首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteoporosis is one of the leading disorders among aged people. Bone loss results from a number of physiological alterations, such as estrogen decline and aging. Meanwhile, iron overload has been recognized as a risk factor for bone loss. Systemic iron homeostasis is fundamentally governed by the hepcidin–ferroportin regulatory axis, where hepcidin is the key regulator. Hepcidin deficiency could induce a few disorders, of which iron overload is the most representative phenotype. However, there was little investigation of the effects of hepcidin deficiency on bone metabolism. To this end, hepcidin-deficient (Hamp1−/−) mice were employed to address this issue. Our results revealed that significant iron overload was induced in Hamp1−/− mice. Importantly, significant decreases of maximal loading and maximal bending stress were found in Hamp1−/− mice relative to wildtype (WT) mice. Moreover, the levels of the C-telopeptide of type I collagen (CTX-1) increased in Hamp1−/− mice. Therefore, hepcidin deficiency resulted in a marked reduction of bone load-bearing capacity likely through enhancing bone resorption, suggesting a direct correlation between hepcidin deficiency and bone loss. Targeting hepcidin or the pathway it modulates may thus represent a therapeutic for osteopenia or osteoporosis.  相似文献   

2.
BackgroundIncreased body iron stores have been implicated in the pathogenesis of diabetes mellitus. However, the molecular mechanisms involved are unclear. The liver plays a central role in homeostasis of iron and glucose in the body. Mice deficient in hepcidin (the central regulator of systemic iron homeostasis) (Hamp1/ mice) accumulate iron in the liver in vivo. The effects of such iron loading on hepatic insulin signaling and glucose metabolism are not known.MethodsHepatocytes isolated from Hamp1/ mice were studied for markers of insulin signaling (and its downstream effects), glucose production, expression of gluconeogenic and lipogenic enzymes, and markers of AMPK (AMP-activated protein kinase) activation and oxidative stress. These parameters were studied both in the absence and presence of insulin, and also with the use of an iron chelator.ResultsAkt in the insulin signaling pathway was found to be activated in the Hamp1/ hepatocytes to a greater extent than wild-type (WT) cells, both under basal conditions and in response to insulin. Incubation of the Hamp1/ hepatocytes with an iron chelator attenuated these effects. There was no evidence of oxidative stress or AMPK activation in the Hamp1/ hepatocytes. Glucose production by these cells was similar to that by WT cells. Gene expression of key gluconeogenic enzymes was decreased in these cells. In addition, they showed evidence of increased lipogenesis.ConclusionsHepatocytes from Hamp1/ mice showed evidence of greater sensitivity to the effects of insulin than WT hepatocytes. This may explain the insulin-sensitive phenotype that has been reported in classical hemochromatosis.  相似文献   

3.
Despite a century of research on obesity, metabolic disorders and their complications, including dyslipidemia, insulin resistance, and fatty liver disease remain a serious global health problem. Lycopus lucidus Turcz (LT) is a traditional medicine used for its anti-inflammatory properties that has not been evaluated for its efficacy in improving obesity. In this study, mice were fed a normal diet (n = 10) or obesity was induced with a high-fat diet (HFD, n = 20, 60% kcal from fat) for 4 weeks. The HFD mice were then divided into two groups, one of which received LT supplementation with water extract for 13 weeks [HFD (n = 10) or HFD with LT water extract (n = 10, 1.5%)]. LT reduced body and adipose tissue weight by elevating energy expenditure by increasing fatty oxidation in epididymal white adipose tissue (eWAT) and muscle. LT ameliorated dyslipidemia and hepatic steatosis by restricting lipogenesis. Additionally, LT normalized the impaired glucose homeostasis by diet-induced obesity to improve pancreatic islet dysfunction with increasing hepatic major urinary protein expression. Moreover, LT attenuated the inflammation and collagen accumulation in the liver and eWAT. In conclusion, these results suggest that LT can treat obesity-related metabolic disorders such as adiposity, dyslipidemia, hepatic steatosis, insulin resistance, and inflammation.  相似文献   

4.
A method of employing high-resolution mass spectrometry in combination with in vivo metabolite deuterium labeling was developed in this study to investigate the effects of alcohol exposure on lipid homeostasis at the white adipose tissue (WAT)-liver axis in a mouse model of alcoholic fatty liver. In order to differentiate the liver lipids synthesized from the fatty acids that were transported back from adipose tissue and the lipids synthesized from other sources of fatty acids, a two-stage mouse feeding experiment was performed to incorporate deuterium into metabolites. Hepatic lipids extracted from mouse liver, epididymal white adipose tissue (eWAT) and subcutaneous white adipose tissue (sWAT) were analyzed. It was found that 13 and 10 triacylglycerols (TGs) incorporated with a certain number of deuterium were significantly increased in alcohol induced fatty liver at two and four weeks of alcohol feeding periods, respectively. The concentration changes of these TGs ranged from 1.7 to 6.3-fold increase. A total of 14 deuterated TGs were significantly decreased in both eWAT and sWAT at the two and four weeks and the fold-change ranged from 0.19 to 0.77. The increase of deuterium incorporated TGs in alcohol-induced fatty liver and their decrease in both eWAT and sWAT indicate that alcohol exposure induces hepatic influx of fatty acids which are released from WATs. The results of time course analysis further indicate a mechanistic link between adipose fat loss and hepatic fat gain in alcoholic fatty liver.  相似文献   

5.
6.
Hormone-sensitive lipase (HSL) plays a crucial role in intracellular lipolysis, and loss of HSL leads to diacylglycerol (DAG) accumulation, reduced FA mobilization, and impaired PPARγ signaling. Hsl knockout mice exhibit adipose tissue inflammation, but the underlying mechanisms are still not clear. Here, we investigated if and to what extent HSL loss contributes to endoplasmic reticulum (ER) stress and adipose tissue inflammation in Hsl knockout mice. Furthermore, we were interested in how impaired PPARγ signaling affects the development of inflammation in epididymal white adipose tissue (eWAT) and inguinal white adipose tissue (iWAT) of Hsl knockout mice and if DAG and ceramide accumulation contribute to adipose tissue inflammation and ER stress. Ultrastructural analysis showed a markedly dilated ER in both eWAT and iWAT upon loss of HSL. In addition, Hsl knockout mice exhibited macrophage infiltration and increased F4/80 mRNA expression, a marker of macrophage activation, in eWAT, but not in iWAT. We show that treatment with rosiglitazone, a PPARγ agonist, attenuated macrophage infiltration and ameliorated inflammation of eWAT, but expression of ER stress markers remained unchanged, as did DAG and ceramide levels in eWAT. Taken together, we show that HSL loss promoted ER stress in both eWAT and iWAT of Hsl knockout mice, but inflammation and macrophage infiltration occurred mainly in eWAT. Also, PPARγ activation reversed inflammation but not ER stress and DAG accumulation. These data indicate that neither reduction of DAG levels nor ER stress contribute to the reversal of eWAT inflammation in Hsl knockout mice.  相似文献   

7.
The vgf gene regulates energy homeostasis and the VGF-derived peptide TLQP-21 centrally exerts catabolic effects in mice and hamsters. Here, we investigate the effect of chronic intracerebroventricular (icv) injection of TLQP-21 in mice fed high fat diet (HFD). Fast weight-gaining mice injected with the peptide or cerebrospinal fluid were selected for physiological, endocrine, and molecular analysis. TLQP-21 selectively inhibited the increase in body weight and epididymal white adipose tissue (eWAT) weight induced by HFD in control animals despite both groups having a similar degree of hyperphagia. TLQP-21 normalized the increase in leptin and decrease in ghrelin while increasing epinephrine and epinephrine/norepinephrine ratio when compared to values in controls. Finally, HFD-TLQP-21 mice showed a selective increase of eWAT β3-adrenergic receptor mRNA. Peroxisome-proliferator-activated-receptor-δ and hormone-sensing-lipase mRNA were also upregulated. In conclusion, chronic icv infusion of TLQP-21 prevented the early phase of diet-induced obesity despite overfeeding. These effects were paralleled by activation of catabolic pathways within the eWAT. Our results further support a role for TLQP-21 as a catabolic neuropeptide.  相似文献   

8.
Anemia is a common disorder, characterized by abnormally low levels of red blood cells or hemoglobin. The mechanisms of anemia development and response have been thoroughly studied in mammals, but little is known in other vertebrates, particularly teleost fish. In this study, different degrees of anemia were induced in healthy European sea bass specimens (Dicentrarchus labrax) and at pre-determined time points hematological parameters, liver iron content and the expression of genes involved in iron homeostasis and hematopoiesis, with particular attention on hepcidins, were evaluated. The experimental anemia prompted a decrease in hamp1 expression in all tested organs, in accordance to an increased need for iron absorption and mobilization, with slight increases in hamp2 in the kidney and intestine. The liver was clearly the major organ involved in iron homeostasis, decreasing its iron content and showing a gene expression profile consistent with an increased iron release and mobilization. Although both the spleen and head kidney are involved in erythropoiesis, the spleen was found to assume a more preponderant role in the recovery of erythrocyte levels. The intestine was also involved in the response to anemia, through the increase of iron transporting genes. Administration of Hamp1 or Hamp2 mature peptides showed that only Hamp1 affects hematological parameters and liver iron content. In conclusion, the molecular mechanisms of response to anemia present in sea bass are similar to the ones described for mammals, with these results indicating that the two hepcidin types from teleosts assume different roles during anemia.  相似文献   

9.
BackgroundOsteoporosis is frequently accompanied by iron disorders. Calcitonin (CT) was approved as a clinical drug to treat osteoporosis. Hepcidin is a peptide hormone that is secreted by the liver and controls body iron homeostasis. Hepcidin deficiency leads to iron overload diseases. This study was aimed at investigating the effect of CT on hepatic hepcidin and the mechanism by which CT modulates hepatic hepcidin pathways and iron metabolism.MethodRT-PCR, Western blot, ELISA and siRNA were used to detect the effect of CT on iron metabolism in vivo and in vitro. In addition, the regulatory signal molecules of hepcidin were measured to explore the molecular mechanism of its regulation.ResultsThe results showed that CT strongly increased hepcidin expression and altered iron homeostasis, after mice were intraperitoneal injection of CT. In response to CT administration, BMP6 level in kidney and the serum BMP6 was increased significantly. The phosphorylation of Smad1/5/8 proteins in liver was increased at 3 h and 6 h. Moreover, the Bmp inhibitor LDN-193,189 pretreatment significantly attenuated the CT-mediated increases in phosphorylated Smad1/5/8 and Hamp1 mRNA levels. Calcitonin receptor (CTR) siRNA transfection significant suppressed the role of CT on BMP6 expression in Caki-1 cells.ConclusionOur results suggest that CT strongly induces hepcidin expression and affected iron metabolism. It will provide a new strategy for the treatment of calcium iron related diseases.  相似文献   

10.
Obesity is often associated with disorders of iron homeostasis; however, the underlying mechanisms are not fully understood. Hepcidin is a key regulator of iron metabolism and may be responsible for obesity-driven iron deficiency. Herein, we used an animal model of diet-induced obesity to study high-fat-diet-induced changes in iron homeostasis. C57BL/6 mice were fed a standard (SD) or high-fat diet (HFD) for 8 weeks, and in addition, half of the mice received high dietary iron (Fe+) for the last 2 weeks. Surprisingly, HFD led to systemic iron deficiency which was traced back to reduced duodenal iron absorption. The mRNA and protein expressions of the duodenal iron transporters Dmt1 and Tfr1 were significantly higher in HFD- than in SD-fed mice, indicating enterocyte iron deficiency, whereas the mRNA levels of the duodenal iron oxidoreductases Dcytb and hephaestin were lower in HFD-fed mice. Neither hepatic and adipose tissue nor serum hepcidin concentrations differed significantly between SD- and HFD-fed mice, whereas dietary iron supplementation resulted in increased hepatic hepcidin mRNA expression and serum hepcidin levels in SD as compared to HFD mice. Our study suggests that HFD results in iron deficiency which is neither due to intake of energy-dense nutrient poor food nor due to increased sequestration in the reticulo-endothelial system but is the consequence of diminished intestinal iron uptake. We found that impaired iron absorption is independent of hepcidin but rather results from reduced metal uptake into the mucosa and discordant oxidoreductases expressions despite enterocyte iron deficiency.  相似文献   

11.
An impaired capacity of adipose tissue expansion leads to adipocyte hypertrophy, inflammation and insulin resistance (IR) under positive energy balance. We previously showed that a grape pomace extract, rich in flavonoids including quercetin (Q), attenuates adipose hypertrophy. This study investigated whether dietary Q supplementation promotes adipogenesis in the epididymal white adipose tissue (eWAT) of rats consuming a high-fat diet, characterizing key adipogenic regulators in 3T3-L1 pre-adipocytes. Consumption of a high-fat diet for 6 weeks caused IR, increased plasma TNFα concentrations, eWAT weight, adipocyte size and the eWAT/brown adipose tissue (BAT) ratio. These changes were accompanied by decreased levels of proteins involved in angiogenesis, VEGF-A and its receptor 2 (VEGF-R2), and of two central adipogenic regulators, i.e. PPARγ and C/EBPα, and proteins involved in mature adipocyte formation, i.e. fatty acid synthase (FAS) and adiponectin. Q significantly reduced adipocyte size and enhanced angiogenesis and adipogenesis without changes in eWAT weight and attenuated systemic IR and inflammation. In addition, high-fat diet consumption increased eWAT hypoxia inducible factor-1 alpha (HIF-1α) levels and those of proteins involved in adipose inflammation (TLR-4, CD68, MCP-1, JNK) and activation of endoplasmic reticulum (ER) stress, i.e. ATF-6 and XBP-1. Q mitigated all these events. Q and quercetin 3-glucoronide prevented TNFα-mediated downregulation of adipogenesis during 3T3-L1 pre-adipocytes early differentiation. Together, Q capacity to promote a healthy adipose expansion enhancing angiogenesis and adipogenesis may contribute to reduced adipose hypertrophy, inflammation and IR. Consumption of diets rich in Q could be useful to counteract the adverse effects of high-fat diet-induced adipose dysfunction.  相似文献   

12.
The dysregulation of adipokine secretion owing to adiposopathy can contribute to the pathogenesis of obesity-related disorders. Being that exercise is an advised strategy against obesity-induced adiposopathy, we aimed to analyze the role of physical exercise as a preventive and therapeutic strategy against high-fat diet (HFD)-induced adipokine and ghrelin alterations. Rats were pair-fed the Lieber De Carli standard diet (S, 35 Kcal% fat) or HFD (71 Kcal% fat) over 17 weeks. Animals were assigned into four groups as follows: standard diet sedentary (SS), standard diet voluntary physical activity (SVPA), high-fat diet sedentary (HS), and high-fat diet voluntary physical activity (HVPA). After 9 weeks of dietary treatment, half of the SS and HS animals were submitted to an 8-week endurance training program, standard diet endurance training (SET), and high-fat-diet endurance training (HET) groups, maintaining the respective diets. Although there were no changes in body weight, HFD increased visceral adiposity, percentage of large adipocytes, hypoxia inducible factor (HIF)-1α, and leptin contents in epididymal adipose tissue (eWAT) and decreased plasma content of adiponectin (AdipQ). Both VPA and ET decreased visceral adiposity and percentage of large adipocytes in HFD-fed animals, but ET also increased the percentage of small- to medium-sized adipocytes. VPA increased plasma growth hormone secretagogue receptor (GHS-R) and decreased leptin protein in HVPA group. ET decreased plasma insulin and leptin levels and eWAT HIF-1α and leptin expression in HET group. Moreover, ET improved insulin sensitivity, plasma high molecular weight, and AdipQ and ghrelin levels and increased eWAT and GHS-R expression. Our data suggest that exercise, particularly ET, reverted adiposopathy and related endocrine alterations induced by an isocaloric HFD pair-fed diet.  相似文献   

13.
Vitamin A modulates inflammatory status, iron metabolism and erythropoiesis. Given that these factors modulate the expression of the hormone hepcidin (Hamp), we investigated the effect of vitamin A deficiency on molecular biomarkers of iron metabolism, the inflammatory response and the erythropoietic system. Five groups of male Wistar rats were treated: control (AIN-93G), the vitamin A-deficient (VAD) diet, the iron-deficient (FeD) diet, the vitamin A- and iron-deficient (VAFeD) diet or the diet with 12 mg atRA/kg diet replacing all-trans-retinyl palmitate by all-trans retinoic acid (atRA). Vitamin A deficiency reduced serum iron and transferrin saturation levels, increased spleen iron concentrations, reduced hepatic Hamp and kidney erythropoietin messenger RNA (mRNA) levels and up-regulated hepatic and spleen heme oxygenase-1 gene expression while reducing the liver HO-1 specific activity compared with the control. The FeD and VAFeD rats exhibited lower levels of serum iron and transferrin saturation, lower iron concentrations in tissues and lower hepatic Hamp mRNA levels compared with the control. The treatment with atRA resulted in lower serum iron and transferrin concentrations, an increased iron concentration in the liver, a decreased iron concentration in the spleen and in the gut, and decreased hepatic Hamp mRNA levels. In summary, these findings suggest that vitamin A deficiency leads to ineffective erythropoiesis by the down-regulation of renal erythropoietin expression in the kidney, resulting in erythrocyte malformation and the consequent accumulation of the heme group in the spleen. Vitamin A deficiency indirectly modulates systemic iron homeostasis by enhancing erythrophagocytosis of undifferentiated erythrocytes.  相似文献   

14.
The liver is the primary organ for storing iron and plays a central role in the regulation of body iron levels by secretion of the hormone Hamp1. Although many factors modulate Hamp1 expression, their regulatory mechanisms are poorly understood. Here, we used conditional knockout mice for the iron exporter ferroportin1 (Fpn1) to modulate tissue iron in specific tissues in combination with iron-deficient or iron-rich diets and transferrin (Tf) supplementation to investigate the mechanisms underlying Hamp1 expression. Despite liver iron overload, expression of bone morphogenetic protein 6 (Bmp6), a potent-stimulator of Hamp1 expression that is expressed under iron-loaded conditions, was decreased. We hypothesized that factors other than liver iron must play a role in controlling Bmp6 expression. Our results show that erythropoietin and Tf-bound iron do not underlie the down-regulation of Bmp6 in our mice models. Moreover, Bmp6 was down-regulated under conditions of high iron demand, irrespective of the presence of anemia. We therefore inferred that the signals were driven by high iron demand. Furthermore, we also confirmed previous suggestions that Tf-bound iron regulates Hamp1 expression via Smad1/5/8 phosphorylation without affecting Bmp6 expression, and the effect of Tf-bound iron on Hamp1 regulation appeared before a significant change in Bmp6 expression. Together, these results are consistent with novel mechanisms for regulating Bmp6 and Hamp1 expression.  相似文献   

15.
The inhibitory Smad7 acts as a critical suppressor of hepcidin, the major regulator of systemic iron homeostasis. In this study we define the mRNA expression of the two functionally related Smad proteins, Smad6 and Smad7, within pathways known to regulate hepcidin levels. Using mouse models for hereditary hemochromatosis (Hfe-, TfR2-, Hfe/TfR2-, Hjv- and hepcidin1-deficient mice) we show that hepcidin, Smad6 and Smad7 mRNA expression is coordinated in such a way that it correlates with the activity of the Bmp/Smad signaling pathway rather than with liver iron levels. This regulatory circuitry is disconnected by iron treatment of Hfe ?/? and Hfe/TfR2 mice that significantly increases hepatic iron levels as well as hepcidin, Smad6 and Smad7 mRNA expression but fails to augment pSmad1/5/8 levels. This suggests that additional pathways contribute to the regulation of hepcidin, Smad6 and Smad7 under these conditions which do not require Hfe.  相似文献   

16.
Hepcidin is a hepatocellular hormone that inhibits the release of iron from certain cell populations, including enterocytes and reticuloendothelial cells. The regulation of hepcidin (HAMP) gene expression by iron status is mediated in part by the signaling molecule bone morphogenetic protein 6 (BMP6). We took advantage of the low iron status of juvenile mice to characterize the regulation of Bmp6 and Hamp1 expression by iron administered in three forms: 1) ferri-transferrin (Fe-Tf), 2) ferric ammonium citrate (FAC), and 3) liver ferritin. Each of these forms of iron enters cells by distinct mechanisms and chemical forms. Iron was parenterally administered to 10-day-old mice, and hepatic expression of Bmp6 and Hamp1 mRNAs was measured 6 h later. We observed that hepatic Bmp6 expression increased in response to ferritin but was unchanged by Fe-Tf or FAC. Hepatic Hamp1 expression likewise increased in response to ferritin and Fe-Tf but was decreased by FAC. Exogenous ferritin increased Bmp6 and Hamp1 expression in older mice as well. Removing iron from ferritin markedly decreased its effect on Bmp6 expression. Exogenously administered ferritin and the derived iron localized in the liver primarily to sinusoidal lining cells. Moreover, expression of Bmp6 mRNA in isolated adult rodent liver cells was much higher in sinusoidal lining cells than hepatocytes (endothelial > stellate > Kupffer). We conclude that exogenous iron-containing ferritin upregulates hepatic Bmp6 expression, and we speculate that liver ferritin contributes to regulation of Bmp6 and, thus, Hamp1 genes.  相似文献   

17.
Hepcidin, the body's main regulator of systemic iron homeostasis, is upregulated in response to inflammation and is thought to play a role in the manifestation of iron deficiency (ID) observed in obese populations. We determined systemic hepcidin levels and its association with body mass, inflammation, erythropoiesis, and iron status in premenopausal obese and nonobese women (n = 20/group) matched for hemoglobin (Hb). The obese participants also had liver and abdominal visceral and subcutaneous adipose tissue assessed for tissue iron accumulation and hepcidin mRNA expression. Despite similar Hb levels, the obese women had significantly higher serum hepcidin (88.02 vs. 9.70 ng/ml; P < 0.0001) and serum transferrin receptor (sTfR) (P = 0.001) compared to nonobese. In the obese women hepcidin was not correlated with serum iron (r = ?0.02), transferrin saturation (Tsat) (r = 0.17) or sTfR (r = ?0.12); in the nonobese it was significantly positively correlated with Tsat (r = 0.70) and serum iron (r = 0.58), and inversely with sTfR (r = ?0.63). Detectable iron accumulation in the liver and abdominal adipose tissue of the obese women was minimal. Liver hepcidin mRNA expression was ~700 times greater than adipose tissue production and highly correlated with circulating hepcidin levels (r = 0.61). Serum hepcidin is elevated in obese women despite iron depletion, suggesting that it is responding to inflammation rather than iron status. The source of excess hepcidin appears to be the liver and not adipose tissue. The ID of obesity is predominantly a condition of a true body iron deficit rather than maldistribution of iron due to inflammation. However, these findings suggest inflammation may perpetuate this condition by hepcidin‐mediated inhibition of dietary iron absorption.  相似文献   

18.

Objective

This study examined the phenotypic effects of adipocyte‐specific oncostatin M receptor (OSMR) loss in chow‐fed mice.

Methods

Chow‐fed adipocyte‐specific OSMR knockout (FKO) mice and littermate OSMRfl/fl controls were studied. Tissue weights, insulin sensitivity, adipokine production, and stromal cell immunophenotypes were assessed in epididymal fat (eWAT); serum adipokine production was also assessed. In vitro, adipocytes were treated with oncostatin M, and adipokine gene expression was assessed.

Results

Body weights, fasting blood glucose levels, and eWAT weights did not differ between genotypes. However, the eWAT of OSMRFKO mice was modestly less responsive to insulin stimulation than that of OSMRfl/fl mice. Notably, significant increases in adipokines, including C‐reactive protein, lipocalin 2, intercellular adhesion molecule‐1, and insulinlike growth factor binding protein 6, were observed in the eWAT of OSMRFKO mice. In addition, significant increases in fetuin A and intercellular adhesion molecule‐1 were detected in OSMRFKO serum. Flow cytometry revealed a significant increase in leukocyte number and modest, but not statistically significant, increases in B cells and T cells in the eWAT of OSMRFKO mice.

Conclusions

The chow‐fed OSMRFKO mice exhibited adipose tissue dysfunction and increased proinflammatory adipokine production. These results suggest that intact adipocyte oncostatin M–OSMR signaling is necessary for adipose tissue immune cell homeostasis.
  相似文献   

19.
20.
n-3 polyunsaturated fatty acids (n-3 PUFA) might regulate metabolism by lowering endocannabinoid levels. We examined time-dependent changes in adipose tissue levels of endocannabinoids as well as in parameters of glucose homeostasis induced by n-3 PUFA in dietary-obese mice, and compared these results with the effect of n-3 PUFA intervention in type 2 diabetic (T2DM) subjects. Male C57BL/6J mice were fed for 8, 16 or 24?weeks a high-fat diet alone (cHF) or supplemented with n-3 PUFA (cHF?+?F). Overweight/obese, T2DM patients on metformin therapy were given for 24?weeks corn oil (Placebo; 5?g/day) or n-3 PUFA concentrate as above (Omega-3; 5?g/day). Endocannabinoids were measured by liquid chromatography-tandem mass-spectrometry. Compared to cHF-fed controls, the cHF?+?F mice consistently reduced 2-arachidonoylglycerol (up to ~2-fold at week 24) and anandamide (~2-fold) in adipose tissue, while the levels of endocannabinoid-related anti-inflammatory molecules N-eicosapentaenoyl ethanolamine (EPEA) and N-docosahexaenoyl ethanolamine (DHEA) increased more than ~10-fold and ~8-fold, respectively. At week 24, the cHF?+?F mice improved glucose tolerance and fasting blood glucose, the latter being positively correlated with adipose 2-arachidonoylglycerol levels only in obese cHF-fed controls, like fasting insulin and HOMA-IR. In the patients, n-3 PUFA failed to reduce 2-arachidonoylglycerol and anandamide levels in adipose tissue and serum, but they increased both adipose tissue and serum levels of EPEA and DHEA. In conclusion, the inability of n-3 PUFA to reduce adipose tissue and serum levels of classical endocannabinoids might contribute to a lack of beneficial effects of these lipids on glucose homeostasis in T2DM patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号