首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Elevated levels of resistin have been proposed to cause insulin resistance and therefore may serve as a link between obesity and type 2 diabetes. However, its role in skeletal muscle metabolism is unknown. In this study, we examined the effect of resistin on insulin-stimulated glucose uptake and the upstream insulin-signaling components in L6 rat skeletal muscle cells that were either incubated with recombinant resistin or stably transfected with a vector containing the myc-tagged mouse resistin gene. Transfected clones expressed intracellular resistin, which was released in the medium. Incubation with recombinant resistin resulted in a dose-dependent inhibition of insulin-stimulated 2-deoxyglucose (2-DG) uptake. The inhibitory effect of resistin on insulin-stimulated 2-DG uptake was not the result of impaired GLUT4 translocation to the plasma membrane. Furthermore, resistin did not alter the insulin receptor (IR) content and its phosphorylation, nor did it affect insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation, its association with the p85 subunit of phosphatidylinositol (PI) 3-kinase, or IRS-1-associated PI 3-kinase enzymatic activity. Insulin-stimulated phosphorylation of Akt/protein kinase B-alpha, one of the downstream targets of PI 3-kinase and p38 MAPK phosphorylation, was also not affected by resistin. Expression of resistin also inhibited insulin-stimulated 2-DG uptake when compared with cells expressing the empty vector (L6Neo) without affecting GLUT4 translocation, GLUT1 content, and IRS-1/PI 3-kinase signaling. We conclude that resistin does not alter IR signaling but does affect insulin-stimulated glucose uptake, presumably by decreasing the intrinsic activity of cell surface glucose transporters.  相似文献   

2.
The skeletal muscle cells are one of the main sites of glucose uptake through glucose transporter 4 (GLUT4) in response to insulin. In muscle cells, 5' adenosine monophosphate-activated protein kinase (AMPK) is known as another GLUT4 translocation promoter. Natural compounds that activate AMPK have a possibility to overcome insulin resistance in the diabetic state. Piceatannol is a natural analog and a metabolite of resveratrol, a known AMPK activator. In this study, we investigate the in vitro effect of piceatannol on glucose uptake, AMPK phosphorylation and GLUT4 translocation to plasma membrane in L6 myocytes, and its in vivo effect on blood glucose levels in type 2 diabetic model db/db mice. Piceatannol was found to promote glucose uptake, AMPK phosphorylation and GLUT4 translocation by Western blotting analyses in L6 myotubes under a condition of insulin absence. Promotion by piceatannol of glucose uptake as well as GLUT4 translocation to plasma membrane by immunocytochemistry was also demonstrated in L6 myoblasts transfected with a glut4 cDNA-coding vector. Piceatannol suppressed the rises in blood glucose levels at early stages and improved the impaired glucose tolerance at late stages in db/db mice. These in vitro and in vivo findings suggest that piceatannol may be preventive and remedial for type 2 diabetes and become an antidiabetic phytochemical.  相似文献   

3.
《Cellular signalling》2014,26(11):2460-2469
The small GTPase Rac1 plays a key role in insulin-promoted glucose uptake mediated by the GLUT4 glucose transporter in skeletal muscle. Our recent studies have demonstrated that the serine/threonine protein kinase Akt2 is critically involved in insulin-dependent Rac1 activation. The purpose of this study is to clarify the role of the guanine nucleotide exchange factor FLJ00068 in Akt2-mediated Rac1 activation and GLUT4 translocation in mouse skeletal muscle and cultured myocytes. Constitutively activated FLJ00068 induced GLUT4 translocation in a Rac1-dependent and Akt2-independent manner in L6 myocytes. On the other hand, knockdown of FLJ00068 significantly reduced constitutively activated Akt2-triggered GLUT4 translocation. Furthermore, Rac1 activation and GLUT4 translocation induced by constitutively activated phosphoinositide 3-kinase were inhibited by knockdown of FLJ00068. In mouse gastrocnemius muscle, constitutively activated FLJ00068 actually induced GLUT4 translocation to the sarcolemma. GLUT4 translocation by constitutively activated FLJ00068 was totally abolished in rac1 knockout mouse gastrocnemius muscle. Additionally, we were successful in detecting the activation of Rac1 following the expression of constitutively activated FLJ00068 in gastrocnemius muscle by immunofluorescence microscopy using an activation-specific probe. Collectively, these results strongly support the notion that FLJ00068 regulates Rac1 downstream of Akt2, leading to the stimulation of glucose uptake in skeletal muscle.  相似文献   

4.
Diabetes mellitus is a complex disease that is characterized by the defection of insulin sensitivity in such peripheral tissues as skeletal muscle, adipose tissue and liver. We have previously demonstrated that certain inositol derivatives stimulated glucose uptake accompanied by the translocation of glucose transporter 4 (GLUT4) to the plasma membrane in L6 myotubes. We investigated in this present study whether an oral intake of D-pinitol (PI) and myo-inositol (MI) would affect GLUT4 translocation in the skeletal muscle of mice. PI or MI at 1 g/kg BW administered orally to mice 30 min before a post-oral injection of glucose at 2 g/kg BW resulted in both PI and MI increasing GLUT4 translocation in the skeletal muscle and lowering the plasma glucose and insulin levels. PI and MI, therefore, have the potential to prevent diabetes mellitus by reducing the postprandial blood glucose level and stimulating GLUT4 translocation in the skeletal muscle.  相似文献   

5.
In this study, we investigated whether epigallocatechin gallate (EGCg) affects glucose uptake activity and the translocation of insulin-sensitive glucose transporter (GLUT) 4 in skeletal muscle. A single oral administration of EGCg at 75 mg/kg body weight promoted GLUT4 translocation in skeletal muscle of rats. EGCg significantly increased glucose uptake accompanying GLUT4 translocation in L6 myotubes at 1 nM. The translocation of GLUT4 was also observed both in skeletal muscle of mice and rats ex vivo and in insulin-resistant L6 myotubes. Wortmannin, an inhibitor of phosphatidylinositol 3′-kinase, inhibited both EGCg- and insulin-increased glucose uptakes, while genistein, an inhibitor of tyrosine kinase, failed to inhibit the EGCg-increased uptake. Therefore, EGCg may improve hyperglycemia by promoting GLUT4 translocation in skeletal muscle with partially different mechanism from insulin.  相似文献   

6.
7.
It is well established that insulin stimulation of glucose uptake in skeletal muscle cells is mediated through translocation of GLUT4 from intracellular storage sites to the cell surface. However, the established skeletal muscle cell lines, with the exception of L6 myocytes, reportedly show minimal insulin-dependent glucose uptake and GLUT4 translocation. Using C(2)C(12) myocytes expressing exofacial-Myc-GLUT4-enhanced cyan fluorescent protein, we herein show that differentiated C(2)C(12) myotubes are equipped with basic GLUT4 translocation machinery that can be activated by insulin stimulation ( approximately 3-fold increase as assessed by anti-Myc antibody uptake and immunostaining assay). However, this insulin stimulation of GLUT4 translocation was difficult to demonstrate with a conventional 2-deoxyglucose uptake assay because of markedly elevated basal glucose uptake via other glucose transporter(s). Intriguingly, the basal glucose transport activity in C(2)C(12) myotubes appeared to be acutely suppressed within 5 min by preincubation with a pathophysiologically high level of extracellular glucose (25 mM). In contrast, this activity was augmented by acute glucose deprivation via an unidentified mechanism that is independent of GLUT4 translocation but is dependent on phosphatidylinositol 3-kinase activity. Taken together, these findings indicate that regulation of the facilitative glucose transport system in differentiated C(2)C(12) myotubes can be achieved through surprisingly acute glucose-dependent modulation of the activity of glucose transporter(s), which apparently contributes to obscuring the insulin augmentation of glucose uptake elicited by GLUT4 translocation. We herein also describe several methods of monitoring insulin-dependent glucose uptake in C(2)C(12) myotubes and propose this cell line to be a useful model for analyzing GLUT4 translocation in skeletal muscle.  相似文献   

8.
Context: Ginsenoside Rb1 improves insulin sensitivity and glucose uptake in muscle cells via different signaling pathways; however, it is not clear that it has any effect on leptin signaling in skeletal muscle.

Objectives: The aim of this study was to investigate the effect of ginsenoside Rb1 on leptin receptors expression and main signaling pathways of leptin (STAT3, PI3 kinase and ERK kinase) in C2C12 skeletal muscle cells.

Materials and methods: C2C12 myotubes were incubated with various concentrations of Rb1 (0.1, 1 and 10?μM) for different incubation times (1–12?h). Leptin receptors expression and GLUT-4 translocation were analyzed using realtime PCR and western blot analyses, respectively. PI3 and ERK kinases were blocked using their specific inhibitors (wortmannin and PD98059) in the presence and absence of RB1 to determine the main signaling pathway related to leptin receptor activation in C2C12 cells.

Results: Rb1 could maximally stimulate both leptin receptors (OBRa and OBRb) mRNA and protein expression and phosphorylation of STAT3, PI3K and ERK2 in C2C12 myotubes at 10?μM for 3?h. Rb1 induced GLUT4 translocation was inhibited by the silencing of OBRb mRNA, demonstrated that glucose uptake was mediated via leptin receptor activation. GLUT4 recruitment to the cell surface induced by Rb1 was inhibited by wortmannin, an inhibitor of PI3K in combination with OBRb siRNA, but not by PD98059 an ERK2 kinase-1 inhibitor, indicating that GLUT4 translocation induced by Rb1 was associated with the leptin receptor upregulation and subsequent activation of PI3K.

Conclusions: Our results suggest that Rb1 promote translocation of GLUT4 by upregulation of leptin receptors and activation of PI3K.  相似文献   

9.
This study investigates the antioxidant and antidiabetic activity of the WL15 peptide derived from Channa striatus on regulating the antioxidant property in the rat skeletal muscle cell line (L6) and enhancing glucose uptake via glucose metabolism. Increased oxidative stress plays a major role in the development of diabetes and its complications. Strategies are needed to mitigate the oxidative stress that can reduce these pathogenic processes. Our results showed that with treatment with WL15 peptide, the reactive oxygen species significantly decreased in L6 myotubes in a dose-dependent manner, and increased antioxidant enzymes help to prevent the formation of lipid peroxidation in L6 myotubes. The cytotoxicity of WL15 is evaluated in the L6 cells and found to be non-cytotoxic at the tested concentration. Also, for the analysis of glucose uptake activity in L6 cells, the 2-(N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl]amino)-2-deoxy- d -glucose assay was performed in the presence of wortmannin and genistein inhibitors. WL15 demonstrated antidiabetic activities through a dose-dependent increase in glucose uptake (64%) and glycogen storage (7.8 mM). The optimal concentration for the maximum activity was found to be 50 µM. In addition, studies of gene expression in L6 myotubes demonstrated upregulation of antioxidant genes and genes involved in the pathway of insulin signaling. In cell-based assays, WL15 peptide decreased intracellular reactive oxygen species levels and demonstrated insulin mimic activity by enhancing the primary genes involved in the insulin signaling pathway by increased glucose uptake indicating that glucose transporter type 4 (GLUT4) is regulated from the intracellular pool to the plasma membrane.  相似文献   

10.
Insulin stimulates glucose uptake in skeletal muscle cells and fat cells by promoting the rapid translocation of GLUT4 glucose transporters to the plasma membrane. Recent work from our laboratory supports the concept that insulin also stimulates the intrinsic activity of GLUT4 through a signaling pathway that includes p38 MAPK. Here we show that regulation of GLUT4 activity by insulin develops during maturation of skeletal muscle cells into myotubes in concert with the ability of insulin to stimulate p38 MAPK. In L6 myotubes expressing GLUT4 that carries an exofacial myc-epitope (L6-GLUT4myc), insulin-stimulated GLUT4myc translocation equals in magnitude the glucose uptake response. Inhibition of p38 MAPK with SB203580 reduces insulin-stimulated glucose uptake without affecting GLUT4myc translocation. In contrast, in myoblasts, the magnitude of insulin-stimulated glucose uptake is significantly lower than that of GLUT4myc translocation and is insensitive to SB203580. Activation of p38 MAPK by insulin is considerably higher in myotubes than in myoblasts, as is the activation of upstream kinases MKK3/MKK6. In contrast, the activation of all three Akt isoforms and GLUT4 translocation are similar in myoblasts and myotubes. Furthermore, GLUT4myc translocation and phosphorylation of regulatory sites on Akt in L6-GLUT4myc myotubes are equally sensitive to insulin, whereas glucose uptake and phosphorylation of regulatory sites on p38 MAPK show lower sensitivity to the hormone. These observations draw additional parallels between Akt and GLUT4 translocation and between p38 MAPK and GLUT4 activation. Regulation of GLUT4 activity by insulin develops upon muscle cell differentiation and correlates with p38 MAPK activation by insulin.  相似文献   

11.
Lysophosphatidylserine (LPS) is known to have diverse cellular effects, but although LPS is present in many biological fluids, its in vivo effects have not been elucidated. In the present study, we investigated the effects of LPS on glucose metabolism in vivo, and how skeletal muscle cells respond to LPS stimulation. LPS enhanced glucose uptake in a dose- and time-dependent manner in L6 GLUT4myc myotubes, and this effect of LPS on glucose uptake was mediated by a Gαi and PI 3-kinase dependent signal pathway. LPS increased the level of GLUT4 on the cell surface of L6 GLUT4myc myotubes, and enhanced glucose uptake in 3T3-L1 adipocytes. In line with its cellular functions, LPS lowered blood glucose levels in normal mice, while leaving insulin secretion unaffected. LPS also had a glucose-lowering effect in STZ-treated type 1 diabetic mice and in obese db/db type 2 diabetic mice. This study shows that LPS-stimulated glucose transport both in skeletal muscle cells and adipocytes, and significantly lowered blood glucose levels both in type 1 and 2 diabetic mice. Our results suggest that LPS is involved in the regulation of glucose homeostasis in skeletal muscle and adipose tissue.  相似文献   

12.
L6 skeletal muscle myoblasts stably overexpressing glucose transporter GLUT1 or GLUT4 with exofacial myc-epitope tags were characterized for their response to insulin. In clonally selected cultures, 2-deoxyglucose uptake into L6-GLUT1myc myoblasts and myotubes was linear within the time of study. In L6-GLUT1myc and L6-GLUT4myc myoblasts, 100 nmol/L insulin treatment increased the GLUT1 content of the plasma membrane by 1.58±0.01 fold and the GLUT4 content 1.96±0.11 fold, as well as the 2-deoxyglucose uptake 1.53±0.09 and 1.86±0.17 fold respectively, all by a wortmannin-inhibitable manner. The phosphorylation of Akt in these two cell lines was increased by insulin. L6-GLUT1myc myoblasts showed a dose-dependent stimulation of glucose uptake by insulin, with unaltered sensitivity and maximal responsiveness compared with wild type cells. By contrast, the improved insulin responsiveness and sensitivity of glucose uptake were observed in L6-GLUT4myc myoblasts. Earlier studies indicated that forskolin might affect insulin-stimulated GLUT4 translocation. A 65% decrease of insulin-stimulated 2-deoxyglucose uptake in GLUT4myc cells was not due to an effect on GLUT4 mobilization to the plasma membrane, but instead on direct inhibition of GLUT4. Forskolin and dipyridamole are more potent inhibitors of GLUT4 than GLUT1. Alternatively, pentobarbital inhibits GLUT1 more than GLUT4. The use of these inhibitors confirmed that the overexpressed GLUT1 or GLUT4 are the major functional glucose transporters in unstimulated and insulin-stimulated L6 myoblasts. Therefore, L6-GLUT1myc and L6-GLUT4myc cells provide a platform to screen compounds that may have differential effects on GLUT isoform activity or may influence GLUT isoform mobilization to the cell surface of muscle cells.  相似文献   

13.

Background

There is considerable interest in identifying compounds that can improve glucose homeostasis. Skeletal muscle, due to its large mass, is the principal organ for glucose disposal in the body and we have investigated here if shikonin, a naphthoquinone derived from the Chinese plant Lithospermum erythrorhizon, increases glucose uptake in skeletal muscle cells.

Methodology/Principal Findings

Shikonin increases glucose uptake in L6 skeletal muscle myotubes, but does not phosphorylate Akt, indicating that in skeletal muscle cells its effect is medaited via a pathway distinct from that used for insulin-stimulated uptake. Furthermore we find no evidence for the involvement of AMP-activated protein kinase in shikonin induced glucose uptake. Shikonin increases the intracellular levels of calcium in these cells and this increase is necessary for shikonin-mediated glucose uptake. Furthermore, we found that shikonin stimulated the translocation of GLUT4 from intracellular vesicles to the cell surface in L6 myoblasts. The beneficial effect of shikonin on glucose uptake was investigated in vivo by measuring plasma glucose levels and insulin sensitivity in spontaneously diabetic Goto-Kakizaki rats. Treatment with shikonin (10 mg/kg intraperitoneally) once daily for 4 days significantly decreased plasma glucose levels. In an insulin sensitivity test (s.c. injection of 0.5 U/kg insulin), plasma glucose levels were significantly lower in the shikonin-treated rats. In conclusion, shikonin increases glucose uptake in muscle cells via an insulin-independent pathway dependent on calcium.

Conclusions/Significance

Shikonin increases glucose uptake in skeletal muscle cells via an insulin-independent pathway dependent on calcium. The beneficial effects of shikonin on glucose metabolism, both in vitro and in vivo, show that the compound possesses properties that make it of considerable interest for developing novel treatment of type 2 diabetes.  相似文献   

14.
Peganum harmala Linn, commonly known as 'harmal' belonging to the family Zygophyllaceae, is one of the most important medicinal plants of India. In continuation of our drug development program on Indian medicinal plants we discovered antihyperglycemic activity in 4-hydroxypipecolic acid (4-HPA), isolated from the seed of P. harmala. Effect of 4-HPA on glucose uptake and glucose transporter-4 (GLUT-4) translocation was investigated in L6 skeletal muscle cell lines. Treatment with 4-HPA stimulated both glucose uptake and GLUT4 translocation from intracellular to cell surface in skeletal muscle cells in a concentration-dependent manner, which might be leading to antihyperglycemic effect.  相似文献   

15.
Structure modifications of lupeol at the isopropylene moiety have been described via allylic oxidation using selenium dioxide. The antidiabetic efficacy of lupeol analogues were evaluated in vitro as glucose uptake stimulatory effect in L6 skeletal muscle cells. From all tested compounds, 2, 3, 4b and 6b showed significant stimulation of glucose uptake with respective percent stimulation of 173.1 (p <0.001), 114.1 (p <0.001), 98.3 (p <0.001) and 107.3 (p <0.001) at 10 μM concentration. Stimulation of glucose uptake by these compounds is associated with enhanced translocation of glucose transporter 4 (GLUT4) and activation of IRS-1/PI3-K/AKT-dependent signaling pathway in L6 cells. Structure–activity relationship analysis of these analogues demonstrated that the integrity of α,β-unsaturated carbonyl and acetyl moieties were important in the retention of glucose uptake stimulatory effect. It is therefore proposed that naturally occurring lupeol and their analogues might reduce blood glucose, at least in part, through stimulating glucose utilization by skeletal muscles.  相似文献   

16.
17.
Glucose transporter (GLUT) 4 is the insulin responsive glucose transporter in adipose tissue, skeletal muscle, and heart. Insulin elicits increased glucose uptake by recruiting GLUT4 from a specialized intracellular storage site to the cell surface. Expression of various proteins that colocalize with GLUT4 and/or are involved in insulin-stimulated GLUT4 translocation was examined in adipocytes as well as skeletal and cardiac muscles from GLUT4 null mice. Our data demonstrate that expression of insulin-regulated aminopeptidase (IRAP) is divergently regulated in GLUT4 null tissues, e.g., upregulated 1.6-fold in GLUT4 null adipocytes and downregulated in GLUT4 null skeletal muscle (40%) and heart (60%). IRAP exhibited abnormal subcellular distribution and impaired insulin-stimulated translocation in GLUT4-deficient tissues. We propose the compartment containing IRAP and proteins normally associated with GLUT4 vesicle traffics constitutively to the cell surface in GLUT4 null adipocytes and skeletal muscle.  相似文献   

18.
Daidzein shows estrogenic, antioxidant and antiandrogenic properties as well as cell cycle regulatory activity. However, the antihyperglycemic effect of daidzein remains to be elucidated. In this study, we investigated the in vitro effect of daidzein on glucose uptake, AMPK phosphorylation and GLUT4 translocation on plasma membrane in L6 myotubes and its in vivo antihyperglycmic effect in obese–diabetic model db/db mice. Daidzein was found to promote glucose uptake, AMPK phosphorylation and GLUT4 translocation by Western blotting analyses in L6 myotubes under a condition of insulin absence. Promotion by daidzein of glucose uptake as well as GLUT4 translocation to plasma membrane by immunocytochemistry was also demonstrated in L6 myoblasts transfected with a GLUT4 cDNA-coding vector. Daidzein (0.1% in the diet) suppressed the rises in the fasting blood glucose, serum total cholesterol levels and homeostasis model assessment index of db/db mice. In addition, daidzein supplementation markedly improved the AMPK phosphorylation in gastrocnemius muscle of db/db mice. Daidzein also suppressed increases in blood glucose levels and urinary glucose excretion in KK-Ay mice, another Type 2 diabetic animal model. These in vitro and in vivo findings suggest that daidzein is preventive for Type 2 diabetes and an antidiabetic phytochemical.  相似文献   

19.
《Free radical research》2013,47(9):1055-1068
Abstract

High fructose consumption has implicated in insulin resistance and metabolic syndrome. Fructose is a highly lipogenic sugar that has intense metabolic effects in liver. Recent evidences suggest that fructose exposure to other tissues has substantial and profound metabolic consequences predisposing toward chronic conditions such as type 2 diabetes. Since skeletal muscle is the major site for glucose utilization, in the present study we define the effects of fructose exposure on glucose utilization in skeletal muscle cells. Upon fructose exposure, the L6 skeletal muscle cells displayed diminished glucose uptake, glucose transporter type 4 (GLUT4) translocation, and impaired insulin signaling. The exposure to fructose elevated reactive oxygen species (ROS) production in L6 myotubes, accompanied by activation of the stress/inflammation markers c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2), and degradation of inhibitor of NF-κB (IκBα). We found that fructose caused impairment of glucose utilization and insulin signaling through ROS-mediated activation of JNK and ERK1/2 pathways, which was prevented in the presence of antioxidants. In conclusion, our data demonstrate that exposure to fructose induces cell-autonomous oxidative response through ROS production leading to impaired insulin signaling and attenuated glucose utilization in skeletal muscle cells.  相似文献   

20.
Striated muscles (skeletal and cardiac) are major physiological targets of insulin and this hormone triggers complex signaling pathways regulating cell growth and energy metabolism. Insulin increases glucose uptake into muscle cells by stimulating glucose transporter (GLUT4) translocation from intracellular compartments to the cell surface. The canonical insulin-triggered signaling cascade controlling this process is constituted by well-mapped tyrosine, lipid and serine/threonine phosphorylation reactions. In parallel to these signals, recent findings reveal insulin-dependent Ca2+ mobilization in skeletal muscle cells and cardiomyocytes. Specifically, insulin activates the sarco-endoplasmic reticulum (SER) channels that release Ca2+ into the cytosol i.e., the Ryanodine Receptor (RyR) and the inositol 1,4,5-triphosphate receptor (IP3R). In skeletal muscle cells, a rapid, insulin-triggered Ca2+ release occurs through RyR, that is brought about upon S-glutathionylation of cysteine residues in the channel by reactive oxygen species (ROS) produced by the early activation of the NADPH oxidase (NOX2). In cardiomyocytes insulin induces a fast and transient increase in cytoplasmic [Ca2+]i trough L-type Ca2+ channels activation. In both cell types, a relatively slower Ca2+ release also occurs through IP3R activation, and is required for GLUT4 translocation and glucose uptake. The insulin-dependent Ca2+ released from IP3R of skeletal muscle also promotes mitochondrial Ca2+ uptake. We review here these actions of insulin on intracellular Ca2+ channel activation and their impact on GLUT4 traffic in muscle cells, as well as other implications of insulin-dependent Ca2+ release from the SER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号