首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns of nestin expression in human skin   总被引:7,自引:0,他引:7  
  相似文献   

2.
Hair follicle stem cells (HFSCs) normally give rise to keratinocytes, sebocytes, and transient amplifying progenitor cells. Along with the capacity to proliferate rapidly, HFSCs provide the basis for establishing a putative source of stem cells for cell therapy. HFSCs are multipotent stem cells originating from the bulge area. The importance of these cells arises from two important characteristics, distinguishing them from all other adult stem cells. First, they are accessible and proliferate for long periods. Second, they are multipotent, possessing the ability to differentiate into mesodermal and ectodermal cell types. In addition to a developmental capacity in vitro, HFSCs display an ability to form differentiated cells in vivo. During the last two decades, numerous studies have led to the development of an appropriate culture condition for producing various cell lineages from HFSCs. Therefore, these stem cells are considered as a novel source for cell therapy of a broad spectrum of neurodegenerative disorders. This review presents the current status of human, rat, and mouse HFSCs from both the cellular and molecular biology and cell therapy perspectives. The first section of this review highlights the importance of HFSCs and in vitro differentiation, while the final section emphasizes the significance of cell differentiation in vivo.  相似文献   

3.
4.
5.
Summary The epidermis shows a distinctive pattern of differentiation wherein keratinocytes proliferate in the basal cell layer and mature into spinous and granular cells. Using a discontinuous density-gradient centrifugation method, guinea-pig keratinocytes were separated into high (HDF), intermediate (IDF), and low (LDF) density fractions. Morphological and flow cytometrical observations demonstrated that HDF, IDF, and LDF were basal, spinous, and granular cell-rich fractions, respectively. Membrane fluidity of the fractionated keratinocytes was measured by diphenylhexatriene fluorescence polarization. Polarization (p)-value of keratinocytes was negatively correlated with temperature. At each temperature, HDF cells showed a lower p-value than IDF or HDF cells except at 40° C. Since a low p-value indicates a high degree of Brownian motion, membrane fluidity is higher in basal cells and lower in spinous and granular cells. Our results indicate that membrane fluidity of guinea-pig keratinocytes decreases during their maturation.  相似文献   

6.
7.
Mice lacking the ubiquitously expressed lysosomal cysteine protease cathepsin L, show a complex skin phenotype consisting of periodic hair loss and epidermal hyperplasia with hyperproliferation of basal epidermal keratinocytes, acanthosis and hyperkeratosis. The recently identified human cathepsin L-like enzyme cathepsin V, which is also termed cathepsin L2, is specifically expressed in cornea, testis, thymus, and epidermis. To date, in mice no cathepsin V orthologue with this typical expression pattern has been identified. Since cathepsin V has about 75% protein sequence identity to murine cathepsin L, we hypothesized that transgenic, keratinocyte-specific expression of cathepsin V in cathepsin L knockout mice might rescue the skin and hair phenotype. Thus, we generated a transgenic mouse line expressing cathepsin V under the control of the human keratin 14 promoter, which mimics the genuine cathepsin V expression pattern in human skin, by directing it to basal epidermal keratinocytes and the outer root sheath of hair follicles. Subsequently, transgenic mice were crossed with congenic cathepsin L knockout animals. The resulting mice show normalization of epidermal proliferation and normal epidermal thickness as well as rescue of the hair phenotype. These findings provide evidence for keratinocyte-specific pivotal functions of cathepsin L-like proteolytic activities in maintenance of epidermis and hair follicles and suggest, that cathepsin V may perform similar functions in human skin.  相似文献   

8.
Notch1 is essential for postnatal hair follicle development and homeostasis   总被引:4,自引:0,他引:4  
Notch genes encode evolutionarily conserved large, single transmembrane receptors, which regulate many cell fate decisions and differentiation processes during fetal and postnatal life. Multiple Notch receptors and ligands are expressed in both developing and adult epidermis and hair follicles. Proliferation and differentiation of these two ectodermal-derived structures have been proposed to be controlled in part by the Notch pathway. Whether Notch signaling is involved in postnatal hair homeostasis is currently unknown. Here, we investigate and compare the role of the Notch1 receptor during embryonic hair follicle development and postnatal hair homeostasis using Cre-loxP based tissue specific and inducible loss-of-function approaches. During embryonic development, tissue-specific ablation of Notch1 does not perturb formation and patterning of hair follicle placodes. However, Notch1 deficient hair follicles invaginate prematurely into the dermis. Embryonic as well as postnatal inactivation of Notch1 shortly after birth or in adult mice results in almost complete hair loss followed by cyst formation. The first hair cycle of Notch1 deficient mice is characterized by shortened anagen and a premature entry into catagen. These data show that Notch1 is essential for late stages of hair follicle development during embryogenesis as well as for post-natal hair follicle development and hair homeostasis.  相似文献   

9.
The molecular mechanisms controlling the differentiation of human basal keratinocyte stem cells towards the epidermis are well characterized, whereas the earliest process leading to the specification of embryonic stem cells into keratinocytes is still not well understood. MicroRNAs are regulators of many cellular events, but evidence for microRNA acting on the differentiation of human embryonic stem cells into a specific lineage has been elusive. By using our recent protocol for obtaining functional keratinocytes from hESC, we attempted to analyze the role of microRNAs in the early stages of epidermal differentiation. Thus, we identified a set of 5 microRNAs, namely miR-200a, miR-200b, miR-203, miR-205 and miR-429, that are specifically overexpressed during the early stages of the differentiation process. Interestingly, our functional analyses revealed an instrumental role of miR-203, which had been previously shown to play a key role during the formation of the pluristratified epidermis by basal keratinocyte stem cells, in the early keratinocyte commitment. These results highlight the determinant and unique role of miR-203 during the entire process of epidermal development by extending its spectrum of action from the early commitment of embryonic stem cells to ultimate differentiation of the organ.  相似文献   

10.
We previously demonstrated that keratin 15 expressing cells present in the bulge region of hair follicles exhibit properties of adult stem cells. We have now established and characterized an immortalized adult epithelial stem cell line derived from cells isolated from the human hair follicle bulge region. Telogen hair follicles from human skin were microdissected to obtain an enriched population of keratin 15 positive skin stem cells. By expressing human papillomavirus 16 E6/E7 genes in these stem cells, we have been able to culture the cells for >30 passages and maintain a stable phenotype after 12 mo of continuous passage. The cell line was compared to primary stem cells for expression of stem cell specific proteins, for in vitro stem cell properties, and for their capacity to differentiate into different cell lineages. This new cell line, named Tel-E6E7 showed similar expression patterns to normal skin stem cells and maintained in vitro properties of stem cells. The cells can differentiate into epidermal, sebaceous gland, and hair follicle lineages. Intact beta-catenin dependent signaling, which is known to control in vivo hair differentiation in rodents, is maintained in this cell line. The Tel-E6E7 cell line may provide the basis for valid, reproducible in vitro models for studies on stem cell lineage determination and differentiation.  相似文献   

11.
In the thin epidermis, the existence of epidermal proliferation units was hypothesized. Each unit is supposed to be partitioned into each column of polygonal-shaped cornified plates, estimated to contain a central stem cell in its basal layer. We attempted to verify this hypothesis in vitro by analyzing the partially decomposed fragment of mouse ear epidermis and in vivo using retroviral cell marking. Partially decomposed fragments of the mouse ear epidermis, mostly composed of cytokeratin 14-expressing basal keratinocytes, formed multicellular colonies in vitro. They were composed of heterogeneously shaped cells, morphologically resembling the cells in each single cell-derived colony, including potential stem cells with great proliferative potency in vitro. The estimated frequency of the candidates of stem cells in the fragments was much lower than the prediction from the representative hypothesis. Retroviral cell marking with nuclear localizing LacZ protein in vivo suggested the existence of a large clonal cellular unit for epidermal renewal. From these in vitro and in vivo observations, we propose a new model for the epidermal proliferation unit.  相似文献   

12.
Hair follicles in the skin undergo cyclic rounds of regeneration, degeneration, and rest throughout life. Stem cells residing in hair follicles play a pivotal role in maintaining tissue homeostasis and hair growth cycles. Research on hair follicle aging and age-related hair loss has demonstrated that a decline in hair follicle stem cell (HFSC) activity with aging can decrease the regeneration capacity of hair follicles. This review summarizes our understanding of how age-associated HFSC intrinsic and extrinsic mechanisms can induce HFSC aging and hair loss. In addition, we discuss approaches developed to attenuate age-associated changes in HFSCs and their niches, thereby promoting hair regrowth.  相似文献   

13.
MicroRNAs (miRNAs) regulate the development and growth cycle of hair follicles (HFs). The molecular mechanism by which miRNAs determine the development of HFs in the sheep foetus remains elusive. In this study, the expression profiles of miRNAs at 11 development periods (45, 55, 65, 75, 85, 95, 105, 115, 125, 135 and 145 d) in sheep foetus skin were analysed by high-throughput sequencing and bioinformatics analysis. A total of 72 conserved miRNAs, 44 novel miRNAs and 32 known miRNAs were significantly differentially expressed. qRT-PCR results for 18 miRNAs were consistent with the sequencing data. 85 d of foetal development was the starting point for secondary hair follicle (SF) development according to tissue morphology and cluster analysis. In SF development, the prolactin signalling pathway and platelet activation played important roles, and 10 miRNAs were potential candidate miRNAs in SF initiation.  相似文献   

14.
The induction of inner ear hair cells from stem cells or progenitor cells in the inner ear proceeds through a committed inner ear sensory progenitor cell stage prior to hair cell differentiation. To increase the efficacy of inducing inner ear hair cell differentiation from the stem cells or progenitor cells, it is essential to identify comprehensive markers for the stem cells/progenitor cells from the inner ear, the committed inner ear sensory progenitor cells and the differentiating hair cells to optimize induction conditions. Here, we report that we efficiently isolated and expanded the stem cells or progenitor cells from postnatal mouse cochleae, and induced the generation of inner ear progenitor cells and subsequent differentiation of hair cells. We profiled the gene expression of the stem cells or progenitor cells, the inner ear progenitor cells, and hair cells using aRNA microarray analysis. The pathway and gene ontology (GO) analysis of differentially expressed genes was performed. Analysis of genes exclusively detected in one particular cellular population revealed 30, 38, and 31 genes specific for inner ear stem cells, inner ear progenitor cells, and hair cells, respectively. We further examined the expression of these genes in vivo and determined that Gdf10+Ccdc121, Tmprss9+Orm1, and Chrna9+Espnl are marker genes specific for inner ear stem cells, inner ear progenitor cells, and differentiating hair cells, respectively. The identification of these marker genes will likely help the effort to increase the efficacy of hair cell induction from the stem cells or progenitor cells.  相似文献   

15.

Background

Human induced pluripotent stem cells (iPSCs) have a wide range of applications throughout the fields of basic research, disease modeling and drug screening. Epigenetic instable iPSCs with aberrant DNA methylation may divide and differentiate into cancer cells. Unfortunately, little effort has been taken to compare the epigenetic variation in iPSCs with that in differentiated cells. Here, we developed an analytical procedure to decipher the DNA methylation heterogeneity of mixed cells and further exploited it to quantitatively assess the DNA methylation variation in the methylomes of adipose-derived stem cells (ADS), mature adipocytes differentiated from ADS cells (ADS-adipose) and iPSCs reprogrammed from ADS cells (ADS-iPSCs).

Results

We observed that the degree of DNA methylation variation varies across distinct genomic regions with promoter and 5’UTR regions exhibiting low methylation variation and Satellite showing high methylation variation. Compared with differentiated cells, ADS-iPSCs possess globally decreased methylation variation, in particular in repetitive elements. Interestingly, DNA methylation variation decreases in promoter regions during differentiation but increases during reprogramming. Methylation variation in promoter regions is negatively correlated with gene expression. In addition, genes showing a bipolar methylation pattern, with both completely methylated and completely unmethylated reads, are related to the carbohydrate metabolic process, cellular development, cellular growth, proliferation, etc.

Conclusions

This study delivers a way to detect cell-subset specific methylation genes in a mixed cell population and provides a better understanding of methylation dynamics during stem cell differentiation and reprogramming.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-978) contains supplementary material, which is available to authorized users.  相似文献   

16.
Plasminogen activator inhibitor 2 (PAI-2) is an enzyme inhibitor which is involved in cell differentiation, tissue growth and regeneration. In this study, immunocytochemistry, in situ hybridization and confocal laser scanning microscopy were used to investigate the expression and role of PAI-2 in differentiation of keratinocytes in vitro. The result showed that in the mono-layer differentiated keratinocytes induced by high calcium concentration, the expression of PAI-2 and its mRNA increased significantly, accompanied by expression increase of the differentiation marker keratin 10; and in the multi-layer differentiated keratinocytes induced by high calcium, PAI-2 expressed strongly mainly in the keratinocytes of middle as well as upper stratified layers, while K10 expressed in the keratinocytes of all stratified layers. Furthermore, the changes of the parameters related to keratinocyte differentiation were detected after inhibition of PAI-2 functions by its antibody, and the data showed that when treated by PAI-2 antibody, involucrin in the keratinocytes envelope expressed increasingly with an altering distribution from part to the whole envelope area. Our results indicate that during differentiation of epidermal keratinocyte, PAI-2 expresses mainly in the more differentiated keratinocytes and may protect the terminal differentiated keratinocytes from prematuration through inhibiting involucrin expression in cornified envelope.  相似文献   

17.
Stem cells(SCs) with their self-renewal and pluripotent differentiation potential,show great promise for therapeutic applications to some refractory diseases such as stroke, Parkinsonism, myocardial infarction, and diabetes. Furthermore, as seed cells in tissue engineering, SCs have been applied widely to tissue and organ regeneration. However, previous studies have shown that SCs are heterogeneous and consist of many cell subpopulations. Owing to this heterogeneity of cell states, gene expression is highly diverse between cells even within a single tissue,making precise identification and analysis of biological properties difficult, which hinders their further research and applications. Therefore, a defined understanding of the heterogeneity is a key to research of SCs. Traditional ensemble-based sequencing approaches, such as microarrays, reflect an average of expression levels across a large population, which overlook unique biological behaviors of individual cells, conceal cell-to-cell variations, and cannot understand the heterogeneity of SCs radically. The development of high throughput single cell RNA sequencing(scRNA-seq) has provided a new research tool in biology, ranging from identification of novel cell types and exploration of cell markers to the analysis of gene expression and predicating developmental trajectories. scRNA-seq has profoundly changed our understanding of a series of biological phenomena. Currently, it has been used in research of SCs in many fields, particularly for the research of heterogeneity and cell subpopulations in early embryonic development. In this review, we focus on the scRNA-seq technique and its applications to research of SCs.  相似文献   

18.
19.
Although Wnts are expressed in hair follicles throughout life from embryo to adult, and considered to be critical for their development and maturation, their roles remain largely unknown. In the present study, we investigated the effects of Wnts (Wnt-3a, Wnt-5a, Wnt-10b, and Wnt-11) on epithelial cell differentiation using adult mouse-derived primary skin epithelial cell (MPSEC) cultures and hair growth using hair follicle organ cultures. Only Wnt-10b showed evident promotion of epithelial cell differentiation and hair shaft growth, in contrast to Wnt-3a, 5a, and 11. Our results suggest that Wnt-10b is unique and plays an important role in differentiation of epithelial cells in the hair follicle.  相似文献   

20.
细胞的转录组决定其生理状态,每个细胞的转录组都是唯一的。借助单细胞转录组测序可分析单个干细胞的转录组特征,通过进一步的运算方法可以根据转录组特征对细胞进行细胞状态测定以及系谱分化特征的重建,在干细胞及组织发育研究中发挥了强大的作用,推动了其快速发展,加速了对干细胞分化及组织发育的相关过程及调控路径的认识。尤其是在干细胞领域的应用,得益于新算法的发展,单细胞转录组测序分析可用来阐述干细胞的起源、异质性,尤其是对干细胞的分化过程进行连续观察。本文主要对应用于干细胞分化相关研究的单细胞转录组测序数据新的算法及其应用进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号