease. The paradoxical nature of histone H3-Lysine 4 and Lysine 9 mono-methylation (H3K4me1 and H3K9me1) in both gene activation and repression motivated us to elucidate the functional relationship of these histone modifications in regulating expression of genes under hyperglycaemic/hyperinsulinemic condition. Chromatin immunoprecipitation–microarray analysis (ChIP-chip) was performed with H3 acetylation, H3K4me1 and H3K9me1 antibody. CLUSTER analysis of ChIP-chip (Chromatin immunoprecipitation–microarray analysis) data showed that mRNA expression and H3 acetylation/H3K4me1 levels on genes were inversely correlated with H3K9me1 levels on the transcribed regions, after 30 min of insulin stimulation under hyperglycaemic condition. Interestingly, we provide first evidence regarding regulation of histone de/acetylases and de/methylases; Myst4, Jmjd2b, Aof1 and Set by H3Ac, H3K4me1 and H3K9me1 under hyperinsulinemic/hyperglycaemic condition. ChIP–qPCR analysis shows association of increased H3Ac/H3K4me1 and decreased levels of H3K9me1 in up regulation of Myst4, Jmjd2, Set and Aof1 genes. We further analyse promoter occupancy of histone modifications by ChIP walking and observed increased occupancy of H3Ac/H3K4me1 on promoter region (−1000 to −1) of active genes and H3K9me1 on inactive genes under hyperglycemic/hyperinsulinemic condition. To best of our knowledge this is the first report that shows regulation of chromatin remodelling genes by alteration in the occupancy of histone H3Ac/H3K4/K9me on both promoter and transcribed regions.  相似文献   

11.
12.
Post-translational modifications (PTMs) of core histones are important epigenetic determinants that correlate with functional chromatin states. However, despite multiple linker histone H1s PTMs have been identified, little is known about their genomic distribution and contribution to the epigenetic regulation of chromatin. Here, we address this question in Drosophila that encodes a single somatic linker histone, dH1. We previously reported that dH1 is dimethylated at K27 (dH1K27me2). Here, we show that dH1K27me2 is a major PTM of Drosophila heterochromatin. At mitosis, dH1K27me2 accumulates at pericentromeric heterochromatin, while, in interphase, it is also detected at intercalary heterochromatin. ChIPseq experiments show that >98% of dH1K27me2 enriched regions map to heterochromatic repetitive DNA elements, including transposable elements, simple DNA repeats and satellite DNAs. Moreover, expression of a mutated dH1K27A form, which impairs dH1K27me2, alters heterochromatin organization, upregulates expression of heterochromatic transposable elements and results in the accumulation of RNA:DNA hybrids (R-loops) in heterochromatin, without affecting H3K9 methylation and HP1a binding. The pattern of dH1K27me2 is H3K9 methylation independent, as it is equally detected in flies carrying a H3K9R mutation, and is not affected by depletion of Su(var)3–9, HP1a or Su(var)4–20. Altogether these results suggest that dH1K27me2 contributes to heterochromatin organization independently of H3K9 methylation.  相似文献   

13.
14.
15.
《Fly》2013,7(2):93-97
The JIL-1 kinase is a multidomain protein that localizes specifically to euchromatin interband regions of polytene chromosomes and is the kinase responsible for histone H3S10 phosphorylation at interphase. Genetic interaction assays have suggested that the function of the epigenetic histone H3S10ph mark is to antagonize heterochromatization by participating in a dynamic balance between factors promoting repression and activation of gene expression as measured by position-effect variegation (PEV) assays. Interestingly, JIL-1 loss-of-function alleles can act either as an enhancer or indirectly as a suppressor of wm4 PEV depending on the precise levels of JIL-1 kinase activity. In this study, we have explored the relationship between PEV and the relative levels of the H3S10ph and H3K9me2 marks at the white gene in both wild-type and wm4 backgrounds by ChIP analysis. Our results indicate that H3K9me2 levels at the white gene directly correlate with its level of expression and that H3K9me2 levels in turn are regulated by H3S10 phosphorylation.  相似文献   

16.
In the developing kidney, self-renewing progenitors respond to inductive signaling from the adjacent branching ureteric bud by undergoing mesenchyme-to-epithelium transition. Nascent nephrons subsequently undergo elongation, segmentation, and differentiation into a mature renal epithelium with diverse functions. Epigenetic mechanisms have been implicated in impacting cell fate decisions during nephrogenesis; however, the chromatin landscape of nephron progenitors and daughter differentiating cells are largely unknown. Here, we examined the spatiotemporal expression patterns of histone H3 methylation and histone methyltransferases in E15.5 mouse kidneys. Kidney sections were probed with antibodies against histone modifications, enzymes, and markers of progenitors and differentiation. The results revealed that: (1) nephron progenitor cells exhibit a broad histone methylation signature that comprises both “active” and “repressive” marks (H3K4me3/K9me3/K27me3/R2me2/R17me2); (2) nascent nephrons retain high H3K4me3 but show downregulation of H3K9/K27me3 and; (3) maturing epithelial tubules acquire high levels of H3K79me2/3. Consistent with respective histone marks, the H3K4 methyltransferase, Ash2l, is expressed in progenitors and nascent nephrons, whereas the H3K9/K27 methyltransferases, G9a/Ezh2, are more enriched in progenitors than nascent nephrons. We conclude that combinatorial histone signatures correlate with cell fate decisions during nephrogenesis.  相似文献   

17.
18.
DNA methylation and histone H3 Lys 9 dimethylation (H3K9me2) are important epigenetic repression marks for silencing transposons in heterochromatin and for regulating gene expression. However, the mechanistic relationship to other repressive marks, such as histone H3 Lys 27 trimethylation (H3K27me3) is unclear. FERTILIZATION-INDEPENDENT ENDOSPERM1 (FIE1) encodes an Esc-like core component of the Polycomb repressive complex 2, which is involved in H3K27me3-mediated gene repression. Here, we identify a gain-of-function epi-allele (Epi-df) of rice (Oryza sativa) FIE1; this allele causes a dwarf stature and various floral defects that are inherited in a dominant fashion. We found that Epi-df has no changes in nucleotide sequence but is hypomethylated in the 5′ region of FIE1 and has reduced H3K9me2 and increased H3K4me3. In Epi-df, FIE1 was ectopically expressed and its imprinting was disrupted. FIE1 interacted with rice Enhancer of Zeste homologs, consistent with its role in H3K27me3 repression. Ectopic expression of FIE1 in Epi-df resulted in alteration of H3K27me3 levels in hundreds of genes. In summary, this work identifies an epi-allele involved in H3K27me3-mediated gene repression that itself is highly regulated by DNA methylation and histone H3K9me2, thereby shedding light on the link between DNA methylation and histone methylation, the two important epigenetic marks regulating rice development.  相似文献   

19.
Arsenic, an established carcinogen and toxicant, occurs in drinking water and food and affects millions of people worldwide. Arsenic appears to interfere with gene expression through epigenetic processes, such as DNA methylation and post-translational histone modifications. We investigated the effects of arsenic on histone residues in vivo as well as in vitro. Analysis of H3K9Ac and H3K9me3 in CD4+ and CD8+ sorted blood cells from individuals exposed to arsenic through drinking water in the Argentinean Andes showed a significant decrease in global H3K9me3 in CD4+ cells, but not CD8+ cells, with increasing arsenic exposure. In vitro studies of inorganic arsenic-treated T lymphocytes (Jurkat and CCRF-CEM, 0.1, 1, and 100 μg/L) showed arsenic-related modifications of H3K9Ac and changes in the levels of the histone deacetylating enzyme HDAC2 at very low arsenic concentrations. Further, in vitro exposure of kidney HEK293 cells to arsenic (1 and 5 μM) altered the protein levels of PCNA and DNMT1, parts of a gene expression repressor complex, as well as MAML1. MAML1 co-localized and interacted with components of this complex in HEK293 cells, and in silico studies indicated that MAML1 expression correlate with HDAC2 and DNMT1 expression in kidney cells. In conclusion, our data suggest that arsenic exposure may lead to changes in the global levels of H3K9me3 and H3K9Ac in lymphocytes. Also, we show that arsenic exposure affects the expression of PCNA and DNMT1—proteins that are part of a gene expression silencing complex.  相似文献   

20.

Objectives

KDM6A has been demonstrated critical in the regulation of cell fates. However, whether KDM6A is involved in cartilage formation remains unclear. In this study, we investigated the role of KDM6A in chondrogenic differentiation of PDLSCs, as well as the underlying epigenetic mechanisms.

Methods

KDM6A shRNA was transfected into PDLSCs by lentivirus. The chondrogenic differentiation potential of PDLSCs was assessed by Alcian blue staining. Immunofluorescence was performed to demonstrate H3K27me3 and H3K4me3 levels during chondrogenesis. SOX9, Col2a1, ACAN and miRNAs (miR‐29a, miR‐204, miR‐211) were detected by real‐time RT‐PCR. Western blot was performed to evaluate SOX9, H3K27me3 and H3K4me3.

Results

The production of proteoglycans in PDLSCs was decreased after knockdown of KDM6A. Depletion of KDM6A inhibited the expression of SOX9, Col2a1, ACAN and resulted in increased H3K27me3 and decreased H3K4me3 levels. EZH2 inhibitor rescued the chondrogenic potential of PDLSCs after knockdown of KDM6A by regulating H3K27me3. Additionally, miR‐29a, miR‐204 and miR‐211 were also involved in the process of PDLSCs chondrogenesis.

Conclusions

KDM6A is required in chondrogenic differentiation of PDLSCs by demethylation of H3K27me3, and EZH2 inhibitor could rescue chondrogenesis of PDLSCs after knockdown of KDM6A. It could be inferred that upregulation of KDM6A or application of EZH2 inhibitor might improve mesenchymal stem cell mediated cartilage regeneration in inflammatory tissue destruction such as osteoarthritis.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号