首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungal spores and pollens can be dispersed in a number of ways: by animals and insects; by water; by wind or by rain. This paper concentrates on the effects of wind on the dispersal of spores and pollen grains and the effects of rain on spore dispersal. For dispersal to be successful particles must complete three phases: removal, dispersal through the air and deposition. The biology of the organism and its environment can affect all three phases, however, once released the fate of all airborne particles largely depends on the laws of physics which govern the motion of the air. Many types of spore are actively ejected into the air while others are simply blown from the host surface. Particle size and shape affects dispersal and deposition phases. Local environmental factors such as temperature, humidity and light, as well as wind or rain, can play a key role in the removal of spores. Wind speed and turbulence or rainfall, largely determine spore dispersal, but, the size and shape of the particle, the nature of the plant canopy and the way the particles are released into the air may also be important. Particle deposition depends on both environmental and biological factors. This paper briefly considers these processes using examples and how they can be modelled.  相似文献   

2.
3.
In the summer of 2003, a microalga strain was isolated from a massive green microalgae bloom in wastewater stabilization ponds at the treatment facility of La Paz, B.C.S., Mexico. Prevailing environmental conditions were air temperatures over 40 degrees C, water temperature of 37 degrees C, and insolation of up to 2400 micromol m2 s(-1) at midday for several hours at the water surface for four months. The microalga was identified as Chlorella sorokiniana Shih. et Krauss, based on sequencing its entire 18S rRNA gene. In a controlled photo-bioreactor, this strain can grow to high population densities in synthetic wastewater at temperatures of 40-42 degrees C and light intensity of 2500 micromol m2 s(-1) for 5h daily and efficiently remove ammonium from the wastewater under these conditions better than under normal lower temperature (28 degrees C) and lower light intensity (60 micromol m2 s(-1)). When co-immobilized with the bacterium Azospirillum brasilense that promotes growth of microalgae, the population of microalga grew faster and removed even more ammonium. Under exposure to extreme growth conditions, the quantity of four photosynthetic pigments increased in the co-immobilized cultures. This strain of microalga has potential as a wastewater treatment agent under extreme conditions of temperature and light intensity.  相似文献   

4.
Summary Aerobiology, in the strict sense, is the science which is studying the transportation of biological particles through the air. This process includes the release, the staying airborne, and deposition of particles of biological origin. Until recently, most of the allergological research has been done on the processes before and after the strict aerobiological pathway. The allergological studies were primarily dealing with the allergenic properties of the particles, irrespective of their aerobiological characteristics. Also, many studies have been done about the effects of allergens in sensitized people, after deposition in the respiratory organs. But for a more complete knowledge of the allergic process, allergological aerobiology in the strict sense is indispensable. The understanding of symptoms of respiratory allergy requires knowledge of the aerodynamic properties of airborne allergen carrying particles.  相似文献   

5.
Harvesting of microalgae by bio-flocculation   总被引:2,自引:0,他引:2  
The high-energy input for harvesting biomass makes current commercial microalgal biodiesel production economically unfeasible. A novel harvesting method is presented as a cost and energy efficient alternative: the bio-flocculation by using one flocculating microalga to concentrate the non-flocculating microalga of interest. Three flocculating microalgae, tested for harvesting of microalgae from different habitats, improved the sedimentation rate of the accompanying microalga and increased the recovery of biomass. The advantages of this method are that no addition of chemical flocculants is required and that similar cultivation conditions can be used for the flocculating microalgae as for the microalgae of interest that accumulate lipids. This method is as easy and effective as chemical flocculation which is applied at industrial scale, however in contrast it is sustainable and cost-effective as no costs are involved for pre-treatment of the biomass for oil extraction and for pre-treatment of the medium before it can be re-used.  相似文献   

6.
The understanding of airborne pollen transportation is crucial for the reconstruction of the paleoenvironment. Under favorable conditions, a considerable amount of long-distance-transported pollen can be deposited far from its place of origin. In extreme arid regions, in most cases, such situations occur and increase the difficulty to interpret fossil pollen records. In this study, three sets of Cour airborne pollen trap were installed on the northern slope of Tianshan Mountains to collect airborne Picea schrenkiana (spruce) pollen grains from July 2001 to July 2006. The results indicate that Picea pollen disperses extensively and transports widely in the lower atmosphere far away from spruce forest. The airborne Picea pollen dispersal period is mainly concentrated between mid-May and July. In desert area, weekly Picea pollen began to increase and peaked suddenly in concentration. Also, annual pollen indices do not decline even when the distance increased was probably related to the strong wind may pick up the deposited pollen grains from the topsoil into the air stream, leading to an increase of pollen concentration in the air that is irrelevant to the normal and natural course of pollen transport and deposition. This, in turn, may lead to erroneous interpretations of the pollen data in the arid region. This study provided insight into the shift in the Picea pollen season regarding climate change in arid areas. It is recorded that the pollen pollination period starts earlier and the duration became longer. The results also showed that the temperature of May and June was positively correlated with the Picea pollen production. Furthermore, the transport of airborne Picea pollen data is useful for interpreting fossil pollen records from extreme arid regions.  相似文献   

7.
Aims:  A series of experiments were conducted to evaluate the effect of surface charge and air ionization on the deposition of airborne bacteria.
Methods and Results:  The interaction between surface electrostatic potential and the deposition of airborne bacteria in an indoor environment was investigated using settle plates charged with electric potentials of 0, ±2·5kV and ±5kV. Results showed that bacterial deposition on the plates increased proportionally with increased potential to over twice the gravitational sedimentation rate at +5kV. Experiments were repeated under similar conditions in the presence of either negative or bipolar air ionization. Bipolar air ionization resulted in reduction of bacterial deposition onto the charged surfaces to levels nearly equal to gravitational sedimentation. In contrast, diffusion charging appears to have occurred during negative air ionization, resulting in an even greater deposition onto the oppositely charged surface than observed without ionization.
Conclusions:  Static charges on fomitic surfaces may attract bacteria resulting in deposition in excess of that expected by gravitational sedimentation or simple diffusion. Implementation of bipolar ionization may result in reduction of bacterial deposition.
Significance and Impact of Study:  Fomitic surfaces are important vehicles for the transmission of infectious organisms. This study has demonstrated a simple strategy for minimizing charge related deposition of bacteria on surfaces.  相似文献   

8.
A heavy‐metal‐resistant, carotenoid‐enriched novel unicellular microalga was isolated from an acidic river in Huelva, Spain. The isolated ribosomal 18S subunit rDNA sequence showed homology with known sequences from green microalgae, the closest sequence (98% homology) belonging to the genus Coccomyxa. The isolated microalga therefore was an up to now uncultured microalga. The microalga was isolated from Tinto River area (Huelva, Spain), an acidic river that exhibits very low pH (1.7–3.1) with high concentrations of sulfuric acid and heavy metals, including Fe, Cu, Mn, Ni, and Al. Electron micrographs show that the microalga contains a large chloroplast with a presence of lipid droplets, an increased number of starch bodies as well as electron‐dense deposits and plastoglobules, the last observed only in iron‐exposed cells. Unlike other acidophile microalgae, the isolated microalga showed high growth rates when cultivated photoautotrophycally (up to 0.6 d?1) in a suitable culture medium prepared at our laboratory. The growth was shown to be iron dependent. When the microalga is grown in fluidized bed reactors, the high growth rates resulted in unexpectedly high productivities for being a microalga that naturally grows in acidic environments (0.32 g·L?1·d?1). The microalga also grows optimally on reduced carbon sources, including glucose and urea, and at an optimal temperature of 35°C. The alga pigment profile is particularly rich in carotenoids, especially lutein, suggesting that the microalga might have potential for antioxidant production, namely, xanthophylls.  相似文献   

9.
Summary Aeriobiological studies are essential for understanding the distribution, ecology and deposition patterns of both phytopathogenic and nonpathogenic fungal spores which are carried away from their source. Many spores and conidia are devitalized during aerial transportation as a consequence of being exposed to atmospheric agents. Nonetheless, a sufficient number remain viable, causing infections of various kinds, some of which extremely serious and with an epidemic trend.In order to predict the onset of fungi-induced diseases, it is necessary to be able to determine the inoculum source of the pathogenic agent. As air is the main vector transporting pathogenic fungal spores and conidia, periodical monitoring is required. Thus, having established the critical stages of plant infection, necessary precautionary measures can be undertaken in order to control diseases onset and development.It is therefore necessary to gain a through understanding of spore takeoff and dispersal mechanisms so as to determine how the spores and conidia are transported by air currents onto the plants and how they cause infective impaction. Spores and conidia suspended in the atmosphere can be collected by means of appropriate traps filtering a predetermined amount of air at predetermined time intervals in order to be able to make predictions as to the possibility of plant infection. Volumetric air sampling allows not only to determine the concentration of spores and conidia in a given period of time but also to establish the hours of the day in which they are present in highest concentrations and in which therefore they are more liable to cause infection. This information may be used in estimating the incidence of disease symptoms, the duration of infection and the seriousness of the disease.On the basis of this data, mathematical models for predicting epidemics can be worked out.  相似文献   

10.
11.
Characterization of airborne bacteria at an underground subway station   总被引:1,自引:0,他引:1  
The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization-time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers.  相似文献   

12.
The distribution and behaviour of particulate trace elements in the atmosphere have been studied by continuous measurements for 5 years at seven non-urban sites in the United Kingdom. Samples have been taken regularly of airborne dust, rainwater and dry deposition: these have been analysed for up to 36 elements. Concentrations of trace elements vary considerably between sites but the relative concentrations are among uniform: this suggests similarity of origin or good atmospheric mixing. By comparing the relative concentrations with those in soil it is possible to differentiate between trace elements that are derived from soil and those that may be attributed to industrial activity. This classification is supported by estimates of the particle sizes in air. The deposition of trace elements can be related to the concentrations presnet in soil and to the annual removal by crops. Retrospective analyses of stored samples from one site describe the history of trace element concentrations in air since 1957. The sea surface is considered as a possible source of atmospheric trace elements.  相似文献   

13.
通过设置绿球藻(Chlorococcum sphacosum GD)的起始接种浓度(25—400 mg/L),研究其对水产养殖废水的处理效果及藻细胞的生长特性。研究结果表明,起始接种浓度为100 mg/L的绿球藻藻液,其生长特性最佳,比生长速率最大,倍增时间最短。随着起始接种浓度的增加,生长速率逐渐降低,倍增时间逐渐增加。在起始接种浓度为100 mg/L的条件下,在5d的培养周期内,绿球藻能够去除水产养殖废水中96.92%的COD、98.08%的氨氮、98.67%的亚硝氮、91.42%的硝氮及98.36%的总磷。低起始接种浓度(尤其是100 mg/L)有利于绿球藻的生长和污染物降解。研究初步探明了微藻起始接种浓度对水产养殖废水处理效果的影响。通过控制微藻接种浓度有望在提高污染物去除率的同时缩短培养周期并提高容积负荷,为今后微藻用于大规模水产养殖废水的处理提供了一定的理论支持。  相似文献   

14.
Drops produced by bursting bubbles provide a mechanism for the water-to-air transfer and concentration of matter. Bacteria can adsorb to air bubbles rising through bacterial suspensions and enrich the drops formed by the bubbles upon breaking, creating atmospheric biosols which function in dispersal. This bacterial enrichment can be quantified as an enrichment factor (EF), calculated as the ratio of the concentration of bacteria in the drop to that of the bulk bacterial suspension. Bubbles were produced in suspensions of pigmented (prodigiosin-producing) and nonpigmented cultures of Serratia marcescens. EFs for pigmented cultures were greater than EFs for nonpigmented cells. Pigmented cells appeared hydrophobic based on their partitioning in two-phase systems of polyethylene glycol 6000 and dextran T500. The surface hydrophobicity of pigmented cells may result from the hydrophobic nature of prodigiosin and could account for the greater ability of these bacteria to adsorb to air bubbles and enrich airborne droplets. Enhancement of the aerosolization of S. marcescens may be a selective function of the bacterial secondary metabolite prodigiosin.  相似文献   

15.
Drops produced by bursting bubbles provide a mechanism for the water-to-air transfer and concentration of matter. Bacteria can adsorb to air bubbles rising through bacterial suspensions and enrich the drops formed by the bubbles upon breaking, creating atmospheric biosols which function in dispersal. This bacterial enrichment can be quantified as an enrichment factor (EF), calculated as the ratio of the concentration of bacteria in the drop to that of the bulk bacterial suspension. Bubbles were produced in suspensions of pigmented (prodigiosin-producing) and nonpigmented cultures of Serratia marcescens. EFs for pigmented cultures were greater than EFs for nonpigmented cells. Pigmented cells appeared hydrophobic based on their partitioning in two-phase systems of polyethylene glycol 6000 and dextran T500. The surface hydrophobicity of pigmented cells may result from the hydrophobic nature of prodigiosin and could account for the greater ability of these bacteria to adsorb to air bubbles and enrich airborne droplets. Enhancement of the aerosolization of S. marcescens may be a selective function of the bacterial secondary metabolite prodigiosin.  相似文献   

16.
Exposure to airborne microorganisms in indoor environments may result in infectious disease or elicit an allergic or irritant response. Air handling system components contaminated by fungi have been implicated in the dispersal of spores into the indoor environment, thereby serving as a route of exposure to occupants. This study was conducted to provide quantitative data on the dispersal of spores from fungal colonies growing on three types of duct material. Galvanized metal, rigid fibrous glass ductboard, and fiberglass duct liner were soiled and contaminated with a known concentration of Penicillium chrysogenum spores. The duct materials were incubated in humidity chambers to provide a matrix of growing, sporulating fungal colonies at a contamination level of 109 colony forming units (CFU) per duct section, consistent for all materials. For each experiment a contaminated duct section was inserted into the air handling system of an experimental room, and the air handling system was operated for three 5-minute cycles with an air flow of 4.2 m3 min–1. The duct air velocity was approximately 2.8 m sec–1. The airborne concentration of culturable P. chrysogenum spores (CFU m–3), total P. chrysogenum spores (spores m–3), and total P. chrysogenum-sized particles (particles m–3) were measured in the room using Andersen single-stage impactor samplers, Burkard slide impactor samplers, and an aerodynamic particle sizer, respectively. The highest airborne concentrations (104 CFU m–3; 105 spores m–3; 104 particles m–3) were measured during the first operating cycle of the air handling system for all duct materials with decreasing airborne concentrations measured during the second and third cycles. There was no significant difference in spore dispersal from the three contaminated duct materials. These data demonstrate the potential exposure for building occupants to high concentrations of spores dispersed from fungal colonies on air handling system duct materials during normal operation of the system.  相似文献   

17.
Environmental controls were traditionally considered as sole determinants of community assembly for freshwater bioassessment studies, whereas potential importance of dispersal processes and spatial scale have received limited attention. We conducted a bioassessment of lakes across northeast Alberta, Canada using crustacean zooplankton to develop a framework for evaluating if and how atmospheric emissions from the nearby Athabasca Oil Sands Region could impact their community assemblages. We quantified the effects of environmental gradients and spatially contingent dispersal processes for determining zooplankton community composition of 97 lakes at two spatial scales (regional and sub-regional) using constrained ordination, spatial modeling and variance partitioning techniques. Our findings indicated that effects of both environmental gradients and dispersal processes on species composition were scale-dependent. Zooplankton community composition was significantly correlated to environmental parameters that are directly and indirectly sensitive to industrial deposition including nitrate, sulphate, dissolved organic carbon, base cation, chloride, trace metal concentrations and predation regime, indicating their potential to track future environmental impacts. The relative importance of these environmental predictors varied with spatial scale, yet unraveling the effects of natural environmental heterogeneity vs. industrial deposition on this scale-dependency was not possible due to lack of regional baseline information. Dispersal processes were not important in shaping zooplankton communities at the sub-regional scale, but had limited, yet significant influence on species composition at the regional scale, emphasizing the need for cautious interpretation of broad-scale community patterns. Beyond establishing crucial regional baselines, our study highlights the necessity for explicit incorporation of dispersal effects and spatial scale in bioassessment of lakes across landscapes.  相似文献   

18.
Analysis of numerous air samples has indicated that dormant, viable fungal spores are highly present, which suggests that aerial dispersion is important for fungi. Whereas the majority of the spores may travel only very short distances, there is indication that a notable number of them cover much longer distances. Harmomegathy is a terminology coined by Wodehouse (1935) describing the natural folding of pollen to accommodate controlled and reversible water loss. Here, we discuss evidence that this concept may also apply to airborne fungal spores that face similar challenges and have to survive periods of drought and low temperatures while retaining viability to germinate after deposition upon a suitable moist substrate. In fact, (air)dried conidia, appear collapsed, survive for much longer times compared to spores in liquid, that deteriorate in time. This indicates that for some types of fungal spores, true dormancy is reached in the desiccated state. For these airborne spores this might be regarded as a pre-adaptation that supports long-distance transport of viable cells through air. We state that spores are naturally folded during transport in air if the humidity is low enough. We hypothesize that this is a pre-adaptation supporting release, dispersal and survival of airborne spores. Moreover, the smaller size of dry naturally-folded spores may also be relevant, e.g. for the opportunistic pathogenic fungus Aspergillus fumigatus reduced spore size supports deposition within the alveoli in the lung.  相似文献   

19.
Aim We investigate the long‐standing question of whether the small size of microbes allows most microbial species to colonize all suitable sites around the globe or whether their ranges are limited by opportunities for dispersal. In this study we use a modelling approach to investigate the effect of size on the probability of between‐continent dispersal using virtual microorganisms in a global model of the Earth’s atmosphere. Location Global. Methods We use a computer model of global atmospheric circulation to investigate the effect of microbe size (effective diameters of 9, 20, 40 and 60 μm) on the probability of aerial dispersal. Results We found that for smaller microbes, once airborne, dispersal is remarkably successful over a 1‐year period. The most striking results are the extensive within‐hemisphere distribution of virtual microbes of 9 and 20 μm diameter and the lack of dispersal between the Northern and Southern Hemispheres during the year‐long time‐scale of our simulations. Main conclusions Above a diameter of 20 μm wind dispersal of virtual microbes between continents becomes increasingly unlikely, and it does not occur at all (within our simulated 1‐year period) for those of 60 μm diameter. Within our simulation, the success of small microbes in long‐distance dispersal is due both to their greater abundance and to their longer time in the atmosphere – once airborne – compared with larger microbes.  相似文献   

20.
Aeroalgal sampling of Varanasi City, India, was done using a Tilak Rotorod sampler and exposing agarised Bold basal medium Petri plates during March 2003 to February 2005. Amongst the 34 airborne algal genera recorded, cyanobacteria dominated the aero-algal flora, followed by green algae and diatoms. The generic diversity of airborne algae as well as the constituting groups exhibited seasonal variation. The most favored period for the appearance of cyanobacteria in the air was summer, while winter favored green algae. Presence of diatoms was almost uniform throughout the year. The presence of algal particles in the air depended upon the abundance and dynamics of algal source and their release and dispersal in the atmosphere. Best model selection with Akaike information criteria indicated temperature, relative humidity, rainfall, wind velocity as the most important climatic factors determining algal diversity. These factors exert their effect both directly by influencing entrainment and dispersal of algae from the source, and indirectly by regulating the dynamics of the possible algal source (soil, water, plant body, wall and roof of the building) by supporting or inhibiting the algal growth. In a closed environment and at low altitude sampling site characteristic is also an important factor. Open area near to the countryside had maximal aero-algal diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号