首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells sense and respond to mechanical loads in a process called mechanotransduction. These processes are disrupted in the chondrocytes of cartilage during joint disease. A key driver of cellular mechanotransduction is the stiffness of the surrounding matrix. Many cells are surrounded by extracellular matrix that allows for tissue mechanical function. Although prior studies demonstrate that extracellular stiffness is important in cell differentiation, morphology and phenotype, it remains largely unknown how a cell’s biological response to cyclical loading varies with changes in surrounding substrate stiffness. Understanding these processes is important for understanding cells that are cyclically loaded during daily in vivo activities (e.g. chondrocytes and walking). This study uses high-performance liquid chromatography – mass spectrometry to identify metabolomic changes in primary chondrocytes under cyclical compression for 0–30 minutes in low- and high-stiffness environments. Metabolomic analysis reveals metabolites and pathways that are sensitive to substrate stiffness, duration of cyclical compression, and a combination of both suggesting changes in extracellular stiffness in vivo alter mechanosensitive signaling. Our results further suggest that cyclical loading minimizes matrix deterioration and increases matrix production in chondrocytes. This study shows the importance of modeling in vivo stiffness with in vitro models to understand cellular mechanotransduction.  相似文献   

2.
Indian hedgehog (Ihh), a member of the vertebrate hedgehog morphogen family, is a key signaling molecule that controls chondrocyte proliferation and differentiation. In this study, we show a novel function of Ihh. Namely, it acts as an essential mediator of mechanotransduction in cartilage. Cyclic mechanical stress greatly induces the expression of Ihh by chondrocytes. This induction is abolished by gadolinium, an inhibitor of stretch-activated channels. This suggests that the IHH gene is mechanoresponsive. The mechano-induction of Ihh is essential for stimulating chondrocyte proliferation by mechanical loading. The presence of an Ihh functional blocking antibody during loading completely abolishes the stimulatory effect of mechanical load on proliferation. Furthermore, Ihh mediates the mechanotransduction process in a bone morphogenic protein (BMP)-dependent and parathyroid hormone-related peptide-independent manner. BMP 2/4 are up-regulated by mechanical stress through the induction of Ihh, and BMP antagonist noggin inhibits mechanical stimulation of chondrocyte proliferation. This suggests BMP lies downstream of Ihh in mechanotransduction pathway. Our data suggest that Ihh may transduce mechanical signals during cartilage growth and repair processes.  相似文献   

3.
Mechanical tension is a critical determinant of cell growth, differentiation, apoptosis, migration, and development. Integrins have been implicated in sensing force but little is known about how forces are transduced to biochemical signals. We now show that mechanical strain stimulates conformational activation of integrin alphavbeta3 in NIH3T3 cells. Integrin activation is mediated by phosphoinositol 3-kinase and is followed by an increase in integrin binding to extracellular matrix proteins. Mechanical stretch stimulation of JNK was dependent on new integrin binding to extracellular matrix. These data define a molecular mechanism for the role of integrins in mechanotransduction.  相似文献   

4.
The importance of a subset of cells which have 'stem like' characteristics and are capable of tumor initiation has been reported for a range of tumors. Isolation of these tumor-initiating cells (TICs) has largely been based on differential cell surface protein expression. However, there is still much debate on the functional significance of these markers in initiating tumors, as many properties of tumor initiation are modified by cell-cell interactions. In particular, the relationship between TICs and their microenvironment is poorly understood but has therapeutic implications, as the microenvironment can maintain tumor cells in a prolonged period of quiescence. However, a major limitation in advancing our understanding of the crosstalk between TICs and their microenvironment is the lack of sensitive techniques which allow the in vivo tracking and monitoring of TICs. Application of new in vivo cellular and molecular imaging technologies holds much promise in uncovering the mysteries of TIC behavior at the three-dimensional level. This review will describe recent advances in our understanding of the TIC concept and how the application of in vivo imaging techniques can advance our understanding of the biological fate of TICs. A supplementary resource guide describing TICs from different malignancies is also presented.  相似文献   

5.
Living cells are continuously exposed to mechanical cues, and can translate these signals into biochemical information (e.g. mechanotransduction). This process is crucial in many normal cellular functions, e.g. cell adhesion, migration, proliferation, and survival, as well as the progression of diseases such as cancer. Focal adhesions are the major sites of interactions between extracellular mechanical environments and intracellular biochemical signalling molecules/cytoskeleton, and hence focal adhesion proteins have been suggested to play important roles in mechanotransduction. Here, we overview the current molecular understanding in mechanotransduction occurring at focal adhesions. We also introduce recent studies on how extracellular matrix and mechanical microenvironments contribute to the development of cancer.  相似文献   

6.
Physical forces play an important role in modulating cell function and shaping tissue structure. Mechanotransduction, the process by which cells transduce physical force-induced signals into biochemical responses, is critical for mediating adaptations to mechanical loading in connective tissues. While much is known about mechanotransduction in cells involving forces delivered through extracellular matrix proteins and integrins, there is limited understanding of how mechanical signals are propagated through the interconnected cellular networks found in tissues and organs. We propose that intercellular mechanotransduction is a critical component for achieving coordinated remodeling responses to force application in connective tissues. We examine here recent evidence on different pathways of intercellular mechanotransduction and suggest a general model for how multicellular structures respond to mechanical loading as an integrated unit.  相似文献   

7.
Cells sense and respond to the biochemical and physical properties of the extracellular matrix (ECM) through adhesive structures that bridge the cell cytoskeleton and the surrounding environment. Integrin‐mediated adhesions interact with specific ECM proteins and sense the rigidity of the substrate to trigger signalling pathways that, in turn, regulate cellular processes such as adhesion, motility, proliferation and differentiation. This process, called mechanotransduction, influenced by the involvement of different integrin subtypes and their high ECM–ligand binding specificity, contributes to the cell‐type‐specific mechanical responses. In this review, we describe how the expression of particular integrin subtypes affects cellular adaptation to substrate rigidity. We then explain the role of integrins and associated proteins in mechanotransduction, focusing on their specificity in mechanosensing and force transmission.  相似文献   

8.
It is now well established that many cellular functions are regulated by interactions of cells with physicochemical and mechanical cues of their extracellular matrix (ECM) environment. Eukaryotic cells constantly sense their local microenvironment through surface mechanosensors to transduce physical changes of ECM into biochemical signals, and integrate these signals to achieve specific changes in gene expression. Interestingly, physicochemical and mechanical parameters of the ECM can couple with each other to regulate cell fate. Therefore, a key to understanding mechanotransduction is to decouple the relative contribution of ECM cues on cellular functions.Here we present a detailed experimental protocol to rapidly and easily generate biologically relevant hydrogels for the independent tuning of mechanotransduction cues in vitro. We chemically modified polyacrylamide hydrogels (PAAm) to surmount their intrinsically non-adhesive properties by incorporating hydroxyl-functionalized acrylamide monomers during the polymerization. We obtained a novel PAAm hydrogel, called hydroxy-PAAm, which permits immobilization of any desired nature of ECM proteins. The combination of hydroxy-PAAm hydrogels with microcontact printing allows to independently control the morphology of single-cells, the matrix stiffness, the nature and the density of ECM proteins. We provide a simple and rapid method that can be set up in every biology lab to study in vitro cell mechanotransduction processes. We validate this novel two-dimensional platform by conducting experiments on endothelial cells that demonstrate a mechanical coupling between ECM stiffness and the nucleus.  相似文献   

9.
Cadherins form a large family of calcium-dependent cell-cell adhesion receptors involved in development, morphogenesis, synaptogenesis, differentiation, and carcinogenesis through signal mechanotransduction using an adaptor complex that connects them to the cytoskeleton. However, the molecular mechanisms underlying mechanotransduction through cadherins remain unknown, although their extracellular region (ectodomain) is thought to be critical in this process. By single molecule force spectroscopy, molecular dynamics simulations, and protein engineering, here we have directly examined the nanomechanics of the C-cadherin ectodomain and found it to be strongly dependent on the calcium concentration. In the presence of calcium, the ectodomain extends through a defined ("canalized") pathway that involves two mechanical resistance elements: a mechanical clamp from the cadherin domains and a novel mechanostable component from the interdomain calcium-binding regions ("calcium rivet") that is abolished by magnesium replacement and in a mutant intended to impede calcium coordination. By contrast, in the absence of calcium, the mechanical response of the ectodomain becomes largely "decanalized" and destabilized. The cadherin ectodomain may therefore behave as a calcium-switched "mechanical antenna" with very different mechanical responses depending on calcium concentration (which would affect its mechanical integrity and force transmission capability). The versatile mechanical design of the cadherin ectodomain and its dependence on extracellular calcium facilitate a variety of mechanical responses that, we hypothesize, could influence the various adhesive properties mediated by cadherins in tissue morphogenesis, synaptic plasticity, and disease. Our work represents the first step toward the mechanical characterization of the cadherin system, opening the door to understanding the mechanical bases of its mechanotransduction.  相似文献   

10.
Cell volume regulation, as one of the fundamental homeostasis of the cell, is associated with many cellular behaviors and functions. With the increased studies on the effect of environmental mechanical cues on cell volume regulation, the relationship between cell volume regulation and mechanotransduction becomes more and more clear. In this paper, we review the mechanisms and hypotheses by which cell maintains its volume homeostasis both in vivo and in constructed cell mechanical microenvironment (CMM) in vitro. We discuss how the growth-division regulation maintains the volume homeostasis of cells in the cell cycle and how the cell cortex/membrane tension mediates the effect of CMM (i.e., osmotic pressure, matrix stiffness, and mechanical force) on cell volume regulation. We also highlight the roles of cell volume as a perfect integrator of the downstream signals of mechanotransduction from different aspects of CMM and an effective indicator for the mechanical condition that cell confronts. This interdisciplinary perspective can provide new insight into biomechanics and may shed light on bioengineering and pathological research work. We hope this review can facilitate future studies on the investigation of the role of cell volume in mechanotransduction.  相似文献   

11.
12.
Membrane-bound integrin receptors are linked to intracellular signaling pathways through focal adhesion kinase (FAK). FAK tends to colocalize with integrin receptors at focal adhesions through its C-terminal focal adhesion targeting (FAT) domain. Through recruitment and binding of intracellular proteins, FAs transduce signals between the intracellular and extracellular regions that regulate a variety of cellular processes including cell migration, proliferation, apoptosis and detachment from the ECM. The mechanism of signaling through the cell is of interest, especially the transmission of mechanical forces and subsequent transduction into biological signals. One hypothesis relates mechanotransduction to conformational changes in intracellular proteins in the force transmission pathway, connecting the extracellular matrix with the cytoskeleton through FAs. To assess this hypothesis, we performed steered molecular dynamics simulations to mechanically unfold FAT and monitor how force-induced changes in the molecular conformation of FAT affect its binding to paxillin.  相似文献   

13.
14.
TICs are characterized by their ability to self-renew, differentiate and initiate tumor formation. miRNAs are small noncoding RNAs that bind to mRNAs resulting in regulation of gene expression and biological functions. The role of miRNAs and TICs in cancer progression led us to hypothesize that miRNAs may regulate genes involved in TIC maintenance. Using whole genome miRNA and mRNA expression profiling of TICs from primary prostate cancer cells, we identified a set of up-regulated miRNAs and a set of genes down-regulated in PSs. Inhibition of these miRNAs results in a decrease of prostatosphere formation and an increase in target gene expression. This study uses genome-wide miRNA profiling to analyze expression in TICs. We connect aberrant miRNA expression and deregulated gene expression in TICs. These findings can contribute to a better understanding of the molecular mechanisms governing TIC development/maintenance and the role that miRNAs have in the fundamental biology of TICs.  相似文献   

15.
细胞作为机体的基本单位,始终处于一个受力环境中。微环境中的细胞不仅受化学信号的影响,还受基质刚度、外界力载荷及胞外基质(ECM)结构的调控,这些都能影响细胞分化、迁移、形态发生、增殖等方面的生物学反应。目前,部分学者致力于细胞生物力学的应用和机制方面的探索,但对于细胞力学感知机理的认知仍无法形成一个完整的定论。本文将就整合素、G蛋白耦联受体、张力活化通道(SAC)、细胞核等介导的细胞生物力学感知通路作一综述。  相似文献   

16.
17.
Focal adhesions are clusters of integrin transmembrane receptors that mechanically couple the extracellular matrix to the actin cytoskeleton during cell migration. Focal adhesions sense and respond to variations in force transmission along a chain of protein-protein interactions linking successively actin filaments, actin binding proteins, integrins and the extracellular matrix to adapt cell-matrix adhesion to the composition and mechanical properties of the extracellular matrix. This review focuses on the molecular mechanisms by which actin binding proteins integrate actin dynamics, mechanotransduction and integrin activation to control force transmission in focal adhesions.  相似文献   

18.
19.
Matrix stiffness strongly influences growth, differentiation and function of adherent cells1-3. On the macro scale the stiffness of tissues and organs within the human body span several orders of magnitude4. Much less is known about how stiffness varies spatially within tissues, and what the scope and spatial scale of stiffness changes are in disease processes that result in tissue remodeling. To better understand how changes in matrix stiffness contribute to cellular physiology in health and disease, measurements of tissue stiffness obtained at a spatial scale relevant to resident cells are needed. This is particularly true for the lung, a highly compliant and elastic tissue in which matrix remodeling is a prominent feature in diseases such as asthma, emphysema, hypertension and fibrosis. To characterize the local mechanical environment of lung parenchyma at a spatial scale relevant to resident cells, we have developed methods to directly measure the local elastic properties of fresh murine lung tissue using atomic force microscopy (AFM) microindentation. With appropriate choice of AFM indentor, cantilever, and indentation depth, these methods allow measurements of local tissue shear modulus in parallel with phase contrast and fluorescence imaging of the region of interest. Systematic sampling of tissue strips provides maps of tissue mechanical properties that reveal local spatial variations in shear modulus. Correlations between mechanical properties and underlying anatomical and pathological features illustrate how stiffness varies with matrix deposition in fibrosis. These methods can be extended to other soft tissues and disease processes to reveal how local tissue mechanical properties vary across space and disease progression.  相似文献   

20.
Stem cell fate can be induced by the grade of stiffness of the extracellular matrix, depending on the developed tissue or complex tissues. For example, a rigid extracellular matrix induces the osteogenic differentiation in bone marrow derived mesenchymal stem cells (MSCs), while a softer surface induces the osteogenic differentiation in dental follicle cells (DFCs). To determine whether differentiation of ectomesenchymal dental precursor cells is supported by similar grades of extracellular matrices (ECMs) stiffness, we examined the influence of the surface stiffness on the proliferation and osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHED). Cell proliferation of SHED was significantly decreased on cell culture surfaces with a muscle-like stiffness. A dexamethasone-based differentiation medium induced the osteogenic differentiation of SHED on substrates of varying mechanical stiffness. Here, the hardest surface improved the induction of osteogenic differentiation in comparison to that with the softest stiffness. In conclusion, our study showed that the osteogenic differentiation of ectomesenchymal dental precursor cells SHED and DFCs are not supported by similar grades of ECM stiffness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号