首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multiscale simulation method of protein folding is proposed, using atomic representation of protein and solvent, combing genetic algorithms to determine the key protein structures from a global view, with molecular dynamic simulations to reveal the local folding pathways, thus providing an integrated landscape of protein folding. The method is found to be superior to previously investigated global search algorithms or dynamic simulations alone. For secondary structure formation of a selected peptide, RN24, the structures and dynamics produced by this method agree well with corresponding experimental results. Three most populated conformations are observed, including hairpin, β-sheet and α-helix. The energetic barriers separating these three structures are comparable to the kinetic energy of the atoms of the peptide, implying that the transition between these states can be easily triggered by kinetic perturbations, mainly through electrostatic interactions between charged atoms. Transitions between α-helix and β-sheet should jump over at least two energy barriers and may stay in the energetic trap of hairpin. It is proposed that the structure of proteins should be jointly governed by thermodynamic and dynamic factors; free energy is not the exclusive dominant for stability of proteins.  相似文献   

2.
Proteins are polymeric molecules with many degrees of conformational freedom whose internal energetic interactions are typically screened to small distances. Therefore, in the high-dimensional conformation space of a protein, the energy landscape is locally relatively flat, in contrast to low-dimensional representations, where, because of the induced entropic contribution to the full free energy, it appears funnel-like. Proteins explore the conformation space by searching these flat subspaces to find a narrow energetic alley that we call a hypergutter and then explore the next, lower-dimensional, subspace. Such a framework provides an effective representation of the energy landscape and folding kinetics that does justice to the essential characteristic of high-dimensionality of the search-space. It also illuminates the important role of nonnative interactions in defining folding pathways. This principle is here illustrated using a coarse-grained model of a family of three-helix bundle proteins whose conformations, once secondary structure has formed, can be defined by six rotational degrees of freedom. Two folding mechanisms are possible, one of which involves an intermediate. The stabilization of intermediate subspaces (or states in low-dimensional projection) in protein folding can either speed up or slow down the folding rate depending on the amount of native and nonnative contacts made in those subspaces. The folding rate increases due to reduced-dimension pathways arising from the mere presence of intermediate states, but decreases if the contacts in the intermediate are very stable and introduce sizeable topological or energetic frustration that needs to be overcome. Remarkably, the hypergutter framework, although depending on just a few physically meaningful parameters, can reproduce all the types of experimentally observed curvature in chevron plots for realizations of this fold.  相似文献   

3.
Theory and experiment have provided answers to many of the fundamental questions of protein folding; a remaining challenge is an accurate, high-resolution picture of folding mechanism. Atomistic molecular simulations with explicit solvent are the most promising method for providing this information, by accounting more directly for the physical interactions that stabilize proteins. Although simulations of folding with such force fields are extremely challenging, they have become feasible as a result of recent advances in computational power, accuracy of the energy functions or 'force fields', and methods for improving sampling of folding events. I review the recent progress in these areas, and highlight future challenges and questions that we may hope to address with these methods. I also attempt to place atomistic models into the context of the energy landscape view of protein folding, and coarse-grained simulations.  相似文献   

4.
Kameda T 《Proteins》2003,53(3):616-628
Recent experimental and theoretical studies suggest that rates and pathways of protein folding are largely decided by topology of the native structures, at least for small proteins. However, some exceptions are known; for example, protein L and protein G have the same topology, but exhibit different characteristics of the TSE. Thus, folding pathways of some proteins are critically affected by detailed information on amino acid sequences. To investigate the sequence specificity, we calculate folding pathways of 20 small proteins using the perturbed Gaussian chain model developed by Portman et al. (Phys Rev Lett 1998;81:5237-5240; J Chem Phys 2001;114:5069-5081). Characteristics of the TSE predicted by the model are in good agreement with experimental phi-value data for many proteins at coarse-grained level. Especially, estimation of folding TSE for protein G and protein L based on both topology and additional sequence information are consistent with experimental phi-value data. With only topology information, however, the model predicts the TSE of protein G incorrectly. Moreover, the model that uses topology and sequence information describes free energy profiles of two-state and three-state folders consistently with experiment, whereas the topology only model predicts free energy profiles of some proteins incorrectly. This indicates that sequence specificity also has critical roles in determining the folding pathways for some proteins.  相似文献   

5.
Our understanding of the principles underlying the protein-folding problem can be tested by developing and characterizing simple models that make predictions which can be compared to experimental data. Here we extend our earlier model of folding free energy landscapes, in which each residue is considered to be either folded as in the native state or completely disordered, by investigating the role of additional factors representing hydrogen bonding and backbone torsion strain, and by using a hybrid between the master equation approach and the simple transition state theory to evaluate kinetics near the free energy barrier in greater detail. Model calculations of folding phi-values are compared to experimental data for 19 proteins, and for more than half of these, experimental data are reproduced with correlation coefficients between r=0.41 and 0.88; calculations of transition state free energy barriers correlate with rates measured for 37 single domain proteins (r=0.69). The model provides insight into the contribution of alternative-folding pathways, the validity of quasi-equilibrium treatments of the folding landscape, and the magnitude of the Arrhenius prefactor for protein folding. Finally, we discuss the limitations of simple native-state-based models, and as a more general test of such models, provide predictions of folding rates and mechanisms for a comprehensive set of over 400 small protein domains of known structure.  相似文献   

6.
Experimental determination of the key features of the free energy landscapes of proteins, which dictate their adeptness to fold correctly, or propensity to misfold and aggregate and which are modulated upon a change from physiological to aggregation-prone conditions, is a difficult challenge. In this study, sub-millisecond kinetic measurements of the folding and unfolding of the mouse prion protein reveal how the free energy landscape becomes more complex upon a shift from physiological (pH 7) to aggregation-prone (pH 4) conditions. Folding and unfolding utilize the same single pathway at pH 7, but at pH 4, folding occurs on a pathway distinct from the unfolding pathway. Moreover, the kinetics of both folding and unfolding at pH 4 depend not only on the final conditions but also on the conditions under which the processes are initiated. Unfolding can be made to switch to occur on the folding pathway by varying the initial conditions. Folding and unfolding pathways appear to occupy different regions of the free energy landscape, which are separated by large free energy barriers that change with a change in the initial conditions. These barriers direct unfolding of the native protein to proceed via an aggregation-prone intermediate previously identified to initiate the misfolding of the mouse prion protein at low pH, thus identifying a plausible mechanism by which the ruggedness of the free energy landscape of a protein may modulate its aggregation propensity.  相似文献   

7.
Proteins are minimally frustrated polymers. However, for realistic protein models, nonnative interactions must be taken into account. In this paper, we analyze the effect of nonnative interactions on the folding rate and on the folding free energy barrier. We present an analytic theory to account for the modification on the free energy landscape upon introduction of nonnative contacts, added as a perturbation to the strong native interactions driving folding. Our theory predicts a rate-enhancement regime at fixed temperature, under the introduction of weak, nonnative interactions. We have thoroughly tested this theoretical prediction with simulations of a coarse-grained protein model, by using an off-lattice C(alpha)model of the src-SH3 domain. The strong agreement between results from simulations and theory confirm the nontrivial result that a relatively small amount of nonnative interaction energy can actually assist the folding to the native structure.  相似文献   

8.
9.
Coluzza I 《PloS one》2011,6(7):e20853
Computational studies have given a great contribution in building our current understanding of the complex behavior of protein molecules; nevertheless, a complete characterization of their free energy landscape still represents a major challenge. Here, we introduce a new coarse-grained approach that allows for an extensive sampling of the conformational space of a large number of sequences. We explicitly discuss its application in protein design, and by studying four representative proteins, we show that the method generates sequences with a relatively smooth free energy surface directed towards the target structures.  相似文献   

10.
Delineating the folding steps of helical-bundle membrane proteins has been a challenging task. Many questions remain unanswered, including the conformation and stability of the states populated during folding, the shape of the energy barriers between the states, and the role of lipids as a solvent in mediating the folding. Recently, theoretical frames have matured to a point that permits detailed dissection of the folding steps, and advances in experimental techniques at both single-molecule and ensemble levels enable selective modulation of specific steps for quantitative determination of the folding energy landscapes. We also discuss how lipid molecules would play an active role in shaping the folding energy landscape of membrane proteins, and how folding of multi-domain membrane proteins can be understood based on our current knowledge. We conclude this review by offering an outlook for emerging questions in the study of membrane protein folding.  相似文献   

11.
Chen  Xun  Lu  Wei  Tsai  Min-Yeh  Jin  Shikai  Wolynes  Peter G. 《Journal of biological physics》2022,48(1):37-53

Heme is an active center in many proteins. Here we explore computationally the role of heme in protein folding and protein structure. We model heme proteins using a hybrid model employing the AWSEM Hamiltonian, a coarse-grained forcefield for the protein chain along with AMBER, an all-atom forcefield for the heme. We carefully designed transferable force fields that model the interactions between the protein and the heme. The types of protein–ligand interactions in the hybrid model include thioester covalent bonds, coordinated covalent bonds, hydrogen bonds, and electrostatics. We explore the influence of different types of hemes (heme b and heme c) on folding and structure prediction. Including both types of heme improves the quality of protein structure predictions. The free energy landscape shows that both types of heme can act as nucleation sites for protein folding and stabilize the protein folded state. In binding the heme, coordinated covalent bonds and thioester covalent bonds for heme c drive the heme toward the native pocket. The electrostatics also facilitates the search for the binding site.

  相似文献   

12.
We investigate a novel approach for studying the kinetics of protein folding. Our framework has evolved from robotics motion planning techniques called probabilistic roadmap methods (PRMs) that have been applied in many diverse fields with great success. In our previous work, we presented our PRM-based technique and obtained encouraging results studying protein folding pathways for several small proteins. In this paper, we describe how our motion planning framework can be used to study protein folding kinetics. In particular, we present a refined version of our PRM-based framework and describe how it can be used to produce potential energy landscapes, free energy landscapes, and many folding pathways all from a single roadmap which is computed in a few hours on a desktop PC. Results are presented for 14 proteins. Our ability to produce large sets of unrelated folding pathways may potentially provide crucial insight into some aspects of folding kinetics, such as proteins that exhibit both two-state and three-state kinetics that are not captured by other theoretical techniques.  相似文献   

13.
14.
15.
The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach, and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted state and to configurations where either the N or C terminus is not yet folded into the knot. The fastest folding pathways from denatured states exhibit early formation of the N terminus portion of the knot and a rate-determining step where the C terminus is incorporated. The low-lying minima with the N terminus knotted and the C terminus free therefore constitute an off-pathway intermediate for this model. The insertion of both the N and C termini into the knot occurs late in the folding process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.  相似文献   

16.
Many small proteins fold fast and without detectable intermediates. This is frequently taken as evidence against the importance of partially folded states, which often transiently accumulate during folding of larger proteins. To get insight into the properties of free energy barriers in protein folding we analyzed experimental data from 23 proteins that were reported to show non-linear activation free-energy relationships. These non-linearities are generally interpreted in terms of broad transition barrier regions with a large number of energetically similar states. Our results argue against the presence of a single broad barrier region. They rather indicate that the non-linearities are caused by sequential folding pathways with consecutive distinct barriers and a few obligatory high-energy intermediates. In contrast to a broad barrier model the sequential model gives a consistent picture of the folding barriers for different variants of the same protein and when folding of a single protein is analyzed under different solvent conditions. The sequential model is also able to explain changes from linear to non-linear free energy relationships and from apparent two-state folding to folding through populated intermediates upon single point mutations or changes in the experimental conditions. These results suggest that the apparent discrepancy between two-state and multi-state folding originates in the relative stability of the intermediates, which argues for the importance of partially folded states in protein folding.  相似文献   

17.
We use an integrated computational approach to reconstruct accurately the transition state ensemble (TSE) for folding of the src-SH3 protein domain. We first identify putative TSE conformations from free energy surfaces generated by importance sampling molecular dynamics for a fully atomic, solvated model of the src-SH3 protein domain. These putative TSE conformations are then subjected to a folding analysis using a coarse-grained representation of the protein and rapid discrete molecular dynamics simulations. Those conformations that fold to the native conformation with a probability (P(fold)) of approximately 0.5, constitute the true transition state. Approximately 20% of the putative TSE structures were found to have a P(fold) near 0.5, indicating that, although correct TSE conformations are populated at the free energy barrier, there is a critical need to refine this ensemble. Our simulations indicate that the true TSE conformations are compact, with a well-defined central beta sheet, in good agreement with previous experimental and theoretical studies. A structured central beta sheet was found to be present in a number of pre-TSE conformations, however, indicating that this element, although required in the transition state, does not define it uniquely. An additional tight cluster of contacts between highly conserved residues belonging to the diverging turn and second beta-sheet of the protein emerged as being critical elements of the folding nucleus. A number of commonly used order parameters to identify the transition state for folding were investigated, with the number of native Cbeta contacts displaying the most satisfactory correlation with P(fold) values.  相似文献   

18.
Energetic frustration is becoming an important topic for understanding the mechanisms of protein folding, which is a long-standing big biological problem usually investigated by the free energy landscape theory. Despite the significant advances in probing the effects of folding frustrations on the overall features of protein folding pathways and folding intermediates, detailed characterizations of folding frustrations at an atomic or residue level are still lacking. In addition, how and to what extent folding frustrations interact with protein topology in determining folding mechanisms remains unclear. In this paper, we tried to understand energetic frustrations in the context of protein topology structures or native-contact networks by comparing the energetic frustrations of five homologous Im9 alpha-helix proteins that share very similar topology structures but have a single hydrophilic-to-hydrophobic mutual mutation. The folding simulations were performed using a coarse-grained Gō-like model, while non-native hydrophobic interactions were introduced as energetic frustrations using a Lennard-Jones potential function. Energetic frustrations were then examined at residue level based on φ-value analyses of the transition state ensemble structures and mapped back to native-contact networks. Our calculations show that energetic frustrations have highly heterogeneous influences on the folding of the four helices of the examined structures depending on the local environment of the frustration centers. Also, the closer the introduced frustration is to the center of the native-contact network, the larger the changes in the protein folding. Our findings add a new dimension to the understanding of protein folding the topology determination in that energetic frustrations works closely with native-contact networks to affect the protein folding.  相似文献   

19.
The detailed characterization of the overall free energy landscape associated with the folding process of a protein is the ultimate goal in protein folding studies. Modern experimental techniques provide accurate thermodynamic and kinetic measurements on restricted regions of a protein landscape. Although simplified protein models can access larger regions of the landscape, they are oftentimes built on assumptions and approximations that affect the accuracy of the results. We present a new methodology that allows to combine the complementary strengths of theory and experiment for a more complete characterization of a protein folding landscape. We prove that this new procedure allows a simplified protein model to reproduce remarkably well (correlation coefficient > 0.9) all experimental data available on free energies differences upon single mutations for S6 ribosomal protein and two circular permutants. Our results confirm and quantify the hypothesis, recently formulated on the basis of experimental data, that the folding landscape of protein S6 is strongly affected by an atypical distribution of contact energies.  相似文献   

20.
Folding landscapes of ankyrin repeat proteins: experiments meet theory   总被引:5,自引:0,他引:5  
Nearly 6% of eukaryotic protein sequences contain ankyrin repeat (AR) domains, which consist of several repeats and often function in binding. AR proteins show highly cooperative folding despite a lack of long-range contacts. Both theory and experiment converge to explain that formation of the interface between elements is more favorable than formation of any individual repeat unit. IkappaBalpha and Notch both undergo partial folding upon binding perhaps influencing the binding free energy. The simple architecture, combined with identification of consensus residues that are important for stability, has enabled systematic perturbation of the energy landscape by single point mutations that affect stability or by addition of consensus repeats. The folding energy landscapes appear highly plastic, with small perturbations re-routing folding pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号