首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From the leaves of Ziziphus spina-christi, the new flavonoid quercetin 3-xylosyl(1→2)rhamnoside-4′-rhamnoside as well as rutin, hyperin and quercitrin were characterized. The structures were established by chromatography, chemical degradation and UV spectroscopy, and confirmed by 1H NMR and 13C NMR spectroscopy.  相似文献   

2.
BackgroundInfluenza often leads to acute lung injury (ALI). Few therapeutics options such as vaccines and other antiviral drugs are available. Paeoniflorin is a monoterpene glucoside isolated from the roots of Paeonia lactiflora Pall. that has showed good anti-inflammatory and anti-fibrotic effects. However, it is not known whether paeoniflorin has an effect on influenza virus-induced ALI.PurposeTo investigative the protective effect and potential mechanism of paeoniflorin on ALI induced by influenza A virus (IAV).Study design and methodsThe anti-influenza activity of paeoniflorin in vitro was investigated. Influenza virus A/FM/1/47 was intranasally infected in mice to induce ALI, and paeoniflorin (50 and 100 mg/kg) was given orally to mice during 5 days, beginning 2 h after infection. On day 6 post-infection, body and lung weights, histology and survival were observed, and the lungs were examined for viral load, cytokine and cellular pathway protein expression.ResultsResults showed that paeoniflorin (50 and 100 mg/kg) reduced IAV-induced ALI. It reduces pulmonary oedema and improves histopathological changes in the lung, and also diminishes the accumulation of inflammatory cells in the lung. It was shown that paeoniflorin (50 and 100 mg/kg) alleviated IAV-induced ALI, as evidenced by improved survival in infected mice (40% and 50%, respectively), reduced viral titer in lung tissue, improved histological changes, and reduced lung inflammation. Paeoniflorin also improves pulmonary fibrosis by reducing the levels of pulmonary fibrotic markers (collagen type IV, alpha-smooth muscle actin, hyaluronic acid, laminin, and procollagen type III) and downregulating the expression levels of type I collagen (Col I) and type III collagen (Col III) in the lung tissues. Additionally, paeoniflorin inhibits the expression of αvβ3, TGF-β1, Smad2, NF-κB, and p38MAPK in the lung tissues.ConclusionThe results showed that paeoniflorin (50 and 100 mg/kg) protected against IAV-induced ALI, and the underlying mechanism may be related to the reduction of pro-inflammatory cytokine production and lung collagen deposition through down-regulation of activation of αvβ3/TGF-β1 pathway in lung tissue.  相似文献   

3.
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a kind of diffuse inflammatory injury caused by various factors, characterized by respiratory distress and progressive hypoxemia. It is a common clinical critical illness. The aim of this study was to investigate the effect and mechanism of the Mucin1 (MUC1) gene and its recombinant protein on lipopolysaccharide (LPS)-induced ALI/ARDS. We cultured human alveolar epithelial cell line (BEAS-2B) and used MUC1 overexpression lentivirus to detect the effect of MUC1 gene on BEAS-2B cells. In addition, we used LPS to induce ALI/ARDS in C57/BL6 mice and use hematoxylin and eosin (H&E) staining to verify the effect of their modeling. Recombinant MUC1 protein was injected subcutaneously into mice. We examined the effect of MUC1 on ALI/ARDS in mice by detecting the expression of inflammatory factors and oxidative stress molecules in mouse lung tissue, bronchoalveolar lavage fluid (BALF) and serum. Overexpression of MUC1 effectively ameliorated LPS-induced damage to BEAS-2B cells. Results of H&E staining indicate that LPS successfully induced ALI/ARDS in mice and MUC1 attenuated lung injury. MUC1 also reduced the expression of inflammatory factors (IL-1β, TNF-α, IL-6 and IL-8) and oxidative stress levels in mice. In addition, LPS results in an increase in the activity of the TLR4/NF-κB signaling pathway in mice, whereas MUC1 decreased the expression of the TLR4/NF-κB signaling pathway. MUC1 inhibited the activity of TLR4/NF-κB signaling pathway and reduced the level of inflammation and oxidative stress in lung tissue of ALI mice.Key words: Mucin1, acute lung injury, inflammation, oxidative stress, TLR4/NF-κB  相似文献   

4.
BackgroundAcute lung injury (ALI) is a systemic inflammatory process, which has no pharmacological therapy in clinic. Accumulating evidence has demonstrated that natural compounds from herbs have potent anti-inflammatory efficacy in several disease models, which could be the potential candidates for the treatment of ALI.Hypothesis/PurposeAnti-inflammatory screening from natural product bank may provide new anti-inflammatory compounds for therapeutic target discovery and ALI treatment.Methods165 natural compounds were screened for their anti-inflammatory activity in LPS-stimulated macrophages. PCR array, SPR and ELISA were used to determine the potential target of the most active compound, Cardamonin (CAR). The pharmacological effect of CAR was further evaluated in both LPS-stimulated macrophages and ALI mice model.ResultsOut of the screened 165 compounds, CAR significantly inhibited LPS-induced inflammatory cytokine secretion in macrophages. We further showed that CAR significantly inhibited NF-κB and JNK signaling activation, and thereby inflammatory cytokine production via directly interacting with MD2 in vitro. In vivo, our data show that CAR treatment inhibited LPS-induced lung damage, systemic inflammatory cytokine production, and reduced macrophage infiltration in the lungs, accompanied with reduced TLR4/MD2 complex in lung tissues, Treatment with CAR also dose-dependently increased survival in the septic mice induced by DH5α bacterial infection.ConclusionWe demonstrate that a natural product, CAR, attenuates LPS-induced lung injury and sepsis by inhibiting inflammation via interacting with MD2, leading to the inactivation of the TLR4/MD2-MyD88-MAPK/NF-κB pathway.  相似文献   

5.
Multiple lung pathogens such as chemical agents, H5N1 avian flu, or SARS cause high lethality due to acute respiratory distress syndrome. Here we report that Toll-like receptor 4 (TLR4) mutant mice display natural resistance to acid-induced acute lung injury (ALI). We show that TLR4-TRIF-TRAF6 signaling is a key disease pathway that controls the severity of ALI. The oxidized phospholipid (OxPL) OxPAPC was identified to induce lung injury and cytokine production by lung macrophages via TLR4-TRIF. We observed OxPL production in the lungs of humans and animals infected with SARS, Anthrax, or H5N1. Pulmonary challenge with an inactivated H5N1 avian influenza virus rapidly induces ALI and OxPL formation in mice. Loss of TLR4 or TRIF expression protects mice from H5N1-induced ALI. Moreover, deletion of ncf1, which controls ROS production, improves the severity of H5N1-mediated ALI. Our data identify oxidative stress and innate immunity as key lung injury pathways that control the severity of ALI.  相似文献   

6.
《Cytotherapy》2014,16(6):764-775
Background aimsStem cells may be a promising therapy for acute respiratory distress syndrome. Recent in vivo and in vitro studies suggested that the mesenchymal stromal cells (MSCs) have anti-oxidative stress properties. We hypothesized that intravenous injection of bone marrow–derived mesenchymal stem cells (MSCs) could attenuate Escherichia coli–induced acute lung injury (ALI) in mice by controlling the oxidative stress status.MethodsEighty mice were randomly divided into four groups: group 1 (control group) received 25 μL of saline as a vehicle; group 2 contained E coli–induced ALI mice; group 3 included mice that received MSCs before induction of ALI; group 4 included mice that received MSCs after induction of ALI. Lung samples were isolated and assayed for oxidative stress variables and histopathologic analysis. Total anti-oxidant capacity was measured in broncho-alveolar lavage.ResultsPre- and post-injury MSC injection increased survival, reduced pulmonary edema and attenuated lung injuries in ALI mice. Histologically, MSCs exhibited a considerable degree of preservation of the pulmonary alveolar architecture. An increase of anti-oxidant enzyme activities and a decrease of myeloperoxidase activity and malondialdehyde levels in the MSC recipient groups versus the ALI group were found. Furthermore, the total anti-oxidant capacity and reduced glutathione levels were significantly increased in MSCs recipient groups versus the ALI group. Weak +ve inducible nitric oxide synthase immuno-expression in groups that received MSCs was detected. Pre-injury MSC injection showed better effects than did post-injury MSC injection.ConclusionsSystemic bone marrow–derived MSC injection was effective in modulating the oxidative stress status in E coli–induced acute lung injury in mice.  相似文献   

7.
Lactobacillus has been reported to inhibit acute lung injury (ALI). However, the molecular mechanism of Lactobacillus casei (L. casei) in preventing ALI has not been identified, so we investigated whether L. casei pretreatment could inhibit the activation of TLR4/MyD88/NF-κB signaling pathway following ALI. ALI model was established by intraperitoneal injection of 2 mg/kg lipopolysaccharide (LPS) to female BALB/c mice. In L. casei LC2W group, mice were intragastrically administrated L. casei LC2W for a week, before the ALI modeling. The serum of normal BALB/c mice after intragastric administration of L. casei LC2W was used for in vitro cell assays. The serum was pre-incubated with mouse macrophage cell line (RAW264.7) and human lung cell line (HLF-A), then LPS was added to co-incubate. Compared with ALI model group, L. casei LC2W pretreatment significantly reduced lung pathological damage, the number of neutrophils and total cells in bronchoalveolar lavage fluid. Besides, L. casei LC2W pretreatment could significantly reverse the abnormal expression of ICAM-1, IL-6, TNF-α and IL-10 in lung tissue and serum, plus, L. casei LC2W significantly reduced the phosphorylation levels of IRAK-1 and NF-κB p65. In vitro, the serum decreased the up-regulation of IL-6 and TNF-α in cell lines induced by LPS. In conclusion, L. casei LC2W intragastric administration pretreatment could significantly improve LPS-induced ALI in mice, probably through circulation to reach the lungs so as to inhibit the inflammatory response induced by activation of TLR4/MyD88/NF-κB signaling pathway.  相似文献   

8.
Myeloid differentiation protein 2 (MD2) is a co-receptor of toll-like receptor 4 (TLR4) responsible for the recognition of lipopolysaccharide (LPS) and mediates a series of TLR4-dependent inflammatory responses in inflammatory lung diseases including acute lung injury (ALI). Targeting MD2 thus may provide a therapeutic strategy against these lung diseases. In this study, we identified a novel compound 4k with the potent anti-inflammatory activity among 39 methyl gallate derivatives (MGDs). MGD 4k exhibited a high binding affinity to MD2, which in turn prevented the formation of the LPS/MD2/TLR4 complex. In addition, MGD 4k significantly reversed the upregulation of LPS-induced inflammatory mediators such as tumor necrosis factor-α, interleukin-6, intracellular adhesion molecule-1, vascular cell adhesion molecule-1, and monocyte chemoattractant protein-1 in vitro and in vivo. Mechanistically, MGD 4k performed anti-inflammatory function by inactivating JNK, ERK and p38 signaling pathways. Taken together, our study identified MGD 4k as a novel potential therapeutic agent for ALI through inhibiting MD2, inflammatory responses, and major inflammation-associated signaling pathways.  相似文献   

9.
BackgroundThe ingestion of flavonoids has been reported to be associated with reduced cardiovascular disease risk. Quercitrin is a common flavonoid in nature, and it exhibits antioxidant properties. Although the process of thrombogenesis is intimately related to cardiovascular disease risk, it is unclear whether quercitrin plays a role in thrombogenesis.PurposeThe aim of this study was to examine the antiplatelet effect of quercitrin in platelet activation.MethodsPlatelet aggregation, granule secretion, calcium mobilization, and integrin activation were used to assess the antiplatelet activity of quercitrin. Antithrombotic effect was determined in mouse using ferric chloride (FeCl3)-induced arterial thrombus formation in vivo and thrombus formation on collagen-coated surfaces under arteriolar shear in vitro. Transection tail bleeding time was used to evaluate whether quercitrin inhibited primary hemostasis.ResultsQuercitrin significantly impaired collagen-related peptide-induced platelet aggregation, granule secretion, reactive oxygen species generation, and intracellular calcium mobilization. Outside-in signaling of αIIbβ3 integrin was significantly inhibited by quercitrin in a concentration-dependent manner. The inhibitory effect of quercitrin resulted from inhibition of the glycoprotein VI-mediated platelet signal transduction during cell activation. Further, the antioxidant effect is derived from decreased phosphorylation of components of the TNF receptor-associated factor 4/p47phox/Hic5 axis signalosome. Oral administration of quercitrin efficiently blocked FeCl3-induced arterial thrombus formation in vivo and thrombus formation on collagen-coated surfaces under arteriolar shear in vitro, without prolonging bleeding time. Studies using a mouse model of ischemia/reperfusion-induced stroke indicated that treatment with quercitrin reduced the infarct volume in stroke.ConclusionsOur results demonstrated that quercitrin could be an effective therapeutic agent for the treatment of thrombotic diseases.  相似文献   

10.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is the clinical syndrome of persistent lung inflammation caused by various direct and indirect stimuli. Despite advances in the understanding of disease pathogenesis, few therapeutic have emerged for ALI/ARDS. Thus, in the present study we evaluated the therapeutic potential of ethyl gallate (EG), a plant flavanoid in the context of ALI using in vivo (BALB/c) and in vitro models (human monocytes). Our in vivo data supports the view that EG alleviates inflammatory condition in ALI as significant reduction in BALF neutrophils, ROS, proinflammatory cytokines and albumin levels were observed with the single i.p of EG post LPS exposure. Also, histochemical analysis of mice lung tissue demonstrated that EG restored LPS stimulated cellular influx inside the lung airspaces. Unraveling the mechanism of action, our RT-PCR and western blot analysis suggest that enhanced expression of HO-1 underlies the protective effect of EG on ROS level in mice lung tissue. Induction of HO-1 in turn appears to be mediated by Nrf2 nuclear translocation and consequent activation and ablation of Nrf2 activity through siRNA notably abrogated the EG induced protective effect in LPS induced human monocytes. Furthermore, our results indicate that EG generated moderate amounts of H2O2 could induce Nrf2 translocation in the in vitro systems. However, given the insignificant amount of H2O2 recorded in the injected material in the in vivo system, additional mechanism for EG action could not be excluded. Nevertheless our results highlight the protective role of EG in ALI and provide the novel insight into its usefulness as a therapeutic tool for the treatment of ALI.  相似文献   

11.
BackgroundAlstonia scholaris is a folk medicine used to treat cough, asthma and chronic obstructive pulmonary disease in China. Total alkaloids (TA) from A. scholaris exhibit anti-inflammatory properties in acute respiratory disease, which suggests their possible anti-inflammatory effect on influenza virus infection.PurposeTo assess the clinical use of TA by demonstrating their anti-influenza and anti-inflammatory effects and the possible mechanism underlying the effect of TA on influenza A virus (IAV) infection in vitro and to reveal the inhibitory effect of TA on lung immunopathology caused by IAV infection.MethodsAntiviral and anti-inflammatory activities were assessed in Madin-Darby canine kidney (MDCK) and A549 cells and U937-derived macrophages infected with influenza A/PR/8/34 (H1N1) virus. Proinflammatory cytokine levels were measured by real-time quantitative PCR and Bio-Plex assays. The activation of innate immune signaling induced by H1N1 virus in the absence or presence of TA was detected in A549 cells by Western blot. Furthermore, mice were infected intranasally with H1N1 virus and treated with TA (50, 25 and 12.5 mg/kg/d) or oseltamivir (60 mg/kg/d) for 5 days in vivo. The survival rates and body weight were recorded, and the viral titer, proinflammatory cytokine levels, innate immune cell populations and histopathological changes in the lungs were analyzed.ResultsTA significantly inhibited viral replication in A549 cells and U937-derived macrophages and markedly reduced cytokine and chemokine production at the mRNA and protein levels. Furthermore, TA blocked the activation of pattern recognition receptor (PRR)- and IFN-activated signal transduction in A549 cells. Critically, TA also increased the survival rate, reduced the viral titer, suppressed proinflammatory cytokine production and innate immune cell infiltration and improved lung histopathology in a lethal PR8 mouse model.ConclusionTA exhibits anti-viral and anti-inflammatory effects against IAV infection by interfering with PRR- and IFN-activated signal transduction.  相似文献   

12.

Background

Toll-like receptors (TLRs) are critical components for host pathogen recognition and variants in genes participating in this response influence susceptibility to infections. Recently, TLR1 gene polymorphisms have been found correlated with whole blood hyper-inflammatory responses to pathogen-associated molecules and associated with sepsis-associated multiorgan dysfunction and acute lung injury (ALI). We examined the association of common variants of TLR1 gene with sepsis-derived complications in an independent study and with serum levels for four inflammatory biomarkers among septic patients.

Methodology/Principal Findings

Seven tagging single nucleotide polymorphisms of the TLR1 gene were genotyped in samples from a prospective multicenter case-only study of patients with severe sepsis admitted into a network of intensive care units followed for disease severity. Interleukin (IL)-1β, IL-6, IL-10, and C-reactive protein (CRP) serum levels were measured at study entry, at 48 h and at 7th day. Alleles -7202G and 248Ser, and the 248Ser-602Ile haplotype were associated with circulatory dysfunction among severe septic patients (0.001≤p≤0.022), and with reduced IL-10 (0.012≤p≤0.047) and elevated CRP (0.011≤p≤0.036) serum levels during the first week of sepsis development. Additionally, the -7202GG genotype was found to be associated with hospital mortality (p = 0.017) and ALI (p = 0.050) in a combined analysis with European Americans, suggesting common risk effects among studies.

Conclusions/Significance

These results partially replicate and extend previous findings, supporting that variants of TLR1 gene are determinants of severe complications during sepsis.  相似文献   

13.
Notoginsenoside R1 (NG-R1), the extract and the main ingredient of Panax notoginseng, has anti-inflammatory effects and can be used in treating acute lung injury (ALI). In this study, we explored the pulmonary protective effect and the underlying mechanism of the NG-R1 on rats with ALI induced by severe acute pancreatitis (SAP). MiR-128-2-5p, ERK1, Tollip, HMGB1, TLR4, IκB, and NF-κB mRNA expression levels were measured using real-time qPCR, and TLR4, Tollip, HMGB1, IRAK1, MyD88, ERK1, NF-κB65, and P-IκB-α protein expression levels using Western blot. The NF-κB and the TLR4 activities were determined using immunohistochemistry, and TNF-α, IL-6, IL-1β, and ICAM-1 levels in the bronchoalveolar lavage fluid (BALF) using ELISA. Lung histopathological changes were observed in each group. NG-R1 treatment reduced miR-128-2-5p expression in the lung tissue, increased Tollip expression, inhibited HMGB1, TLR4, TRAF6, IRAK1, MyD88, NF-κB65, and p-IκB-α expression levels, suppressed NF-κB65 and the TLR4 expression levels, reduced MPO activity, reduced TNF-α, IL-1β, IL-6, and ICAM-1 levels in BALF, and alleviated SAP-induced ALI. NG-R1 can attenuate SAP-induced ALI. The mechanism of action may be due to a decreased expression of miR-128-2-5p, increased activity of the Tollip signaling pathway, decreased activity of HMGB1/TLR4 and ERK1 signaling pathways, and decreased inflammatory response to SAP-induced ALI. Tollip was the regulatory target of miR-128-2-5p.  相似文献   

14.
Oppeltz RF  Rani M  Zhang Q  Schwacha MG 《Cytokine》2011,55(3):396-401
Burn is associated with profound inflammation and activation of the innate immune system in multiple organ beds, including the lung. Similarly, toll-like receptors (TLR) are associated with innate immune activation. Nonetheless, it is unclear what impact burn has on TLR-induced inflammatory responses in the lung.MethodsMale C57BL/6 mice were subjected to burn (3rd degree, 25% TBSA) or sham procedure and 1, 3 or 7 days thereafter, bronchoalveolar lavage (BAL) fluid was collected and cells were isolated and cultured in vitro with specific TLR agonists as follows: Zymosan (TLR-2), LPS (TLR-4) and CpG-ODN (TLR-9). Supernatants were collected 48 h later and assayed for inflammatory cytokine levels (IL-1β, IL-6, IL-10, IL-17, TNF-α, KC, MCP-1, MIP-1α, MIP-1β and RANTES) by Bioplex.ResultsBAL fluid from sham and burn mice did not contain detectable cytokine levels. BAL cells, irrespective of injury, were responsive to TLR-2 and TLR-4 activation. Seven days after burn, TLR-2 and TLR-4 mediated responses by BAL cells were enhanced as evidenced by increased production of IL-6, IL-17, TNF-α, MCP-1, MIP-1β and RANTES.ConclusionsBurn-induced changes in TLR-2 and TLR-4 reactivity may contribute to the development of post-burn complications, such as acute lung injury (ALI) and adult respiratory distress syndrome (ARDS).  相似文献   

15.
Pathogen-pattern-recognition by Toll-like receptors (TLRs) and pathogen clearance after immune complex formation via engagement with Fc receptors (FcRs) represent central mechanisms that trigger the immune and inflammatory responses. In the present study, a linkage between TLR4 and FcγR was evaluated in vitro and in vivo. Most strikingly, in vitro activation of phagocytes by IgG immune complexes (IgGIC) resulted in an association of TLR4 with FcγRIII (CD16) based on co-immunoprecipitation analyses. Neutrophils and macrophages from TLR4 mutant (mut) mice were unresponsive to either lipopolysaccharide (LPS) or IgGIC in vitro, as determined by cytokine production. This phenomenon was accompanied by the inability to phosphorylate tyrosine residues within immunoreceptor tyrosine-based activation motifs (ITAMs) of the FcRγ-subunit. To transfer these findings in vivo, two different models of acute lung injury (ALI) induced by intratracheal administration of either LPS or IgGIC were employed. As expected, LPS-induced ALI was abolished in TLR4 mut and TLR4−/− mice. Unexpectedly, TLR4 mut and TLR4−/− mice were also resistant to development of ALI following IgGIC deposition in the lungs. In conclusion, our findings suggest that TLR4 and FcγRIII pathways are structurally and functionally connected at the receptor level and that TLR4 is indispensable for FcγRIII signaling via FcRγ-subunit activation.  相似文献   

16.
《Cytokine》2010,49(3):246-253
Angiotensin II is able to trigger inflammatory responses through an angiotensin II type 1 (AT1) receptor. The role of AT1 receptor in acute lung injury (ALI) is poorly understood. Mice were randomly divided into three groups (n = 40 each groups): NS group; LPS group (2 mg/kg LPS intratracheally); and LPS + ZD 7155 group, 10 mg/kg ZD 7155 (an AT1 receptor antagonist) intraperitoneally 30 min prior to LPS exposure. Samples from the lung were isolated and assayed for histopathology analyses or proinflammatory gene expressions, angiotensin II receptors expressions and nuclear factors activities. LPS exposure resulted in severe ALI, elevated levels of TNF-α and IL-1β mRNA expressions, and increased activities of NF-κB and activated protein (AP)-1. Upregulation of AT1 receptor and down-regulation of AT2 receptor were also observed after LPS challenge. Pretreatment with ZD 7155 significantly inhibited the increase of AT1 receptor expression and upregulated AT2 receptor expression. ZD 7155 also reduced the mRNA expression of TNF-α and IL-1β, inhibited the activation of NF-κB and AP-1, and improved lung histopathology. These findings suggest that antagonism of AT1 receptor inhibits the activation of NF-κB and AP-1 in the lung, which may mediate the release of TNF-α and IL-1β and contribute to LPS-induced ALI.  相似文献   

17.
The CD200R1:CD200 axis is traditionally considered to limit tissue inflammation by down-regulating pro-inflammatory signaling in myeloid cells bearing the receptor. We generated CD200R1−/− mice and employed them to explore both the role of CD200R1 in regulating macrophage signaling via TLR2 as well as the host response to an in vivo, TLR2-dependent model, herpes simplex virus 1 (HSV-1) infection. CD200R1−/− peritoneal macrophages demonstrated a 70–75% decrease in the generation of IL-6 and CCL5 (Rantes) in response to the TLR2 agonist Pam2CSK4 and to HSV-1. CD200R1−/− macrophages could neither up-regulate the expression of TLR2, nor assemble a functional inflammasome in response to HSV-1. CD200R1−/− mice were protected from HSV-1 infection and exhibited dysfunctional TLR2 signaling. Finally, both CD200R1−/− mice and CD200R1−/− fibroblasts and macrophages showed a markedly reduced ability to support HSV-1 replication. In summary, our data demonstrate an unanticipated and novel requirement for CD200R1 in “licensing” pro-inflammatory functions of TLR2 and in limiting viral replication that are supported by ex vivo and in vivo evidence.  相似文献   

18.

Background

Injurious non-microbial factors released from the stressed gut during shocked states contribute to the development of acute lung injury (ALI) and multiple organ dysfunction syndrome (MODS). Since Toll-like receptors (TLR) act as sensors of tissue injury as well as microbial invasion and TLR4 signaling occurs in both sepsis and noninfectious models of ischemia/reperfusion (I/R) injury, we hypothesized that factors in the intestinal mesenteric lymph after trauma hemorrhagic shock (T/HS) mediate gut-induced lung injury via TLR4 activation.

Methods/Principal Findings

The concept that factors in T/HS lymph exiting the gut recreates ALI is evidenced by our findings that the infusion of porcine lymph, collected from animals subjected to global T/HS injury, into naïve wildtype (WT) mice induced lung injury. Using C3H/HeJ mice that harbor a TLR4 mutation, we found that TLR4 activation was necessary for the development of T/HS porcine lymph-induced lung injury as determined by Evan''s blue dye (EBD) lung permeability and myeloperoxidase (MPO) levels as well as the induction of the injurious pulmonary iNOS response. TRIF and Myd88 deficiency fully and partially attenuated T/HS lymph-induced increases in lung permeability respectively. Additional studies in TLR2 deficient mice showed that TLR2 activation was not involved in the pathology of T/HS lymph-induced lung injury. Lastly, the lymph samples were devoid of bacteria, endotoxin and bacterial DNA and passage of lymph through an endotoxin removal column did not abrogate the ability of T/HS lymph to cause lung injury in naïve mice.

Conclusions/Significance

Our findings suggest that non-microbial factors in the intestinal mesenteric lymph after T/HS are capable of recreating T/HS-induced lung injury via TLR4 activation.  相似文献   

19.
Immunological checkpoints, such as the inhibitory CD200 receptor (CD200R), play a dual role in balancing the immune system during microbial infection. On the one hand these inhibitory signals prevent excessive immune mediated pathology but on the other hand they may impair clearance of the pathogen. We studied the influence of the inhibitory CD200-CD200R axis on clearance and pathology in two different virus infection models. We find that lack of CD200R signaling strongly enhances type I interferon (IFN) production and viral clearance and improves the outcome of mouse hepatitis corona virus (MHV) infection, particularly in female mice. MHV clearance is known to be dependent on Toll like receptor 7 (TLR7)-mediated type I IFN production and sex differences in TLR7 responses previously have been reported for humans. We therefore hypothesize that CD200R ligation suppresses TLR7 responses and that release of this inhibition enlarges sex differences in TLR7 signaling. This hypothesis is supported by our findings that in vivo administration of synthetic TLR7 ligand leads to enhanced type I IFN production, particularly in female Cd200−/− mice and that CD200R ligation inhibits TLR7 signaling in vitro. In influenza A virus infection we show that viral clearance is determined by sex but not by CD200R signaling. However, absence of CD200R in influenza A virus infection results in enhanced lung neutrophil influx and pathology in females. Thus, CD200-CD200R and sex are host factors that together determine the outcome of viral infection. Our data predict a sex bias in both beneficial and pathological immune responses to virus infection upon therapeutic targeting of CD200-CD200R.  相似文献   

20.
BackgroundAcute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening diseases and could occur in severe COVID-19 patients. Re-Du-Ning injection (RDN) is a tradition Chinese medicine preparation which has been clinically used for treatment of respiratory diseases including COVID-19.PurposeTo elucidate the potential mechanisms of RDN for the treatment of ALI.MethodsFemale C57BL/6J mice were used to establish ALI model by intraperitoneal injection 10 mg/kg LPS, and RDN injection was intraperitoneally administered with the dose of 5 and 10 ml/kg. The cytokines were measured by ELISA and qPCR. The data related to NETs were analyzed by ELISA, immunofluorescence, Western blotting and network pharmacological approach.ResultsRDN robustly alleviated LPS-induced ALI. Meanwhile, RDN downregulated the expression of pro-inflammatory cytokines, such as IL-1β, IL-6 and TNF-α. Specifically, RDN treatment inhibited the formation of neutrophil extracellular traps (NETs) and remarkably suppressed the protein of PAD4. The active compound from RDN decreased the phosphorylation of ERK1/2.ConclusionThese findings demonstrate that RDN ameliorates LPS-induced ALI through suppressing MAPK pathway to inhibit the formation of NETs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号