首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cheng C  Ho WE  Goh FY  Guan SP  Kong LR  Lai WQ  Leung BP  Wong WS 《PloS one》2011,6(6):e20932

Background

Phosphoinositide 3-kinase (PI3K)/Akt pathway is linked to the development of asthma. Anti-malarial drug artesunate is a semi-synthetic derivative of artemisinin, the principal active component of a medicinal plant Artemisia annua, and has been shown to inhibit PI3K/Akt activity. We hypothesized that artesunate may attenuate allergic asthma via inhibition of the PI3K/Akt signaling pathway.

Methodology/Principal Findings

Female BALB/c mice sensitized and challenged with ovalbumin (OVA) developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts, and cytokine and chemokine levels. Lung tissues were examined for cell infiltration and mucus hypersecretion, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Artesunate dose-dependently inhibited OVA-induced increases in total and eosinophil counts, IL-4, IL-5, IL-13 and eotaxin levels in bronchoalveolar lavage fluid. It attenuated OVA-induced lung tissue eosinophilia and airway mucus production, mRNA expression of E-selectin, IL-17, IL-33 and Muc5ac in lung tissues, and airway hyperresponsiveness to methacholine. In normal human bronchial epithelial cells, artesunate blocked epidermal growth factor-induced phosphorylation of Akt and its downstream substrates tuberin, p70S6 kinase and 4E-binding protein 1, and transactivation of NF-κB. Similarly, artesunate blocked the phosphorylation of Akt and its downstream substrates in lung tissues from OVA-challenged mice. Anti-inflammatory effect of artesunate was further confirmed in a house dust mite mouse asthma model.

Conclusion/Significance

Artesunate ameliorates experimental allergic airway inflammation probably via negative regulation of PI3K/Akt pathway and the downstream NF-κB activity. These findings provide a novel therapeutic value for artesunate in the treatment of allergic asthma.  相似文献   

2.

Background

Goblet cell metaplasia that causes mucus hypersecretion and obstruction in the airway lumen could be life threatening in asthma and chronic obstructive pulmonary disease patients. Inflammatory cytokines such as IL-13 mediate the transformation of airway ciliary epithelial cells to mucin-secreting goblet cells in acute as well as chronic airway inflammatory diseases. However, no effective and specific pharmacologic treatment is currently available. Here, we investigated the mechanisms by which aldose reductase (AR) regulates the mucus cell metaplasia in vitro and in vivo.

Methodology/Findings

Metaplasia in primary human small airway epithelial cells (SAEC) was induced by a Th2 cytokine, IL-13, without or with AR inhibitor, fidarestat. After 48 h of incubation with IL-13 a large number of SAEC were transformed into goblet cells as determined by periodic acid-schiff (PAS)-staining and immunohistochemistry using antibodies against Mucin5AC. Further, IL-13 significantly increased the expression of Mucin5AC at mRNA and protein levels. These changes were significantly prevented by treatment of the SAEC with AR inhibitor. AR inhibition also decreased IL-13-induced expression of Muc5AC, Muc5B, and SPDEF, and phosphorylation of JAK-1, ERK1/2 and STAT-6. In a mouse model of ragweed pollen extract (RWE)-induced allergic asthma treatment with fidarestat prevented the expression of IL-13, phosphorylation of STAT-6 and transformation of epithelial cells to goblet cells in the lung. Additionally, while the AR-null mice were resistant, wild-type mice showed goblet cell metaplasia after challenge with RWE.

Conclusions

The results show that exposure of SAEC to IL-13 caused goblet cell metaplasia, which was significantly prevented by AR inhibition. Administration of fidarestat to mice prevented RWE-induced goblet cell metaplasia and AR null mice were largely resistant to allergen induced changes in the lung. Thus our results indicate that AR inhibitors such as fidarestat could be developed as therapeutic agents to prevent goblet cell metaplasia in asthma and related pathologies.  相似文献   

3.

Background

TGF-β has been postulated to play an important role in the maintenance of epithelial homeostasis and the development of epithelium-derived cancers. However, most of previous studies are mainly focused on the function of TGF-β in immune cells to the development of allergic asthma and how TGF-β signaling in airway epithelium itself in allergic inflammation is largely unknown. Furthermore, the in vivo TGF-β function specifically in the airway epithelium during lung cancer development has been largely elusive.

Methodology/Principal Findings

To evaluate the in vivo contribution of TGF-β signaling in lung epithelium to the development of allergic disease and lung cancer, we generated a transgenic mouse model with Smad7, an intracellular inhibitor of TGF-β signaling, constitutively expressed in mouse airway Clara cells using a mouse CC10 promoter. The mice were subjected to the development of OVA-induced allergic asthma and urethane-induced lung cancer. The Smad7 transgenic animals significantly protected from OVA-induced asthma, with reduced airway inflammation, airway mucus production, extracellular matrix deposition, and production of OVA-specific IgE. Further analysis of cytokine profiles in lung homogenates revealed that the Th2 cytokines including IL-4, IL-5 and IL-13, as well as other cytokines including IL-17, IL-1, IL-6, IP10, G-CSF, and GM-CSF were significantly reduced in the transgenic mice upon OVA induction. In contrast, the Smad7 transgenic animals had an increased incidence of lung carcinogenesis when subjected to urethane treatment.

Conclusion/Significance

These studies, therefore, demonstrate for the first time the in vivo function of TGF-β signaling specifically in airway epithelium during the development of allergic asthma and lung cancer.  相似文献   

4.
BackgroundScrophularia buergeriana Miq. (Scrophulariaceae) (SB) has been used as an oriental medicine for the treatment of inflammatory diseases, such as neuritis and pharyngolaryngitis.PurposeWe explored the therapeutic effects of S. buergeriana ethanol extract (SBE) on airway inflammation in ovalbumin (OVA)-induced asthmatic mice and lipopolysaccharide (LPS)-stimulated RAW264.7 cells.MethodsMice were intraperitoneally injected with OVA on days 0 and 14 to elevate the immune response. On days 21 to 23, the mice were challenged with OVA solution and SBE (20 and 40 mg/kg) was administered daily by oral gavage from days 18 to 23. RAW264.7 cells were pretreated with SBE 1 h before LPS stimulation.ResultsSBE administration effectively suppressed inflammatory cell infiltration, the expression of interleukin (IL)-5, IL-13, and IL-17, immunoglobulin E, and airway hyperresponsiveness in an OVA-induced allergic asthma model. A reduction in histological alterations, including airway inflammation and mucus hypersecretion, was observed. These effects of SBE were accompanied by a decrease in matrix metalloproteinase-9 (MMP-9) expression and nuclear factor kappa B (NF-κB) phosphorylation. These responses were observed in LPS-stimulated RAW264.7 cells. SBE treatment reduced the mRNA expression of tumor necrosis factor (TNF)-α, IL-6, and MMP-9, and NF-κB phosphorylation, in LPS-stimulated RAW264.7 cells.ConclusionOur results indicated that SBE effectively attenuated airway inflammation in an OVA-induced allergic asthma model. These properties of SBE were thought to be involved in the suppression of NF-κB phosphorylation, suggesting that the material has the potential to regulate the development of allergic asthma.  相似文献   

5.
Kim JY  Kim DY  Lee YS  Lee BK  Lee KH  Ro JY 《Molecules and cells》2006,22(1):104-112
We previously reported that DA-9601, ethanol herbal extract of Artemisia asiatica, inhibited histamine and leukotriene releases in guinea pig lung mast cells activated with specific antigen/antibody reaction. This study aimed to evaluate the inhibitory effect of DA-9601 on the OVA-induced airway inflammation in allergic asthma mouse model. BALB/c mice were sensitized and challenged with OVA. DA-9601 was administered orally 1 h before every local OVA-challenge. OVA-specific serum IgE was measured by ELISA, recruitment of inflammatory cells in BAL fluids and lung tissues by Diff-Quik and H&E staining, respectively, the expressions of CD40, CD40L and VCAM-1 by immunohistochemistry, goblet cell hyperplasia by PAS staining, activities of MMPs by gelatin zymography, expressions of mRNA and proteins of cytokines by RT-PCR and ELISA, activities of MAP kinases by western blot, and activity of NF-KappaB by EMSA. DA-9601 reduced IgE level, recruitment of inflammatory cells into the BAL fluid and lung tissues, expressions of CD40, CD40L and VCAM-1 molecules, goblet cell hyperplasia, MMPs activity, expressions of mRNA and productions of various cytokines, activities of MAP kinases and NK-KappaB increased from OVA-challenged mice. These data suggest that DA-9601 may be developed as a clinical therapeutic agent in allergic diseases due to suppressing the airway allergic inflammation via regulation of various cellular molecules expressed by MAP kinases/NF-KappaB pathway.  相似文献   

6.
Mitogen-activated protein kinase (MAPK) signaling cascade plays a pivotal role in the activation of inflammatory cells. Recent findings revealed that the activity of p42/44 MAPK (also known as extracellular signal-regulated kinase (ERK)) in the lungs was significantly higher in asthmatic mice than in normal controls. We hypothesized that inhibition of ERK activity may have anti-inflammatory effects in allergic asthma. BALB/c mice were sensitized with OVA and, upon OVA aerosol challenge, developed airway eosinophilia, mucus hypersecretion, elevation in cytokine and chemokine levels, up-regulation of VCAM-1 expression, and airway hyperresponsiveness. Intraperitoneal administration of U0126, a specific MAPK/ERK kinase inhibitor, significantly (p < 0.05) inhibited OVA-induced increases in total cell counts, eosinophil counts, and IL-4, IL-5, IL-13, and eotaxin levels recovered in bronchoalveolar lavage fluid in a dose-dependent manner. U0126 also substantially (p < 0.05) reduced the serum levels of total IgE and OVA-specific IgE and IgG1. Histological studies show that U0126 dramatically inhibited OVA-induced lung tissue eosinophilia, airway mucus production, and expression of VCAM-1 in lung tissues. In addition, U0126 significantly (p < 0.05) suppressed OVA-induced airway hyperresponsiveness to inhaled methacholine in a dose-dependent manner. Western blot analysis of whole lung lysates shows that U0126 markedly attenuated OVA-induced tyrosine phosphorylation of ERK1/2. Taken together, our findings implicate that inhibition of ERK signaling pathway may have therapeutic potential for the treatment of allergic airway inflammation.  相似文献   

7.
8.
BackgroundPreviously, we demonstrated that OVA-loaded macrophages (OVA-Mφ) partially suppress OVA-induced airway manifestations of asthma in BALB/c mice. In vitro studies showed that OVA-Mφ start to produce IL-10 upon interaction with allergen-specific T cells, which might mediate their immunosuppressive effects. Herein, we examined whether IL-10 is essential for the immunosuppressive effects of OVA-Mφ in vivo, and whether ex vivo stimulation of the IL-10 production by OVA-Mφ could enhance these effects.MethodsPeritoneal Mφ were loaded with OVA and stimulated with LPS or immunostimulatory sequence oligodeoxynucleotide (ISS-ODN) in vitro. The increase of IL-10 production was examined and, subsequently, ex vivo stimulated OVA-Mφ were used to treat (i.v.) OVA-sensitized mice. To further explore whether Mφ-derived IL-10 mediates the immunosuppressive effects, Mφ isolated from IL-10-/- mice were used for treatment.ResultsWe found that stimulation with LPS or ISS-ODN highly increased the IL-10 production by OVA-Mφ (2.5-fold and 4.5-fold increase, respectively). ISS-ODN stimulation of OVA-Mφ significantly potentiated the suppressive effects on allergic airway inflammation. Compared to sham-treatment, ISS-ODN-stimulated OVA-Mφ suppressed the airway eosinophilia by 85% (vs. 30% by unstimulated OVA-Mφ), IL-5 levels in bronchoalveolar lavage fluid by 80% (vs. 50%) and serum OVA-specific IgE levels by 60% (vs. 30%). Importantly, IL-10-/-Mφ that were loaded with OVA and stimulated with ISS-ODN ex vivo, failed to suppress OVA-induced airway inflammation.ConclusionsThese results demonstrate that Mφ-derived IL-10 mediates anti-inflammatory responses in a mouse model of allergic asthma, which both can be potentiated by stimulation with ISS-ODN.  相似文献   

9.
Allergic asthma is a lifelong airway condition that affects people of all ages. In recent decades, asthma prevalence continues to increase globally, with an estimated number of 250,000 annual deaths attributed to the disease. Although inhaled corticosteroids and β-adrenergic receptor agonists are the primary therapeutic avenues that effectively reduce asthma symptoms, profound side effects may occur in patients with long-term treatments. Therefore, development of new therapeutic strategies is needed as alternative or supplement to current asthma treatments. Sesamin is a natural polyphenolic compound with strong anti-oxidative effects. Several studies have reported that sesamin is effective in preventing hypertension, thrombotic tendency, and neuroinflammation. However, it is still unknown whether sesamin can reduce asthma-induced allergic inflammation and airway hyperresponsiveness (AHR). Our study has revealed that sesamin exhibited significant anti-inflammatory effects in ovalbumin (OVA)-induced murine asthma model. We found that treatments with sesamin after OVA sensitization and challenge significantly decreased expression levels of interleukin-4 (IL-4), IL-5, IL-13, and serum IgE. The numbers of total inflammatory cells and eosinophils in BALF were also reduced in the sesamin-treated animals. Histological results demonstrated that sesamin attenuated OVA-induced eosinophil infiltration, airway goblet cell hyperplasia, mucus occlusion, and MUC5AC expression in the lung tissue. Mice administered with sesamin showed limited increases in AHR compared with mice receiving vehicle after OVA challenge. OVA increased phosphorylation levels of IκB-α and nuclear expression levels of NF-κB, both of which were reversed by sesamin treatments. These data indicate that sesamin is effective in treating allergic asthma responses induced by OVA in mice.  相似文献   

10.

Background

Asthma is a complex and heterogeneous chronic inflammatory disorder that is associated with mucous cell metaplasia and mucus hypersecretion. Functional genomic analysis indicates that mucous cell metaplasia and mucus hypersecretion depend on members of the calcium-activated chloride channel (CLCA) gene family. It has been reported that the inhibition of CLCAs could relieve the symptoms of asthma. Thus, the mCLCA3 antibody may be a promising strategy to treat allergic diseases such as asthma.

Methods

We constructed asthmatic mouse models of OVA-induced chronic airway inflammatory disorder to study the function of the mCLCA3 antibody. Airway inflammation was measured by HE staining; goblet cell hyperplasia and mucus hypersecretion were detected by PAS staining; muc5ac, IL-13, IFN-γ levels in bronchoalveolar lavage fluid (BALF) were examined by ELISA; Goblet cell apoptosis was measured by TUNEL assay and alcian blue staining; mCLCA3, Bcl-2 and Bax expression were detected by RT-PCR, Western blotting and immunohistochemical analysis.

Results

In our study, mice treated with mCLCA3 antibody developed fewer pathological changes compared with control mice and asthmatic mice, including a remarkable reduction in airway inflammation, the number of goblet cells and mCLCA3 expression in lung tissue. The levels of muc5ac and IL-13 were significantly reduced in BALF. We also found that the rate of goblet cell apoptosis was increased after treatment with mCLCA3 antibody, which was accompanied by an increase in Bax levels and a decrease in Bcl-2 expression in goblet cells.

Conclusions

Taken together, our results indicate that mCLCA3 antibody may have the potential as an effective pharmacotherapy for asthma.  相似文献   

11.
[目的]研究嗜酸乳杆菌La28和植物乳杆菌LP45对特应性皮炎和过敏性哮喘小鼠的干预作用,解析其在相关免疫调节上的菌株特异性差异.[方法]对特应性皮炎研究中将40只小鼠随机分为对照组、模型组、La28组和LP45组,除对照组外的其他三组采用2,4-二硝基氟苯诱导耳肿胀和皮炎模型,La28组和LP45组每天灌胃5×108...  相似文献   

12.
Resistin-like molecule alpha (Retnla), also known as ‘Found in inflammatory zone 1’, is a secreted protein that has been found in bronchoalveolar lavage (BAL) fluid of ovalbumin (OVA)-induced asthmatic mice and plays a role as a regulator of T helper (Th)2-driven inflammation. However, the role of Retnla in the progress of Th2-driven airway inflammation is not yet clear. To better understand the function of Retnla in Th2-driven airway inflammation, we generated Retnla-overexpressing (Retnla-Tg) mice. Retnla-Tg mice showed increased expression of Retnla protein in BAL fluid and airway epithelial cells. Retnla overexpression itself did not induce any alteration in lung histology or lung function compared to non-Tg controls. However, OVA-sensitized/challenged Retnla-Tg mice had decreased numbers of cells in BAL and inflammatory cells accumulating in the lung. They also showed a reduction in mucus production in the airway epithelium, concomitant with a decreased Muc5ac level. These results were accompanied by reduced levels of Th2 cytokines, including interleukin (IL)-4, IL-5, and IL-13, with no effect on levels of OVA-specific immunoglobulin isotypes. Furthermore, phosphorylation of ERK was markedly reduced in the lungs of OVA-challenged Retnla-Tg mice. Taken together, these results indicates that Retnla protects against Th2-mediated inflammation in an experimental mouse model of asthma, suggesting that therapeutic approaches to enhance the production of Retnla or Retnla-like molecules could be valuable for preventing allergic lung inflammation.  相似文献   

13.
Resolvin E1 (RvE1; 5S, 12R, 18R-trihydroxyeicosapentaenoic acid) is an anti-inflammatory lipid mediator derived from the omega-3 fatty acid eicosapentaenoic acid (EPA). It has been recently shown that RvE1 is involved in the resolution of inflammation. However, it is not known whether RvE1 is involved in the resolution of asthmatic inflammation. To investigate the anti-inflammatory effect of RvE1 in asthma, a murine model of asthma was studied. After RvE1 was administered to mice intraperitoneally, there were decreases in: airway eosinophil and lymphocyte recruitment, specific Th2 cytokine, IL-13, ovalbumin-specific IgE, and airway hyperresponsiveness (AHR) to inhaled methacholine. Moreover, RvE1-treated mice had significantly lower mucus scores compared to vehicle-treated mice based on the number of goblet cells stained with periodic acid-schiff (PAS). These findings provide evidence that RvE1 is a pivotal counterregulatory signal in allergic inflammation and offer novel multi-pronged therapeutic approaches for human asthma.  相似文献   

14.
Genetically modified (GM) foods are evaluated carefully for their ability to induce allergic disease. However, few studies have tested the capacity of a GM food to act as an adjuvant, i.e. influencing allergic responses to other unrelated allergens at acute onset and in individuals with pre-existing allergy. We sought to evaluate the effect of short-term feeding of GM Bacillus thuringiensis (Bt)-maize (MON810) on the initiation and relapse of allergic asthma in mice. BALB/c mice were provided a diet containing 33% GM or non-GM maize for up to 34 days either before ovalbumin (OVA)-induced experimental allergic asthma or disease relapse in mice with pre-existing allergy. We observed that GM-maize feeding did not affect OVA-induced eosinophilic airway and lung inflammation, mucus hypersecretion or OVA-specific antibody production at initiation or relapse of allergic asthma. There was no adjuvant effect upon GM-maize consumption on the onset or severity of allergic responses in a mouse model of allergic asthma.  相似文献   

15.
《Cytotherapy》2023,25(9):967-976
Background/AimsAlthough several studies have demonstrated that mesenchymal stromal cells (MSCs) exhibit beneficial immunomodulatory properties in preclinical models of allergic asthma, effects on airway remodeling have been controversial. Recent evidence has shown that MSCs modify their in vivo immunomodulatory actions depending on the specific inflammatory environment encountered. Accordingly, we assessed whether the therapeutic properties of human mesenchymal stromal cells (hMSCs) could be potentiated by conditioning these cells with serum (hMSC-serum) obtained from patients with asthma and then transplanted in an experimental model of house dust mite (HDM)-induced allergic asthma.MethodshMSC and hMSC-serum were administered intratracheally 24 h after the final HDM challenge. hMSC viability and inflammatory mediator production, lung mechanics and histology, bronchoalveolar lavage fluid (BALF) cellularity and biomarker levels, mitochondrial structure and function as well as macrophage polarization and phagocytic capacity were assessed.ResultsSerum preconditioning led to: (i) increased hMSC apoptosis and expression of transforming growth factor-β, interleukin (IL)-10, tumor necrosis factor-α–stimulated gene 6 protein and indoleamine 2,3-dioxygenase-1; (ii) fission and reduction of the intrinsic respiratory capacity of mitochondria; and (iii) polarization of macrophages to M2 phenotype, which may be associated with a greater percentage of hMSCs phagocytosed by macrophages. Compared with mice receiving hMSCs, administration of hMSC-serum led to further reduction of collagen fiber content, eotaxin levels, total and differential cellularity and increased IL-10 levels in BALF, improving lung mechanics. hMSC-serum promoted greater M2 macrophage polarization as well as macrophage phagocytosis, mainly of apoptotic hMSCs.ConclusionsSerum from patients with asthma led to a greater percentage of hMSCs phagocytosed by macrophages and triggered immunomodulatory responses, resulting in further reductions in both inflammation and remodeling compared with non-preconditioned hMSCs.  相似文献   

16.
17.

Background

Connexin (Cx)-based gap junction channels play important roles in the inflammatory response. Cx43 is involved in the pathogenesis of some lung diseases such as acute lung injury. However, the Cx43 expression in asthma is unclear. In the present study, we used a murine model of ovalbumin (OVA)-induced allergic airway disease to examine the levels of Cx43 and analyze the relationship between Cx43 and airway inflammation in allergic airway disease.

Methods

Asthma was induced in mice via sensitization and challenge with OVA. Cx43 mRNA and protein expression levels were investigated via QT-PCR, western blot, and immunohistochemistry 0 h, 8 h, 1 d, 2 d and 4 d after the first challenge. The relationship between Cx43 protein levels and inflammatory cell infiltration, cytokine levels was analyzed.

Results

The OVA-induced mice exhibited typical pathological features of asthma, including airway hyper-responsiveness; strong inflammatory cell infiltration surrounding the bronchia and vessels; many inflammatory cells in the bronchoalveolar lavage fluid (BALF); higher IL-4, IL-5 and IL-13 levels; and high OVA specific IgE levels. Low Cx43 expression was detected in the lungs of control (PBS) mice. A dramatic increase in the Cx43 mRNA and protein levels was found in the asthmatic mice. Cx43 mRNA and protein expression levels increased in a time-dependent manner in asthma mice, and Cx43 was mostly localized in the alveolar and bronchial epithelial layers. Moreover, lung Cx43 protein levels showed a significant positive correlation with inflammatory cell infiltration in the airway and IL-4 and IL-5 levels in the BALF at different time points after challenge. Interestingly, the increase in Cx43 mRNA and protein levels occurred prior to the appearance of the inflammatory cell infiltration.

Conclusion

Our data suggest that there is a strong upregulation of Cx43 mRNA and protein levels in the lungs in asthma. Cx43 levels also exhibited a positive correlation with allergic airway inflammation. Cx43 may represent a target to treat allergic airway diseases in the future.  相似文献   

18.
BackgroundAsthma, the main inflammatory chronic condition affecting the respiratory system, is characterized by hyperresponsiveness and reversible airway obstruction, recruitment of inflammatory cells and excessive production of mucus. Cytokines as biochemical messengers of immune cells, play an important role in the regulation of allergic inflammatory and infectious airway processes. Essential oils of plant origin are complex mixtures of volatile and semi volatile organic compounds that determine the specific aroma of plants and are categorized by their biological activities.PurposeWe reviewed whether essential oils and their bioactive compounds of plant origin could modulate cytokines’ immune responses and improve asthma therapy in experimental systems in vitro and in vivo.MethodsElectronic and manual search of articles in English available from inception up to November 2018 reporting the immunomodulatory activity of essential oils and their bioactive compounds for the management of asthma. We used PubMed, EMBASE, Scopus and Web of Science. Publications reporting preclinical experiments where cytokines were examined to evaluate the consequence of anti-asthmatic therapy were included.Results914 publications were identified and 13 were included in the systematic review. Four articles described the role of essential oils and their bioactive compounds on bronchial asthma using cell lines; nine in vivo studies evaluated the anti-inflammatory efficacy and immunomodulating effects of essential oil and their secondary metabolites on cytokines production and inflammatory responses. The most important immunopharmacological mechanisms reported were the regulation of cytokine production, inhibition of reactive oxygen species accumulation, inactivation of eosinophil migration and remodeling of the airways and lung tissue, modulation of FOXP3 gene expression, regulation of inflammatory cells in the airways and decreasing inflammatory mediator expression levels.ConclusionPlant derived essential oils and related active compounds have potential therapeutic activity for the treatment of asthma by modulating the release of pro-inflammatory (TNF-α, IL-1β, IL-8), Th17 (IL-17), anti-inflammatory (IL-10), Th1 (IFN-γ, IL-2, IL-12) and Th2 (IL-4, IL-5, IL-6, IL-13) cytokines and the suppression of inflammatory cell accumulation.  相似文献   

19.
Asthma is a potentially life-threatening inflammatory disease of the lung characterized by the presence of large numbers of CD4+ T cells. These cells produce the Th2 and Th17 cytokines that are thought to orchestrate the inflammation associated with asthma. Bee venom (BV) has traditionally been used to relieve pain and to treat chronic inflammatory diseases. Recent reports have suggested that BV might be an effective treatment for allergic diseases. However, there are still unanswered questions related to the efficacy of BV therapy in treating asthma and its therapeutic mechanism. In this study, we evaluated whether BV could inhibit asthma and whether BV inhibition of asthma could be correlated with regulatory T cells (Treg) activity. We found that BV treatment increased Treg populations and suppressed the production of Th1, Th2 and Th17-related cytokines in an in vitro culture system, including IL2, IL4, and IL17. Interestingly, production of IL10, an anti-inflammatory cytokine secreted by Tregs, was significantly augmented by BV treatment. We next evaluated the effects of BV treatment on allergic asthma in an ovalbumin (OVA)-induced mouse model of allergic asthma. Cellular profiling of the bronchoalveolar lavage (BAL) and histopathologic analysis demonstrated that peribronchial and perivascular inflammatory cell infiltrates were significantly lowered following BV treatment. BV also ameliorated airway hyperresponsiveness, a hallmark symptom of asthma. In addition, IL4 and IL13 levels in the BAL fluid were decreased in the BV treated group. Surprisingly, the beneficial effects of BV treatment on asthma were eradicated following Treg depletion by anti-CD25 antibody injection, suggesting that the major therapeutic targets of BV were Tregs. These results indicate that BV efficiently diminishes bronchial inflammation in an OVA-induced allergic asthma murine model, and that this effect might correlate with Tregs, which play an important role in maintaining immune homeostasis and suppressing the function of other T cells to limit the immune response. These results also suggest that BV has potential therapeutic value for controlling allergic asthma responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号