首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Obese visceral adipose tissue (AT) inflammation is driven by adipokine-mediated cross talk between CD8+ T cells and adipocytes, a process mitigated by long-chain (LC) n-3 polyunsaturated fatty acids (PUFA) but underlying mechanisms and ensuing effects on macrophage polarization status are unknown. Using an in vitro co-culture model that recapitulates the degree of CD8+ T cell infiltration reported in obese AT, 3T3-L1 adipocytes were co-cultured for 24 h with purified splenic CD8+ T cells from C57Bl/6 mice consuming either a 10% w/w safflower oil (control, CON) or 7% w/w safflower oil + 3% w/w fish oil (FO) diet for 4 weeks (n=8–10/diet). Co-cultured cells were in direct contact or in a contact-independent condition separated by a Transwell permeable membrane and stimulated with lipopolysaccharide (10 ng/ml) to mimic in vivo obese endotoxin levels. In contact-dependent co-cultures, FO reduced inflammatory (IL-6, TNFα, IFN-γ) and macrophage chemotactic (CCL2, CCL7, CCL3) mRNA expression and/or secreted protein, NF-κB p65 activation, ROS accumulation, NLRP3 inflammasome priming (Nlrp3, Il1β mRNA) and activation (caspase-1 activity) compared to CON (P<.05). The anti-inflammatory action of FO was reproduced by the addition of a TNF-α neutralizing antibody (1 μg/ml) to CON co-cultures (CON/anti-TNF-α), albeit to a lesser degree. Conditioned media from FO and CON/anti-TNF-α co-cultures, in turn, reduced RAW 264.7 macrophage mRNA expression of M1 polarization markers (iNos, Cd11c, Ccr2) and associated inflammatory cytokines (Il6, Tnfα, Il1β) compared to CON. These data suggest that inflammatory CD8+ T cell/adipocyte cross talk is partially attributable to TNF-α signaling, which can be mitigated by LC n-3 PUFA.  相似文献   

2.
Adipocyte–macrophage cross-talk propagates immune responses in obese adipose tissue (AT). Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) mitigate inflammation, partly through up-regulation of adiponectin; however, specific mechanisms are unclear. We determined if adipocyte–macrophage cross-talk could be mitigated by dietary LC n-3 PUFA and if this was dependent on adiponectin-mediated signaling. We utilized an in vitro co-culture model mimicking the ratio of adipocytes:macrophages in obese AT, whereby 3T3-L1 adipocytes were co-cultured with splenic CD11b+ macrophages from C57BL/6 mice fed high-fat control (HF-CON; 34% w/w fat) or fish oil diets (HF-FO; 34% w/w fat containing 7.6% w/w FO), as well as mice fed low-fat control (LF-CON; 10% w/w fat) or FO diets (LF-FO; 10% w/w fat containing 3% w/w FO). Co-culture conditions tested effects of soluble mediator-driven mechanisms (trans-well system), cell contact and low-dose lipopolysaccharide (LPS) mimicking acute or chronic inflammatory conditions. HF-FO macrophages from acute LPS-stimulated trans-well co-cultures had decreased mRNA expression of Casp1, Il1β and Il18, as well as cellular caspase-1 activity compared to HF-CON macrophages (P  .05). Moreover, adipocytes from acute LPS-stimulated HF-FO co-cultures had decreased caspase-1 activity and decreased IL-1β/IL-18 levels following chronic LPS pretreatment compared to HF-CON co-cultures (P  .05). Additionally, in contact co-cultures with adiponectin-neutralizing antibody, the FO-mediated modulation of NFκB activity and decrease in phosphorylated p65 NFκB, expression of NLRP3 inflammasome genes, M1 macrophage marker genes and inflammatory cytokine/chemokine secretion were controlled partly through adiponectin, while cellular caspase-1 activity and IL-1β/1L-18 levels were decreased independently of adiponectin (P  .05). LC n-3 PUFA may decrease the intensity of adipocyte–macrophage cross-talk to mitigate obesity-associated pathologies.  相似文献   

3.
In the current study of Mycobacterium tuberculosis (MTB)-specific T and B cells, we found that MTB-specific peptides from early secreted antigenic target-6 (ESAT-6) and culture filtrate protein-10 (CFP-10) induced the expression of IL-21 predominantly in CD4+ T cells. A fraction of IL-21-expressing CD4+ T cells simultaneously expressed Th1 cytokines but did not secrete Th2 or Th17 cytokines, suggesting that MTB-specific IL-21-expressing CD4+ T cells were different from Th1, Th2 and Th17 subpopulations. The majority of MTB-specific IL-21-expressing CD4+ T cells co-expressed IFN-γ and IL-21+IFN-γ+CD4+ T cells exhibited obviously polyfunctionality. In addition, MTB-specific IL-21-expressing CD4+ T cells displayed a CD45RO+CD62LlowCCR7lowCD40LhighICOShigh phenotype. Bcl-6-expression was significantly higher in IL-21-expressing CD4+ T cells than IL-21-CD4+ T cells. Moreover, IL-12 could up-regulate MTB-specific IL-21 expression, especially the frequency of IL-21+IFN-γ+CD4+ T cells. Taken together, our results demonstrated that MTB-specific IL-21+IFN-γ+CD4+ T cells from local sites of tuberculosis (TB) infection could be enhanced by IL-12, which have the features of both Tfh and Th1 cells and may have an important role in local immune responses against TB infection.  相似文献   

4.
The role of cytokines in Plasmodium infection have been extensively investigated, but pro and anti inflammatory cytokines mediated imbalance during malaria immune-pathogenesis is still unrevealed. Malaria is associated with the circulating levels of Interleukin-6 (IL-6) and transforming growth factor β (TGF-β), but association between these two cytokines in immune response remains largely obscured. Using mouse model, we proposed that IL-6 and TGF-β are involved in immune regulation of dendritic cells (DC), regulatory T cells (Treg), T-helper cells (Th17) during P. berghei ANKA (PbA) infection. Association between the cytokines and the severity of malaria was established with anti-TGF-β treatment resulting in increased parasitemia and increased immunopathology, whereas; anti-IL-6 treatment delays immunopathology during PbA infection. Further, splenocytes revealed differential alteration of myeloid DC (mDC), plasmocytoid DC (pDC), Treg, Th17 cells following TGF-β and IL-6 neutralization. Interestingly anti-TGF-β reduces CD11c+CD8+ DC expression, whereas anti-IL-6 administration causes a profound increase during PbA infection in Swiss mice. We observed down regulation of TGF-β, IL-10, NFAT, Foxp3, STAT-5 SMAD-3 and upregulation of IL-6, IL-23, IL-17 and STAT-3 in splenocytes during PbA infection. The STAT activity probably plays differential role in induction of Th17 and Treg cells. Interestingly we found increase in STAT-3 and decrease in STAT-5 expression during PbA infection. This pattern of STAT indicates that possibly TGF-β and IL-6 play a crucial role in differentiation of DCs subsets and Treg/Th17 imbalance during experimental cerebral malaria (ECM).  相似文献   

5.
Tissue invasive helminth infections and tuberculosis (TB) are co-endemic in many parts of the world and can trigger immune responses that might antagonize each other. We have previously shown that helminth infections modulate the Th1 and Th17 responses to mycobacterial-antigens in latent TB. To determine whether helminth infections modulate antigen-specific and non-specific immune responses in active pulmonary TB, we examined CD4+ and CD8+ T cell responses as well as the systemic (plasma) cytokine levels in individuals with pulmonary TB with or without two distinct helminth infections—Wuchereria bancrofti and Strongyloides stercoralis infection. By analyzing the frequencies of Th1 and Th17 CD4+ and CD8+ T cells and their component subsets (including multifunctional cells), we report a significant diminution in the mycobacterial–specific frequencies of mono- and multi–functional CD4+ Th1 and (to a lesser extent) Th17 cells when concomitant filarial or Strongyloides infection occurs. The impairment in CD4+ and CD8+ T cell cytokine responses was antigen-specific as polyclonal activated T cell frequencies were equivalent irrespective of helminth infection status. This diminution in T cell responses was also reflected in diminished circulating levels of Th1 (IFN-γ, TNF-α and IL-2)- and Th17 (IL-17A and IL-17F)-associated cytokines. Finally, we demonstrate that for the filarial co-infections at least, this diminished frequency of multifunctional CD4+ T cell responses was partially dependent on IL-10 as IL-10 blockade significantly increased the frequencies of CD4+ Th1 cells. Thus, co-existent helminth infection is associated with an IL-10 mediated (for filarial infection) profound inhibition of antigen-specific CD4+ T cell responses as well as protective systemic cytokine responses in active pulmonary TB.  相似文献   

6.

Introduction

We sought to investigate the capacity of interleukin (IL)-7 to enhance collagen-induced arthritis and to study by what mechanisms this is achieved.

Methods

Mice received multiple injections with IL-7 or phosphate-buffered saline (PBS) as a control. Arthritis severity and incidence were determined by visual examination of the paws. Joint destruction was determined by assessing radiographs and immunohistochemistry of the ankle joints. Total cellularity and numbers of T-cell and B-cell subsets were assessed, as well as ex vivo production of interferon-γ (IFN-γ), IL-17, and IL-4. Proinflammatory mediators were measured in serum with multianalyte profiling.

Results

IL-7 increased arthritis severity and radiology-assessed joint destruction. This was consistent with IL-7-increased intensity of cell infiltrates, bone erosions, and cartilage damage. Splenic CD19+ B cells and CD19+/GL7+ germinal center B cells, as well as CD4 and CD8 numbers, were increased by IL-7. IL-7 expanded memory T cells, associated with increased percentages of IFN-γ-, IL-4-, and IL-17-producing CD4+ T cells. On antigen restimulation of draining lymph node cells in vitro IL-7 treatment was found to increase IFN-γ and IL-17 production, whereas IL-4 was reduced. IL-7 also increased concentrations of proinflammatory mediators, indicative of T-cell activation (sCD40L), vascular activation (VCAM-1, VEGF), tissue destruction (fibroblast growth factor-basic (FGF-b), LIF), and chemotaxis (MIP-1γ, MIP-3β, lymphotactin, MDC, and MCP-5).

Conclusions

In arthritic mice, IL-7 causes expansion of T and B cells, associated with increased levels of proinflammatory mediators. IL-7 intensifies arthritis severity and joint destruction, accompanied by increased Th1 and Th17 activity. These data indicate that IL-7 could be an important mediator in arthritic conditions and that targeting IL-7 or its receptor represent novel therapeutic strategies.  相似文献   

7.
8.
9.
ArtinM is a D-mannose-binding lectin extracted from the seeds of Artocarpus heterophyllus that interacts with TLR2 N-glycans and activates antigen-presenting cells (APCs), as manifested by IL-12 production. In vivo ArtinM administration induces Th1 immunity and confers protection against infection with several intracellular pathogens. In the murine model of Candida albicans infection, it was verified that, in addition to Th1, ArtinM induces Th17 immunity manifested by high IL-17 levels in the treated animals. Herein, we investigated the mechanisms accounting for the ArtinM-induced IL-17 production. We found that ArtinM stimulates the IL-17 production by spleen cells in BALB/c or C57BL/6 mice, a response that was significantly reduced in the absence of IL-23, MyD88, or IL-1R. Furthermore, we showed that ArtinM directly induced the IL-23 mRNA expression and the IL-1 production by macrophages. Consistently, in cell suspensions depleted of macrophages, the IL-17 production stimulated by ArtinM was reduced by 53% and the exogenous IL-23 acted synergistically with ArtinM in promoting IL-17 production by spleen cell suspensions. We verified that the absence of IL-23, IL-1R, or MyD88 inhibited, but did not block, the IL-17 production by ArtinM-stimulated spleen cells. Therefore, we investigated whether ArtinM exerts a direct effect on CD4+ T cells in promoting IL-17 production. Indeed, spleen cell suspensions depleted of CD4+ T cells responded to ArtinM with very low levels of IL-17 release. Likewise, isolated CD4+ T cells under ArtinM stimulus augmented the expression of TGF-β mRNA and released high levels of IL-17. Considering the observed synergism between IL-23 and ArtinM, we used cells from IL-23 KO mice to assess the direct effect of lectin on CD4+ T cells. We verified that ArtinM increased the IL-17 production significantly, a response that was inhibited when the CD4+ T cells were pre-incubated with anti-CD3 antibody. In conclusion, ArtinM stimulates the production of IL-17 by CD4+ T cells in two major ways: (I) through the induction of IL-23 and IL-1 by APCs and (II) through the direct interaction with CD3 on the CD4+ T cells. This study contributes to elucidation of mechanisms accounting for the property of ArtinM in inducing Th17 immunity and opens new perspectives in designing strategies for modulating immunity by using carbohydrate recognition agents.  相似文献   

10.
Clinical manifestations in onchocerciasis range from generalized onchocerciasis (GEO) to the rare but severe hyperreactive (HO)/sowda form. Since disease pathogenesis is associated with host inflammatory reactions, we investigated whether Th17 responses could be related to aggravated pathology in HO. Using flow cytometry, filarial-specific cytokine responses and PCR arrays, we compared the immune cell profiles, including Th subsets, in individuals presenting the two polar forms of infection and endemic normals (EN). In addition to elevated frequencies of memory CD4+ T cells, individuals with HO showed accentuated Th17 and Th2 profiles but decreased CD4+CD25hiFoxp3+ regulatory T cells. These profiles included increased IL-17A+, IL-4+, RORC2+ and GATA3+CD4+ T cell populations. Flow cytometry data was further confirmed using a PCR array since Th17-related genes (IL-17 family members, IL-6, IL-1β and IL-22) and Th2-related (IL-4, IL-13, STAT6) genes were all significantly up-regulated in HO individuals. In addition, stronger Onchocerca volvulus-specific Th2 responses, especially IL-13, were observed in vitro in hyperreactive individuals when compared to GEO or EN groups. This study provides initial evidence that elevated frequencies of Th17 and Th2 cells form part of the immune network instigating the development of severe onchocerciasis.  相似文献   

11.
12.
People with cystic fibrosis (CF) have been reported to make lung T cell responses that are biased towards T helper (Th) 2 or Th17. We hypothesized that CF-related T cell regulatory defects could be detected by analyzing CD4+ lymphocyte subsets in peripheral blood. Peripheral blood mononuclear cells from 42 CF patients (6 months–53 years old) and 78 healthy controls (2–61 years old) were analyzed for Th1 (IFN-γ+), Th2 (IL-4+), Th17 (IL-17+), Treg (FOXP3+), IL-10+ and TGF-β+ CD4+ cells. We observed higher proportions of Treg, IL-10+ and TGF-β+ CD4+ cells in CF adults (≥ 18 years old), but not children/adolescents, compared with controls. Within the CF group, high TGF-β+% was associated with chronic Pseudomonas aeruginosa lung infection (p < 0.006). We observed no significant differences between control and CF groups in the proportions of Th1, Th2 or Th17 cells, and no association within the CF group of any subset with sex, CFTR genotype, or clinical exacerbation. However, high Th17% was strongly associated with poor lung function (FEV1 % predicted) (p = 0.0008), and this association was strongest when both lung function testing and blood sampling were performed within one week. Our results are consistent with reports of CF as a Th17 disease and suggest that peripheral blood Th17 levels may be a surrogate marker of lung function in CF.  相似文献   

13.
Dendritic cells (DCs) are pivotal in the development of specific T-cell responses to control pathogens, as they govern both the initiation and the polarization of adaptive immunity. To investigate the capacities of migrating DCs to respond to pathogens, we used physiologically generated lymph DCs (L-DCs). The flexible polarization of L-DCs was analysed in response to Salmonella or helminth secretions known to induce different T cell responses. Mature conventional CD1b+ L-DCs showed a predisposition to promote pro-inflammatory (IL-6), pro-Th1 (IL-12p40) and anti-inflammatory (IL-10) responses which were amplified by Salmonella, and limited to only IL-6 induction by helminth secretions. The other major population of L-DCs did not express the CD1b molecule and displayed phenotypic features of immaturity compared to CD1b+ L-DCs. Salmonella infection reduced the constitutive expression of TNF-α and IL-4 mRNA in CD1b- L-DCs, whereas this expression was not affected by helminth secretions. The cytokine response of T cells promoted by L-DCs was analysed in T cell subsets after co-culture with Salmonella or helminth secretion-driven CD1b+ or CD1b- L-DCs. T cells preferentially expressed the IL-17 gene, and to a lesser extent the IFN-γ and IL-10 genes, in response to Salmonella-driven CD1b+ L-DCs, whereas a preferential IL-10, IFN-γ and IL-17 gene expression was observed in response to Salmonella-driven CD1b- L-DCs. In contrast, a predominant IL-4 and IL-13 gene expression by CD4+ and CD8+ T cells was observed after stimulation of CD1b+ and CD1b- L-DCs with helminth secretions. These results show that mature conventional CD1b+ L-DCs maintain a flexible capacity to respond differently to pathogens, that the predisposition of CD1b- L-DCs to promote a Th2 response can be oriented towards other Th responses, and finally that the modulation of migrating L-DCs responses is controlled more by the pathogen encountered than the L-DC subsets.  相似文献   

14.

Background

Using in vivo mouse models, the mechanisms of CD4+ T cell help have been intensively investigated. However, a mechanistic analysis of human CD4+ T cell help is largely lacking. Our goal was to elucidate the mechanisms of human CD4+ T cell help of CD8+ T cell proliferation using a novel in vitro model.

Methods/Principal Findings

We developed a genetically engineered novel human cell-based artificial APC, aAPC/mOKT3, which expresses a membranous form of the anti-CD3 monoclonal antibody OKT3 as well as other immune accessory molecules. Without requiring the addition of allogeneic feeder cells, aAPC/mOKT3 enabled the expansion of both peripheral and tumor-infiltrating T cells, regardless of HLA-restriction. Stimulation with aAPC/mOKT3 did not expand Foxp3+ regulatory T cells, and expanded tumor infiltrating lymphocytes predominantly secreted Th1-type cytokines, interferon-γ and IL-2. In this aAPC-based system, the presence of autologous CD4+ T cells was associated with significantly improved CD8+ T cell expansion in vitro. The CD4+ T cell derived cytokines IL-2 and IL-21 were necessary but not sufficient for this effect. However, CD4+ T cell help of CD8+ T cell proliferation was partially recapitulated by both adding IL-2/IL-21 and by upregulation of IL-21 receptor on CD8+ T cells.

Conclusions

We have developed an in vitro model that advances our understanding of the immunobiology of human CD4+ T cell help of CD8+ T cells. Our data suggests that human CD4+ T cell help can be leveraged to expand CD8+ T cells in vitro.  相似文献   

15.
16.
HemoHIM, an herbal preparation of three edible herbs (Angelica gigas Nakai, Cnidium officinale Makino, Paeonia japonica Miyabe) is known to increase the Th1 immune response as well as reduce the allergic response in human mast cells. Here, our goal was to determine whether or not HemoHIM could induce Th1 cell differentiation as well as inhibit the development of airway inflammation. To study Th1/Th2 cell differentiation, naive CD4+ T cells isolated from C57BL/6 mouse spleens were cultured with or without HemoHIM. To examine airway inflammation, C57BL/6 mice were fed HemoHIM for 4 weeks before sensitization and provocation with ovalbumin (OVA). In an in vitro experiment, naive CD4+ T cells displayed increased Th1 (IFN-γ+ cell) as well as decreased Th2 (IL-4+ cell) differentiation in a HemoHIM concentration-dependent manner. Furthermore, in an airway inflammation mice model, eosinophil numbers in BALF, serum levels of OVA-specific IgE and IgG1, and cytokine (IL-4, IL-5, and IL-13) levels in BALF and the supernatant of splenocytes all decreased upon HemoHIM (100 mg/kg body weight) pretreatment (4 weeks). These results show that HemoHIM attenuated allergic airway inflammation in the mouse model through regulation of the Th1/Th2 balance.  相似文献   

17.
Peripheral CD4+CD8+ T cells have been identified as a T cell subset existing in animals and humans. However, the characterization of CD4+CD8+ T cells, their relationship with T memory (TM), T effector (TE), Th1/Th2, Treg and Th-17, remain unclear. This study was to characterize the CD4+CD8+ T cells. The results from human subjects showed that activated T cells were CD4+CD8+ T cells, comprised CD4hiCD8lo, CD4hiCD8hi and CD4loCD8hi subsets. They expressed CD62Lhi/lo, granzyme B (GrB), CD25, Foxp3, interleukin 17 (IL-17) and the cytokines of both Th1 and Th2, and had cytolytic function. These findings suggested that CD4+CD8+ T cells had over-lap function while they kept diversity, and that T cells could be divided into two major populations: activated and inactivated. Hence, the hypotheses of Th1/Th2, Treg and Th-17 might reflect the positive/negative feedback regulation of immune system. When compared to GrB+CD62Llo T effector (TE) cells, GrB+CD62Lhi T central memory effector (TCME) cells had a quicker response to virus without CD62L loss.  相似文献   

18.
Naïve CD4+ T helper (Th) cells differentiate into distinct subsets of effector cells (Th1, Th2, Th17, and induced regulatory T cells (iTreg)) expressing different sets of cytokines upon encounter with presented foreign antigens. It has been well established that Th1/Th2 balance is critical for the nature of the following immune responses. Previous reports have demonstrated important roles of c-Jun N-terminal kinase (JNK) in Th1/Th2 balance, whereas the regulatory mechanisms of JNK activity in Th cells have not been elucidated. Here, we show that dual specificity phosphatase 16 (DUSP16, also referred to as MKP-M or MKP-7), which preferentially inactivates JNK, is selectively expressed in Th2 cells. In the in vitro differentiation assay of naïve CD4+ cells, DUSP16 expression is up-regulated during Th2 differentiation and down-regulated during Th1 differentiation. Chromatin immunoprecipitation revealed the increased acetylation of histone H3/H4 at the dusp16 gene promoter in CD4+ T cells under the Th2 condition. Adenoviral transduction of naïve CD4+ T cells with DUSP16 resulted in increased mRNA expression of IL-4 and GATA-3 in Th2 and decreased expression of IFNγ and T-bet in Th1 differentiation. In contrast, transduction of a dominant negative form of DUSP16 had the reverse effects. Furthermore, upon immunization, T cell-specific dusp16 transgenic mice produced antigen-specific IgG2a at lower amounts, whereas DN dusp16 transgenic mice produced higher amounts of antigen-specific IgG2a accompanied by decreased amounts of antigen-specific IgG1 and IgE than those of control mice. Together, these data suggest the functional role of DUSP16 in Th1/Th2 balance.  相似文献   

19.

Background

Airway inflammation is an important characteristic of asthma and has been associated with airway remodelling and bronchial hyperreactivity. The mucosal microenvironment composed of structural cells and highly specialised extracellular matrix is able to amplify and promote inflammation. This microenvironment leads to the development and maintenance of a specific adaptive response characterized by Th2 and Th17. Bronchial fibroblasts produce multiple mediators that may play a role in maintaining and amplifying this response in asthma.

Objective

To investigate the role of bronchial fibroblasts obtained from asthmatic subjects and healthy controls in regulating Th17 response by creating a local micro-environment that promotes this response in the airways.

Methods

Human bronchial fibroblasts and CD4+T cells were isolated from atopic asthmatics and non-atopic healthy controls. CD4+T were co-cultured with bronchial fibroblasts of asthmatic subjects and healthy controls. RORc gene expression was detected by qPCR. Phosphorylated STAT-3 and RORγt were evaluated by western blots. Th17 phenotype was measured by flow cytometry. IL-22, IL17, IL-6 TGF-β and IL1-β were assessed by qPCR and ELISA.

Results

Co-culture of CD4+T cells with bronchial fibroblasts significantly stimulated RORc expression and induced a significant increase in Th17 cells as characterized by the percentage of IL-17+/CCR6+ staining in asthmatic conditions. IL-17 and IL-22 were increased in both normal and asthmatic conditions with a significantly higher amount in asthmatics compared to controls. IL-6, IL-1β, TGF-β and IL-23 were significantly elevated in fibroblasts from asthmatic subjects upon co-culture with CD4+T cells. IL-23 stimulates IL-6 and IL-1β expression by bronchial fibroblasts.

Conclusion

Interaction between bronchial fibroblasts and T cells seems to promote specifically Th17 cells profile in asthma. These results suggest that cellular interaction particularly between T cells and fibroblasts may play a pivotal role in the regulation of the inflammatory response in asthma.  相似文献   

20.
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne disease in animals and MAP involvement in human Crohn disease has been recently emphasized. Evidence from M. tuberculosis studies suggests mycobacterial proteins activate dendritic cells (DCs) via Toll-like receptor (TLR) 4, eventually determining the fate of immune responses. Here, we investigated whether MAP CobT contributes to the development of T cell immunity through the activation of DCs. MAP CobT recognizes TLR4, and induces DC maturation and activation via the MyD88 and TRIF signaling cascades, which are followed by MAP kinases and NF-κB. We further found that MAP CobT-treated DCs activated naive T cells, effectively polarized CD4+ and CD8+ T cells to secrete IFN-γ and IL-2, but not IL-4 and IL-10, and induced T cell proliferation. These data indicate that MAP CobT contributes to T helper (Th) 1 polarization of the immune response. MAP CobT-treated DCs specifically induced the expansion of CD4+/CD8+CD44highCD62Llow memory T cells in the mesenteric lymph node of MAP-infected mice in a TLR4-dependent manner. Our results indicate that MAP CobT is a novel DC maturation-inducing antigen that drives Th1 polarized-naive/memory T cell expansion in a TLR4-dependent cascade, suggesting that MAP CobT potentially links innate and adaptive immunity against MAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号